搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于飞秒锁模光纤激光脉冲基频光的差频产生红外光梳

马金栋 吴浩煜 路桥 马挺 时雷 孙青 毛庆和

引用本文:
Citation:

基于飞秒锁模光纤激光脉冲基频光的差频产生红外光梳

马金栋, 吴浩煜, 路桥, 马挺, 时雷, 孙青, 毛庆和

Fiber-type difference frequency generation infrared optical frequency comb based on the femtosecond pulses generated by a mode-locked fiber laser

Ma Jin-Dong, Wu Hao-Yu, Lu Qiao, Ma Ting, Shi Lei, Sun Qing, Mao Qing-He
PDF
导出引用
  • 报道了一种基于飞秒锁模光纤激光脉冲基频光的光纤型差频产生(DFG)红外光梳及其研制技术.基于自主研制的重频锁定200 MHz飞秒锁模掺铒光纤激光器,经啁啾脉冲光纤放大与超连续谱产生技术,优化近零色散OFS光纤(型号:OFS-980-20)长度,结合可调延时线,获得了精准同步的基频双色脉冲;以GaSe为非线性晶体,利用光整流技术,产生了可在610 m范围内宽带调谐的DFG红外光梳,光梳最大光谱宽度可达1.3 m.这种光纤型远红外光梳可望在分子光谱精密测量等领域发挥重要作用.
    Optical frequency comb (OFC) is a new type of high-quality laser source. The visible and near-infrared OFCs have become mature, and it has been widely used in optical frequency metrology, time/frequency transfer, precision laser spectroscopy and other fields. Since the mid and far-infrared spectral regions contain a large number of baseband absorption lines for molecules and the absorption intensities are several orders of magnitude higher than those in the visible and near-infrared spectral region, one has made great efforts to develop the mid and far-infrared OFCs in recent years. Although a variety of approaches to achieving infrared OFCs directly have been proposed, the method of difference frequency generation (DFG) infrared OFC based on the optical rectification technique is still more efficient. DFG infrared OFCs with widely tuning ability have been demonstrated based on fiber lasers so far. However, how to obtain the broadband spectrum for a DFG infrared OFC with widely tuning ability still needs to be solved. In this paper we report a fiber-type DFG infrared OFC by using the femtosecond pulses from a mode-locked erbium-doped fiber laser as the fundamental light. Based on the self-developed mode-locked fiber laser oscillator with repetition rate locked, the two-color fundamental pulse trains with the central wavelengths of 1.5 and 2.0 m are respectively achieved after the chirped pulse fiber amplification and all-fiber supercontinuum (SC) generation techniques have been utilized. With a time-domain synchronous detection system based on the intensity autocorrelation principle, the accurate synchronization with the fundamental two-color pulses is obtained by optimizing the OFS compensated fiber length and adjusting a tunable optical delay line. Finally, by using the optical rectification technique, a fiber-type DFG infrared OFC is successfully generated with the help of a suitable designed GaSe nonlinear crystal. Our experimental results also show that the spectral location of the DFG infrared OFC can be tuned by controlling the spectral shape of the SC combined with the adjustment of the phase-matching for the nonlinear crystal. The measured tuning range of the DFG infrared OFC is from 6 to 10 m, and the maximum spectral width is 1.3 m. This fiber-type DFG infrared OFC may play an important role in the molecular spectroscopy, the atmospheric environmental monitoring, and other fields.
      通信作者: 毛庆和, mqinghe@aiofm.ac.cn
    • 基金项目: 国家自然科学基金(批准号:61377044,61250017)、国家重点基础研究发展计划(批准号:2013CB934304)和中国科学院战略性先导科技专项(B类)(批准号:XDB21010300)资助的课题.
      Corresponding author: Mao Qing-He, mqinghe@aiofm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61377044, 61250017), the National Basic Research Program of China (Grant No. 2013CB934304), and the Strategic Priority Research Program of the Chinese Academy of Sciences (class B) (Grant No. XDB21010300).
    [1]

