搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金刚石氮空位色心耦合机械振子和腔场系统中方差压缩研究

廖庆洪 叶杨 李红珍 周南润

引用本文:
Citation:

金刚石氮空位色心耦合机械振子和腔场系统中方差压缩研究

廖庆洪, 叶杨, 李红珍, 周南润

Quadrature squeezing of the system consisting of nitrogen-vacancy centers in diamond coupled to cavity field and mechanical resonator

Liao Qing-Hong, Ye Yang, Li Hong-Zhen, Zhou Nan-Run
PDF
导出引用
  • 研究了金刚石氮空位中心(NV色心)同时耦合腔场和机械振子系统中声子场的方差压缩动力学特性,分析了金刚石NV色心初态和NV色心与机械振子耦合强度对声子场方差压缩影响.结果发现:可以制备压缩时间长、压缩幅度大的声子场压缩态,其物理原因是机械振子具有最大相干性,并且通过调控NV色心初态以及磁场梯度可以实现对机械振子方差压缩非经典特性的操控,从而在理论上提供了一种调控声子场方差压缩的方式.
    With the great improvement of nanotechnology, it is now possible to fabricate mechanical resonator with dimension on a micro and even nanometer scale.Because of its high vibration frequency, quality factor, very small mass, and low intrinsic dissipation, nanomechanical resonator has important applications in the field of high-precision displacement detection, force detection, mass measurement, and accurate quantum computation.Mechanical resonator is also a promising candidate for observing quantum effects in macroscopic objects.By coupling nanomechanical resonator to other solid-state system such as optical cavity, microwave cavity, nitrogen-vacancy center (NV center) and superconducting qubits, researchers have successfully cooled the mechanical resonator to its quantum ground state, which paves the way for observing nonclassical states in resonator such as superposition state and Fock state.On the other hand, the nitrogenvacancy center in diamond has attracted more and more attention because of its advantages of long coherence time at room temperature, the ability to implement initialization and readout, and microwave control.Moreover, these NV centers can be used to detect weak magnetic field and electric field at room temperature.By using both laser field and microwave field, one can implement the manipulation, storage, and readout of the quantum information.In addition, because NV centers couple to both optical field and microwave field, they can also be used as a quantum interface between optical system and solid-state system.This provides a promising platform to study novel quantum phenomena based on NV centers separated by long distances.The nitrogen-vacancy center in diamond coupled to nanomechanical resonator can be used in precision measurement and quantum information processing, which has become a hot research topic.In this paper, we study the dynamics of quadrature squeezing of the phonon field in the system consisting of nitrogen-vacancy centers in diamond coupled to both cavity field and mechanical resonator.The effects of initial state of nitrogen-vacancy center and the coupling strength between nitrogen-vacancy center and mechanical resonator on the quadrature squeezing of the phonon field are analyzed.It is shown that the phonon field squeezed state with longtime and high-degree can be generated.The physical reason is that the mechanical resonator has the largest coherence.Moreover, the non-classical property of quadrature squeezing of mechanical resonator can be achieved by manipulating the initial state of nitrogen-vacancy center and magnetic field gradient.The proposal may provide a theoretical way to control and manipulate the quadrature squeezing of the phonon field.The results obtained here may have great significance and applications in the field of quantum information processing and precision measurement.
    • 基金项目: 国家自然科学基金(批准号:61368002)、江西省杰出青年人才资助计划项目(批准号:20162BCB23009)、江西省自然科学基金(批准号:20161BAB202046)、江西省教育厅科技项目(批准号:GJJ13051)、中国科学院量子信息重点实验室开放课题(批准号:KQI201704)和低维量子物理国家重点实验室开放研究基金(批准号:KF201711)资助的课题.
    • Funds: Project supported by National Natural Science Foundation of China (Grant No. 61368002), the Foundation for Distinguished Young Scientists of Jiangxi Province, China (Grant No. 20162BCB23009), the Natural Science Foundation of Jiangxi Province, China (Grant No. 20161BAB202046), the Research Foundation of the Education Department of Jiangxi Province, China (Grant No. GJJ13051), the Open Project Program of Chinese Academy of Sciences Key Laboratory of Quantum Information, China (Grant No. KQI201704), and Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics, China (Grant No. KF201711).
    [1]

