搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低速Xeq+(4q20)离子与Ni表面碰撞中的光辐射

徐秋梅 杨治虎 郭义盼 刘会平 陈燕红 赵红赟

引用本文:
Citation:

低速Xeq+(4q20)离子与Ni表面碰撞中的光辐射

徐秋梅, 杨治虎, 郭义盼, 刘会平, 陈燕红, 赵红赟

Visible light emission from surface of nickel bombarded by slow Xeq+ (4 q 20) ion

Xu Qiu-Mei, Yang Zhi-Hu, Guo Yi-Pan, Liu Hui-Ping, Chen Yan-Hong, Zhao Hong-Yun
PDF
导出引用
  • 实验中测量了0.38VBohr(460 keV)高电荷态Xeq+(4q20)离子轰击高纯Ni表面发射的400510 nm光谱.实验结果包括Ni I原子谱线,Ni Ⅱ离子谱线,以及入射离子中性化发射的Xe I,Xe Ⅱ和Xe Ⅲ谱线.研究了谱线Xe Ⅱ 410.419,Xe Ⅲ 430.444,Xe Ⅱ 434.200,Xe Ⅱ 486.254,Ni I 498.245,Ni I 501.697,Ni I 503.502,Ni I 505.061和Ni I 508.293 nm的光子产额随着入射离子电荷态的变化.结果表明,入射离子中性化和溅射Ni原子发射谱线的光子产额随着入射离子电荷态的增加而增加,其趋势与入射离子势能一致.
    Bombarded by slow highly charged ion (SHCI), particles including ions and atoms of metal are excited and ejected from the sample. Optical emission can be observed for the radiative de-excitation of some excited atomic particles. The important information about particle ejection and incident ion neutralization, as well as the nature, the kinetic energy, and the number of the sputtered excited particles can be obtained by studying the optical emission process. The optical emission from the the collisions between slow (V~0.38 VBohr) highly charged Xeq+ (4 q 20) ions and high purity Ni (99.995%) surface is studied. The experiment is carried out at the 320 kV for multi-discipline research with HCIs in the Institute of Modern Physics, Chinese Academy of Sciences. The spectral lines are analyzed by using an Sp-2558 spectrometer equipped with a pattern of 1200 groves/mm blazed at 500 nm and an R955 photomultiplier tube at the exit slit. The target beam current corresponding to the dwell time is recorded, which can be translated into the incident ion current. Based on the formula of Y=N/(t/Ceq), the spectral line intensity is normalized. The normalized spectrum can be obtained from the interaction of 0.38VBohr Xe20+ ions with Ni surface in a wavelength range of 400-510 nm. The species at excited state can be identified by comparing the wavelengths of spectral lines with those in the standard spectroscopic table. Most of the observed spectral lines are identified as being from the electron transitions of Ni I 3d9(2D)4p-3d9(2D5/2)4d, Ni I 3d8(3F)4s4p(3P)-3d84s(4F)5s and Ni Ⅱ 3p63d9-3p63d8(3P)4s, as well as Xe I 5p5(2P3/2)6s-5p5(2P3/2)8p, Xe Ⅱ 5p4(3P2)6p-5p4(3P2)6d and Xe Ⅲ 5s25p3(2D)6s-5s25p3(2D)6p. Compared with the single charged ion, some neutralized incident ions yield Xe I, Xe Ⅱ, Xe Ⅲ spectral lines. The photon yields of spectral lines, such as Xe Ⅱ 410.419, Xe Ⅲ 430.444, Xe Ⅱ 434.200, Xe Ⅱ 486.254, Ni I 498.245, Ni I 501.697, Ni I 503.502, Ni I 505.061 and Ni I 508.293 nm, are presented each as a function of charge state of incident ion. The results show that the photon yield increases with the increase of the charge state, which is consistent with the potential energy of the incident ion. The potential energy is the driving force for photon emission of excited Ni atom. The neutralization of Xeq+ is in good agreement with that indicated by the classical over-the-barrier model.
      通信作者: 杨治虎, z.yang@impcas.ac.cn
    • 基金项目: 国家自然科学基金联合重点基金(批准号:U1732269)资助的课题.
      Corresponding author: Yang Zhi-Hu, z.yang@impcas.ac.cn
    • Funds: Project supported by the Joint Funds of the National Natural Science Foundation of China (Grant No. U1732269).
    [1]

    Schneider D H G, Briere M A 1996 Phys. Scr. 53 228

    [2]