    Cundiff S T, Ye J 2003 Rev. Mod. Phys. 75 325

    [2]

    Jones D, Diddams S A, Ranka J K, Stentz A, Windeler R S, Hall J L, Cundiff S T 2000 Science 288 635

    [3]

    Udem T, Holzwarth R, Hnsch T W 2002 Nature 416 233

    [4]

    Margolis H S 2012 Chem. Soc. Rev. 41 5174

    [5]

    Ebrahim Z M, Sorokina I T 2008 Mid-Infrared Coherent Sources and Applications (Netherlands: Springer Verlag) p26

    [6]

    Todd M W, Provencal R A, Owano T G, Paldus B A, Kachanov A, Vodopyanov K L, Hunter M, Coy S L, Steinfeld J I, Arnold J T 2002 Appl. Phys. B 75 367

    [7]

    Schliesser A, Picqu N, Hnsch T W 2012 Nat. Photon. 6 440

    [8]

    Gustavo V, Sabine R, Johanna W, Dmitry K, Martin J S, Pierre J, Mattias B, Jrme F 2016 Optica 3 252

    [9]

    Austin G G, Meng J Y, Yoshitomo O, Jaime C, Aseema M, Alexander L G, Michal L 2016 Opt. Express 24 13044

    [10]

    Adler F, Masłowski P, Foltynowicz A, Cossel K C, Briles T C, Hartl I, Ye J 2010 Opt. Express 18 21861

    [11]

    Galli I, Bartalini S, Borri S, Cancio P, Mazzotti D, Natale P D, Giusfredi G 2011 Phys. Rev. Lett. 107 270802

    [12]

    Keilmann F, Gohle C, Holzwarth R 2004 Opt. Lett. 29 1542

    [13]

    Bernhardt B, Sorokin E, Jacquet P, Thon R, Becker T, Sorokina I T, Picqu N, Hnsch T W 2010 Appl. Phys. B 100 3

    [14]

    Hugi A, Villares G, Blaser S, Andreas, Liu H C, Faist J 2012 Nature 492 229

    [15]

    Wang C Y, Herr T, Del'Haye P, Schliesser A, Hofer J, Holzwarth R, Hnsch T W, Picqu N, Kippenberg T J 2013 Nat. Commun. 4 1345

    [16]

    Adler F, Cossel K C, Thorpe M J, Hartl I, Fermann M E, Ye J 2009 Opt. Lett. 34 1330

    [17]

    Reid D T, Gale B J S, Sun J 2008 Laser Phys. 18 87

    [18]

    Gambetta A, Coluccelli N, Cassinerio M, Gatti D, Laporta P, Galzerano G, Marangoni M 2013 Opt. Lett. 38 1155

    [19]

    Foreman S M, Marian A, Ye J, Petrukhin E A, Gubin M A, Mcke O D, Wong F N C, Ippen E P, Krtner F X 2005 Opt. Lett. 30 570

    [20]

    Schliesser A, Brehm M, Keilmann F 2005 Opt. Express 13 9029

    [21]

    Gambetta A, Ramponi R, Marangoni M 2008 Opt. Lett. 33 2671

    [22]

    Keilmann F, Amarie S 2012 J. Infrared Millim. Te. 33 479

    [23]

    Li J S, Yao J Q, Xu X Y, Zhong K, Xu D G, Wang P 2010 Acta Phot. Sin. 39 1491 (in Chinese) [李建松, 姚建铨, 徐小燕, 钟凯, 徐德刚, 王鹏 2010 光子学报 39 1491]

    [24]

    Hu C, Yue W, Chen T, Jiang P, Wu B, Shen Y 2017 Appl. Opt. 56 1574

    [25]

    Meng F, Cao S Y, Cai Y, Wang G Z, Cao J P, Li T C, Fang Z J 2011 Acta Phys. Sin. 60 100601 (in Chinese) [孟飞, 曹士英, 蔡岳, 王贵重, 曹建平, 李天初, 方占军 2011 物理学报 60 100601]

    [26]