    Carr D W, Evoy S, Sekaric L, Craighead H G, Parpia J M 1999 Appl. Phys. Lett. 75 920

    [2]

    Blick R H, Roukes M L, Wegscheider W, Bichler M 1998 Phys. B:Condensed Matter 249 784

    [3]

    Caves C M, Thorne K S, Drever R W P, Sandberg V D, Zimmermann M 1980 Rev. Mod. Phys. 52 341

    [4]

    Sekaric L, Parpia J M, Craighead H G, Feygelson T, Houston B H, Butler J E 2002 Appl. Phys. Lett. 81 4455

    [5]

    Xiang Z L, Ashhab S, You J Q, Nori F 2013 Rev. Mod. Phys. 85 623

    [6]

    Doherty M W, Manson N B, Delaney P, Jelezko F, Wrachtrup J, Hollenberg L C L 2013 Phys. Rep. 528 1

    [7]

    Yin Z, Li T, Zhang X, Duan L M 2013 Phys. Rev. A 88 033614

    [8]

    Zhao N, Yin Z Q 2014 Phys. Rev. A 90 042118

    [9]

    Dolde F, Fedder H, Doherty M W, Nöbauer T, Rempp F, Balasubramanian G 2011 Nat. Phys. 7 459

    [10]

    Toyli D M, de las Casas C F, Christle D J, Dobrovitski V V, Awschalom D D 2013 Proc. Natl. Acad. Sci. USA 110 8417

    [11]

    Kolkowitz S, Jayich A C, Unterreithmeier Q P, Bennett S D, Rabl P, Harris J G, Lukin M D 2012 Science 335 1603

    [12]

    Ovartchaiyapong P, Lee K W, Myers B A, Jayich A C 2011 Nat. Commun. 5 4429

    [13]

    Li P B, Xiang Z L, Rabl P, Nori F 2016 Phys. Rev. Lett. 117 015502

    [14]

    Muschik C A, Moulieras S, Bachtold A, Koppens F H, Lewenstein M, Chang D E 2014 Phys. Rev. Lett. 112 223601

    [15]

    Liu B Y, Cui W, Dai H Y, Chen X, Zhang M 2017 Chin. Phys. B 26 090303

    [16]

    Liu B Y, Dai H Y, Chen X, Zhang M 2015 Eur. Phys. J. D 69 104

    [17]

    Rabl P, Cappellaro P, Dutt M V G, Jiang L, Maze J R, Lukin M D 2009 Phys. Rev. B 79 041302

    [18]

    Liu Y X, Sun C P, Nori F 2006 Phys. Rev. A 74 052321

    [19]

    Walls D F, Milburn G J, Garrison J C 1994 Quantum Optics (Berlin:Springer-Verlag) pp297-303

    [20]

    Yu C S, Song H S 2009 Phys. Rev. A 80 022324

    [21]

    Horowitz V R, Alemán B J, Christle D J, Cleland A N, Awschalom D D 2012 Proc. Natl. Acad. Sci. USA 109 13493

    [22]

    Geiselmann M, Juan M L, Renger J, Say J M, Brown L J, de Abajo F J, Koppens F, Quidant R 2013 Nat. Nanotechnol. 8 175

    [23]

    Neukirch L P, Gieseler J, Quidant R, Novotny L, Nick V A 2013 Opt. Lett. 38 2976

    [24]

    Gieseler J, Deutsch B M, Quidant R, Novotny L 2012 Phys. Rev. Lett. 109 103603

    [25]

    Mccutcheon M W, Loncar M 2008 Opt. Express 16 19136

    [26]

    Englund D, Shields B, Rivoire K, Hatami F, Vučković J, Park H, Lukin M D 2010 Nano Lett. 10 3922

    [27]

    Restrepo J, Favero I, Ciuti C 2017 Phys. Rev. A 95 023832

    [28]

    Mamin H J, Poggio M, Degen C L, Rugar D 2007 Nat. Nanotechnol. 2 301

  • [1]

    Carr D W, Evoy S, Sekaric L, Craighead H G, Parpia J M 1999 Appl. Phys. Lett. 75 920