    Wang G H 1988 Physics of Particle Interactions with Solids (Part 1) (Beijing:Scientific Press) pp267-346 (in Chinese)[王广厚 1988 粒子同固体相互作用物理学(上册) (北京:科学出版社) 第267346页]

    [3]

    Burgdorfer J, Morgenstern R, Niehaus A 1986 J. Phys.B:At. Mol. Phys. 19 L507

    [4]

    Burgdorfer J, Reinhold C, Hagg L, Meyer F 1996 Aust. J. Phys. 49 527

    [5]

    Winter H, Aumayr F 1999 J. Phys. B 32 R39

    [6]

    Bethe H A, Salpeter E E 1957 Encyclopedia of Physics (Handbuch der Physik) (Berlin, Heidelberg:Springer) pp334-409

    [7]

    Schenkel T, Barnes A V, Niedermayr T R, Hattass M, Newman M W, Machicoane G A, McDonald J W, Hamza A V, Schneider D H 1999 Phys. Rev. Lett. 83 4273

    [8]

    Burgdorfer J, Lerner P, Meyer F W 1991 Phys. Rev. A 44 5674

    [9]

    Schenkel T, Hamza A V, Barnes A V, Schneider D H 1999 Prog. Surf. Sci. 61 23

    [10]

    Lemell C, Winter H P, Aumayr F, Burgdorfer J, Meyer F 1996 Phys. Rev. A 53 880

    [11]

    Sun L T, Zhao H W, Li J Y, Wang H, Ma B H, Zhang Z M, Zhang X Z, Guo X H, Shang Y, Li X X, Feng Y C, Zhu Y H, Wang P Z, Liu H P, Song M T, Ma X W, Zhan W L 2007 Nucl. Instrum. Methods B 263 503

    [12]

    Zhao H, Su H, Xu Q, Guo Y, Kong J, Qian Y, Yang Z 2014 J. Phys.:Conf. Ser. 488 142012

    [13]

    Roger K, Kerkdijk C B 1974 Surf. Sci. 46 537

    [14]

    Wright R B, Gruen D M 1980 Nucl. Instrum. Methods 170 577

    [15]

    Delaunay M, Fehringer M, Geller R, Hitz D, Varga P, Winter H 1987 Phys. Rev. B 35 4232

    [16]

    Della-Negra S, Depauw J, Joret H, Le Beyec Y, Schweikert E A 1988 Phys. Rev. Lett. 60 948

    [17]

    Aumayr F, Kurz H, Schneider D, Briere M, Mcdonald J, Cunningham C, Winter H P 1993 Phys. Rev. Lett. 71 1943

    [18]

    Krsa J, Lska L, Stckli M P, Fehrenbach C W 2002 Nucl. Instrum. Methods B 196 61

    [19]

    Andersen N, Andersen B, Veje E 1982 Radiat. Eff. 60 119

    [20]

    Braun M 1979 Phys. Scr. 19 33

    [21]

    White C W, Tolk N H 1971 Phys. Rev. Lett. 26 486

    [22]

    Ryabchikova T A, Landstreet J D, Gelbmann M J, Bolgova G T, Tsymbal V V, Weiss W W 1997 Astron. Astrophys. 327 1137

    [23]

    Cowley C R, Mathys G 1998 Astron. Astrophys. 339 165

    [24]

    Cowley C R, Hubrig S 2012 Astron. Nachr. AN 333 34

    [25]

    Yong D, Brito A A, Costa G S D, Alonso-Garca J, Karakas A I, Pignatari M, Roederer I U, Aoki W, Fishlock C K, Grundahl F, Norris J E 2014 Mon. Not. R. Astron. Soc. 439 2638

    [26]

    Carraro G, Villanova S, Monaco L, Beccari G, Ahumada J A, Boffin H M J 2014 Astron. Astrophys. 562 A39

    [27]

    Fuhr J R, Martin G A, Wlese W L, Younger S M 1981 J. Phys. Chem. Ref. 10 305

    [28]

    Morishita Y, Kanai Y, Ando K, Hutton R, Brage T, Torii H A, Komaki K, Masuda H, Ishii K, Rosmej F B, Yamazaki Y 2003 Nucl. Instrum. Methods B 205 758

    [29]

    Lake R E, Pomeroy J M, Sosolik C E 2011 Nucl. Instrum. Methods B 269 1199

    [30]

    Miller M H, Roig R A, Bengtson R D 1973 Phys. Rev. A 8 480

    [31]