    Zhang Y, Yan L, Zhao W, Meng S, Fan S, Zhang L, Guo G, Zhang S, Jiang H 2015 Chin. Phys. B 24 064209

    [27]

    Yang X T, Chen X L, Zhao J, Yang K W, Ding L E, Zeng H P 2014 Sci. Sin.: Phys. Mech. Astron. 44 698 (in Chinese) [杨行涛, 陈修亮, 赵健, 杨康文, 丁良恩, 曾和平 2014 中国科学: 物理学 力学 天文学 44 698]

    [28]

    Wu H Y, Shi L, Ma T, Ma J D, Lu Q, Sun Q, Mao Q H 2017 Chin. J. Lasers 44 0601008 (in Chinese) [吴浩煜, 时雷, 马挺, 马金栋, 路桥, 孙青, 毛庆和 2017 中国激光 44 0601008]

    [29]

    Ye J 2004 Opt. Lett. 29 1153

    [30]

    Dudley J M, Genty G, Coen S 2006 Rev. Mod. Phys. 78 1135

    [31]

    Agrawal G P 2006 Nonlinear Fiber Optics (San Diego: Academic Press) pp7-12

    [32]

    Puppe T, Sell A, Kliese R, Hoghooghi N, Zach A, Kaenders W 2016 Opt. Lett. 41 1877

  • [1]

    Cundiff S T, Ye J 2003 Rev. Mod. Phys. 75 325

    [2]

    Jones D, Diddams S A, Ranka J K, Stentz A, Windeler R S, Hall J L, Cundiff S T 2000 Science 288 635

    [3]

    Udem T, Holzwarth R, Hnsch T W 2002 Nature 416 233

    [4]

    Margolis H S 2012 Chem. Soc. Rev. 41 5174

    [5]

    Ebrahim Z M, Sorokina I T 2008 Mid-Infrared Coherent Sources and Applications (Netherlands: Springer Verlag) p26

    [6]

    Todd M W, Provencal R A, Owano T G, Paldus B A, Kachanov A, Vodopyanov K L, Hunter M, Coy S L, Steinfeld J I, Arnold J T 2002 Appl. Phys. B 75 367

    [7]

    Schliesser A, Picqu N, Hnsch T W 2012 Nat. Photon. 6 440

    [8]

    Gustavo V, Sabine R, Johanna W, Dmitry K, Martin J S, Pierre J, Mattias B, Jrme F 2016 Optica 3 252

    [9]

    Austin G G, Meng J Y, Yoshitomo O, Jaime C, Aseema M, Alexander L G, Michal L 2016 Opt. Express 24 13044

    [10]

    Adler F, Masłowski P, Foltynowicz A, Cossel K C, Briles T C, Hartl I, Ye J 2010 Opt. Express 18 21861

    [11]

    Galli I, Bartalini S, Borri S, Cancio P, Mazzotti D, Natale P D, Giusfredi G 2011 Phys. Rev. Lett. 107 270802

    [12]

    Keilmann F, Gohle C, Holzwarth R 2004 Opt. Lett. 29 1542

    [13]

    Bernhardt B, Sorokin E, Jacquet P, Thon R, Becker T, Sorokina I T, Picqu N, Hnsch T W 2010 Appl. Phys. B 100 3

    [14]

    Hugi A, Villares G, Blaser S, Andreas, Liu H C, Faist J 2012 Nature 492 229

    [15]

    Wang C Y, Herr T, Del'Haye P, Schliesser A, Hofer J, Holzwarth R, Hnsch T W, Picqu N, Kippenberg T J 2013 Nat. Commun. 4 1345

    [16]

    Adler F, Cossel K C, Thorpe M J, Hartl I, Fermann M E, Ye J 2009 Opt. Lett. 34 1330

    [17]

    Reid D T, Gale B J S, Sun J 2008 Laser Phys. 18 87

    [18]

    Gambetta A, Coluccelli N, Cassinerio M, Gatti D, Laporta P, Galzerano G, Marangoni M 2013 Opt. Lett. 38 1155

    [19]