    [2]

    Blick R H, Roukes M L, Wegscheider W, Bichler M 1998 Phys. B:Condensed Matter 249 784

    [3]

    Caves C M, Thorne K S, Drever R W P, Sandberg V D, Zimmermann M 1980 Rev. Mod. Phys. 52 341

    [4]

    Sekaric L, Parpia J M, Craighead H G, Feygelson T, Houston B H, Butler J E 2002 Appl. Phys. Lett. 81 4455

    [5]

    Xiang Z L, Ashhab S, You J Q, Nori F 2013 Rev. Mod. Phys. 85 623

    [6]

    Doherty M W, Manson N B, Delaney P, Jelezko F, Wrachtrup J, Hollenberg L C L 2013 Phys. Rep. 528 1

    [7]

    Yin Z, Li T, Zhang X, Duan L M 2013 Phys. Rev. A 88 033614

    [8]

    Zhao N, Yin Z Q 2014 Phys. Rev. A 90 042118

    [9]

    Dolde F, Fedder H, Doherty M W, Nöbauer T, Rempp F, Balasubramanian G 2011 Nat. Phys. 7 459

    [10]

    Toyli D M, de las Casas C F, Christle D J, Dobrovitski V V, Awschalom D D 2013 Proc. Natl. Acad. Sci. USA 110 8417

    [11]

    Kolkowitz S, Jayich A C, Unterreithmeier Q P, Bennett S D, Rabl P, Harris J G, Lukin M D 2012 Science 335 1603

    [12]

    Ovartchaiyapong P, Lee K W, Myers B A, Jayich A C 2011 Nat. Commun. 5 4429

    [13]

    Li P B, Xiang Z L, Rabl P, Nori F 2016 Phys. Rev. Lett. 117 015502

    [14]

    Muschik C A, Moulieras S, Bachtold A, Koppens F H, Lewenstein M, Chang D E 2014 Phys. Rev. Lett. 112 223601

    [15]

    Liu B Y, Cui W, Dai H Y, Chen X, Zhang M 2017 Chin. Phys. B 26 090303

    [16]

    Liu B Y, Dai H Y, Chen X, Zhang M 2015 Eur. Phys. J. D 69 104

    [17]

    Rabl P, Cappellaro P, Dutt M V G, Jiang L, Maze J R, Lukin M D 2009 Phys. Rev. B 79 041302

    [18]

    Liu Y X, Sun C P, Nori F 2006 Phys. Rev. A 74 052321

    [19]

    Walls D F, Milburn G J, Garrison J C 1994 Quantum Optics (Berlin:Springer-Verlag) pp297-303

    [20]

    Yu C S, Song H S 2009 Phys. Rev. A 80 022324

    [21]

    Horowitz V R, Alemán B J, Christle D J, Cleland A N, Awschalom D D 2012 Proc. Natl. Acad. Sci. USA 109 13493

    [22]

    Geiselmann M, Juan M L, Renger J, Say J M, Brown L J, de Abajo F J, Koppens F, Quidant R 2013 Nat. Nanotechnol. 8 175

    [23]

    Neukirch L P, Gieseler J, Quidant R, Novotny L, Nick V A 2013 Opt. Lett. 38 2976

    [24]

    Gieseler J, Deutsch B M, Quidant R, Novotny L 2012 Phys. Rev. Lett. 109 103603

    [25]

    Mccutcheon M W, Loncar M 2008 Opt. Express 16 19136

    [26]

    Englund D, Shields B, Rivoire K, Hatami F, Vučković J, Park H, Lukin M D 2010 Nano Lett. 10 3922

    [27]

    Restrepo J, Favero I, Ciuti C 2017 Phys. Rev. A 95 023832

    [28]

    Mamin H J, Poggio M, Degen C L, Rugar D 2007 Nat. Nanotechnol. 2 301

  • [1] 刘欣, 蔡宸, 董志飞, 邓欣, 胡昕宇, 祁志美. 基于硅基微电子机械系统仿生振膜的光纤麦克风. 物理学报, 2022, 71(9): 094301. doi: 10.7498/aps.71.20212229
    [2] 沈翔, 赵立业, 黄璞, 孔熙, 季鲁敏. 金刚石氮-空位色心的原子自旋声子耦合机理. 物理学报, 2021, 70(6): 068501. doi: 10.7498/aps.70.20201848
    [3] 林豪彬, 张少春, 董杨, 郑瑜, 陈向东, 孙方稳. 基于金刚石NV色心的温度传感. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211822
    [4] 李中豪, 王天宇, 郭琦, 郭浩, 温焕飞, 唐军, 刘俊. 基于磁集聚效应的系综NV色心磁检测增强. 物理学报, 2021, 70(14): 147601. doi: 10.7498/aps.70.20210129
    [5] 刘妮, 王建芬, 梁九卿. 双光腔耦合下机械振子的基态冷却. 物理学报, 2020, 69(6): 064202. doi: 10.7498/aps.69.20191541
    [6] 杨建勇, 陈华俊. 基于超强耦合量子点-纳米机械振子系统的全光学质量传感. 物理学报, 2019, 68(24): 246302. doi: 10.7498/aps.68.20190607
    [7] 王成杰, 石发展, 王鹏飞, 段昌奎, 杜江峰. 基于金刚石NV色心的纳米尺度磁场测量和成像技术. 物理学报, 2018, 67(13): 130701. doi: 10.7498/aps.67.20180243
    [8] 司峻峰, 黄晓林, 周玲玲, 刘红星. 心率变异性的异方差特征研究. 物理学报, 2014, 63(4): 040504. doi: 10.7498/aps.63.040504
    [9] 吴勇峰, 张世平, 孙金玮, Peter Rolfe. 环形耦合Duffing振子间的同步突变. 物理学报, 2011, 60(2): 020511. doi: 10.7498/aps.60.020511
    [10] 陈德彝, 王忠龙. 白交叉关联色噪声驱动的线性振子的扩散. 物理学报, 2010, 59(1): 111-115. doi: 10.7498/aps.59.111
    [11] 靳艳飞, 胡海岩. 一类线性阻尼振子的随机共振研究. 物理学报, 2009, 58(5): 2895-2901. doi: 10.7498/aps.58.2895
    [12] 刘小娟, 周并举, 方卯发, 周清平. 双光子过程中任意初态原子的信息熵压缩. 物理学报, 2006, 55(2): 704-711. doi: 10.7498/aps.55.704
    [13] 莫嘉琪, 林一骅, 林万涛. 热带海-气耦合振子的摄动解. 物理学报, 2005, 54(9): 3971-3974. doi: 10.7498/aps.54.3971
    [14] 任延琦, 王启新, 张庆刚, 张怿慈. 原子-振子散射振转激发跃迁几率的理论计算. 物理学报, 1993, 42(10): 1580-1586. doi: 10.7498/aps.42.1580
    [15] 阎宏, 常哲, 郭汉英. q变形转动振子模型(Ⅰ)——q振子与双原子分子振动谱. 物理学报, 1991, 40(9): 1377-1387. doi: 10.7498/aps.40.1377
    [16] 于熙令, 金惠强, 阎光辉, 王光瑞, 陈式刚. 强迫布鲁塞尔振子与圆映象. 物理学报, 1990, 39(3): 351-358. doi: 10.7498/aps.39.351
    [17] 田伯刚, 李家明. 广义振子强度密度. 物理学报, 1984, 33(10): 1401-1407. doi: 10.7498/aps.33.1401
    [18] 王光瑞, 陈式刚, 郝柏林. 强迫布鲁塞尔振子中的阵发混沌. 物理学报, 1983, 32(9): 1139-1148. doi: 10.7498/aps.32.1139
    [19] 北京天线小组. 套磁介质的小振子天线. 物理学报, 1978, 27(6): 615-630. doi: 10.7498/aps.27.615
    [20] 天线计算组. 天线振子作为初值问题求解. 物理学报, 1977, 26(4): 341-352. doi: 10.7498/aps.26.341
计量
  • 文章访问数:  6492
  • PDF下载量:  218
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-04
  • 修回日期:  2017-11-10
  • 刊出日期:  2019-02-20

/

返回文章
返回