    Foreman S M, Marian A, Ye J, Petrukhin E A, Gubin M A, Mcke O D, Wong F N C, Ippen E P, Krtner F X 2005 Opt. Lett. 30 570

    [20]

    Schliesser A, Brehm M, Keilmann F 2005 Opt. Express 13 9029

    [21]

    Gambetta A, Ramponi R, Marangoni M 2008 Opt. Lett. 33 2671

    [22]

    Keilmann F, Amarie S 2012 J. Infrared Millim. Te. 33 479

    [23]

    Li J S, Yao J Q, Xu X Y, Zhong K, Xu D G, Wang P 2010 Acta Phot. Sin. 39 1491 (in Chinese) [李建松, 姚建铨, 徐小燕, 钟凯, 徐德刚, 王鹏 2010 光子学报 39 1491]

    [24]

    Hu C, Yue W, Chen T, Jiang P, Wu B, Shen Y 2017 Appl. Opt. 56 1574

    [25]

    Meng F, Cao S Y, Cai Y, Wang G Z, Cao J P, Li T C, Fang Z J 2011 Acta Phys. Sin. 60 100601 (in Chinese) [孟飞, 曹士英, 蔡岳, 王贵重, 曹建平, 李天初, 方占军 2011 物理学报 60 100601]

    [26]

    Zhang Y, Yan L, Zhao W, Meng S, Fan S, Zhang L, Guo G, Zhang S, Jiang H 2015 Chin. Phys. B 24 064209

    [27]

    Yang X T, Chen X L, Zhao J, Yang K W, Ding L E, Zeng H P 2014 Sci. Sin.: Phys. Mech. Astron. 44 698 (in Chinese) [杨行涛, 陈修亮, 赵健, 杨康文, 丁良恩, 曾和平 2014 中国科学: 物理学 力学 天文学 44 698]

    [28]

    Wu H Y, Shi L, Ma T, Ma J D, Lu Q, Sun Q, Mao Q H 2017 Chin. J. Lasers 44 0601008 (in Chinese) [吴浩煜, 时雷, 马挺, 马金栋, 路桥, 孙青, 毛庆和 2017 中国激光 44 0601008]

    [29]

    Ye J 2004 Opt. Lett. 29 1153

    [30]

    Dudley J M, Genty G, Coen S 2006 Rev. Mod. Phys. 78 1135

    [31]

    Agrawal G P 2006 Nonlinear Fiber Optics (San Diego: Academic Press) pp7-12

    [32]

    Puppe T, Sell A, Kliese R, Hoghooghi N, Zach A, Kaenders W 2016 Opt. Lett. 41 1877

  • [1] 王泽龙, 王与烨, 李海滨, 张敬喜, 徐德刚, 姚建铨. 基于DAST晶体的连续太赫兹差频辐射源研究. 物理学报, 2025, 74(3): . doi: 10.7498/aps.74.20241349
    [2] 段磊, 徐润亲, 宋云波, 谭姝丹, 梁成斌, 徐帆江, 刘朝晖. 基于目标反射回光对高功率光纤激光器影响的理论模型和数值研究. 物理学报, 2023, 72(10): 104203. doi: 10.7498/aps.72.20222464
    [3] 夏情感, 肖文波, 李军华, 金鑫, 叶国敏, 吴华明, 马国红. 光纤激光器中包层功率剥离器散热性能的优化. 物理学报, 2020, 69(1): 014204. doi: 10.7498/aps.69.20191093
    [4] 袁浩, 朱方祥, 王金涛, 杨蓉, 王楠, 于洋, 闫培光, 郭金川. 基于铋可饱和吸收体的超快激光产生. 物理学报, 2020, 69(9): 094203. doi: 10.7498/aps.69.20191995
    [5] 张倩, 金鑫鑫, 张梦, 郑铮. 基于二维纳米材料可饱和吸收体的中红外超快光纤激光器. 物理学报, 2020, 69(18): 188101. doi: 10.7498/aps.69.20200472
    [6] 杨文海, 刁文婷, 蔡春晓, 宋学瑞, 冯付攀, 郑耀辉, 段崇棣. 1064 nm固体激光器和光纤激光器在制备压缩真空态光场实验中的对比研究. 物理学报, 2019, 68(12): 124201. doi: 10.7498/aps.68.20182304
    [7] 徐琴芳, 尹默娟, 孔德欢, 王叶兵, 卢本全, 郭阳, 常宏. 光梳主动滤波放大实现锶原子光钟二级冷却光源. 物理学报, 2018, 67(8): 080601. doi: 10.7498/aps.67.20172733
    [8] 王少奇, 邓颖, 张永亮, 李超, 王方, 康民强, 罗韵, 薛海涛, 胡东霞, 粟敬钦, 郑奎兴, 朱启华. 掺Er3+氟化物光纤振荡器中红外超短脉冲的产生. 物理学报, 2016, 65(4): 044206. doi: 10.7498/aps.65.044206
    [9] 张利明, 周寿桓, 赵鸿, 张昆, 郝金坪, 张大勇, 朱辰, 李尧, 王雄飞, 张浩彬. 780W全光纤窄线宽光纤激光器. 物理学报, 2014, 63(13): 134205. doi: 10.7498/aps.63.134205
    [10] 张丽梦, 胡明列, 顾澄琳, 范锦涛, 王清月. 高功率, 红光至中红外可调谐腔内和频光学参量振荡器. 物理学报, 2014, 63(5): 054205. doi: 10.7498/aps.63.054205
    [11] 方晓惠, 胡明列, 宋有建, 谢辰, 柴路, 王清月. 多芯光子晶体光纤锁模激光器. 物理学报, 2011, 60(6): 064208. doi: 10.7498/aps.60.064208
    [12] 蒋建, 常建华, 冯素娟, 毛庆和. 基于光纤激光器的中红外差频多波长激光产生. 物理学报, 2010, 59(11): 7892-7898. doi: 10.7498/aps.59.7892
    [13] 延凤平, 魏淮, 傅永军, 王琳, 郑凯, 毛向桥, 刘鹏, 彭健, 刘利松, 简水生. 石英基掺Tm3+包层抽运光纤激光器. 物理学报, 2009, 58(9): 6300-6303. doi: 10.7498/aps.58.6300
    [14] 张远宪, 普小云, 祝昆, 韩德昱, 江楠. 回音壁模式光纤激光器的阈值特性研究. 物理学报, 2009, 58(5): 3179-3184. doi: 10.7498/aps.58.3179
    [15] 张驰, 胡明列, 宋有建, 张鑫, 柴路, 王清月. 自由耦合输出的大模场面积光子晶体光纤锁模激光器. 物理学报, 2009, 58(11): 7727-7734. doi: 10.7498/aps.58.7727
    [16] 任广军, 魏臻, 姚建铨. 调Q脉冲保偏光纤激光器的研究. 物理学报, 2009, 58(2): 941-945. doi: 10.7498/aps.58.941
    [17] 雷 兵, 冯 莹, 刘泽金. 利用全光纤耦合环实现三路光纤激光器的相位锁定. 物理学报, 2008, 57(10): 6419-6424. doi: 10.7498/aps.57.6419
    [18] 王建明, 段开椋, 王屹山. 两光纤激光器相干合成的实验研究. 物理学报, 2008, 57(9): 5627-5631. doi: 10.7498/aps.57.5627
    [19] 许 鸥, 鲁韶华, 简水生. 用于单频光纤激光器的光纤光栅双腔Fabry-Perot结构传输谱特性理论研究. 物理学报, 2008, 57(10): 6404-6411. doi: 10.7498/aps.57.6404
    [20] 任广军, 张 强, 王 鹏, 姚建铨. 掺钕保偏光纤激光器的研究. 物理学报, 2007, 56(7): 3917-3923. doi: 10.7498/aps.56.3917
计量
  • 文章访问数:  8033
  • PDF下载量:  216
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-22
  • 修回日期:  2018-01-01
  • 刊出日期:  2018-05-05

/

返回文章
返回