    Jimenez E, Campos J, Sanchezdel R C 1974 J. Opt. Soc. Am. 64 1009

    [32]

    Coetzer F J, Westhuizen P 1980 Z. Physik A 294 199

    [33]

    Pegg D J, Gaillard M L, Bingham C R, Carter H K, Mlekodaj R L 1982 Nucl. Instrum. Methods 202 153

    [34]

    Das M B, Karmakar S 2005 Eur. Phys. J. D 32 285

    [35]

    Suchanska M 1997 Prog. Surf. Sci. 54 165

    [36]

    Tribble R E, Prior M H, Stokstad R G 1990 Nucl. Instrum. Methods B 44 412

    [37]

    Postawa Z, Rutkowski J, Poradzisz A, Czuba P, Szymonski M 1986 Nucl. Instrum. Methods B 18 574

    [38]

    Assad C, Liu W, Tribble R E 1991 Nucl. Instrum. Methods B 62 201

    [39]

    Veje E 1983 Phys. Rev. B 28 88

    [40]

    Veje E 1983 Phys. Rev. B 28 5029

    [41]

    Veje E 1988 Z. Phys. B:Condens. Matter 70 55

    [42]

    Takahashi S, Nagata K, Tona M, Sakurai M, Naka-mura N, Yamada C, Ohtani S 2005 Surf. Sci. 593 318

    [43]

    Makoto S, Kouji S, Takahiro M 2016 J. Surf. Sci. Nanotechnol. 14 1

  • [1]

    Schneider D H G, Briere M A 1996 Phys. Scr. 53 228

    [2]

    Wang G H 1988 Physics of Particle Interactions with Solids (Part 1) (Beijing:Scientific Press) pp267-346 (in Chinese)[王广厚 1988 粒子同固体相互作用物理学(上册) (北京:科学出版社) 第267346页]

    [3]

    Burgdorfer J, Morgenstern R, Niehaus A 1986 J. Phys.B:At. Mol. Phys. 19 L507

    [4]

    Burgdorfer J, Reinhold C, Hagg L, Meyer F 1996 Aust. J. Phys. 49 527

    [5]

    Winter H, Aumayr F 1999 J. Phys. B 32 R39

    [6]

    Bethe H A, Salpeter E E 1957 Encyclopedia of Physics (Handbuch der Physik) (Berlin, Heidelberg:Springer) pp334-409

    [7]

    Schenkel T, Barnes A V, Niedermayr T R, Hattass M, Newman M W, Machicoane G A, McDonald J W, Hamza A V, Schneider D H 1999 Phys. Rev. Lett. 83 4273

    [8]

    Burgdorfer J, Lerner P, Meyer F W 1991 Phys. Rev. A 44 5674

    [9]

    Schenkel T, Hamza A V, Barnes A V, Schneider D H 1999 Prog. Surf. Sci. 61 23

    [10]

    Lemell C, Winter H P, Aumayr F, Burgdorfer J, Meyer F 1996 Phys. Rev. A 53 880

    [11]

    Sun L T, Zhao H W, Li J Y, Wang H, Ma B H, Zhang Z M, Zhang X Z, Guo X H, Shang Y, Li X X, Feng Y C, Zhu Y H, Wang P Z, Liu H P, Song M T, Ma X W, Zhan W L 2007 Nucl. Instrum. Methods B 263 503

    [12]

    Zhao H, Su H, Xu Q, Guo Y, Kong J, Qian Y, Yang Z 2014 J. Phys.:Conf. Ser. 488 142012

    [13]

    Roger K, Kerkdijk C B 1974 Surf. Sci. 46 537

    [14]

    Wright R B, Gruen D M 1980 Nucl. Instrum. Methods 170 577

    [15]

    Delaunay M, Fehringer M, Geller R, Hitz D, Varga P, Winter H 1987 Phys. Rev. B 35 4232

    [16]

    Della-Negra S, Depauw J, Joret H, Le Beyec Y, Schweikert E A 1988 Phys. Rev. Lett. 60 948

    [17]

    Aumayr F, Kurz H, Schneider D, Briere M, Mcdonald J, Cunningham C, Winter H P 1993 Phys. Rev. Lett. 71 1943

    [18]

    Krsa J, Lska L, Stckli M P, Fehrenbach C W 2002 Nucl. Instrum. Methods B 196 61

    [19]

    Andersen N, Andersen B, Veje E 1982 Radiat. Eff. 60 119

    [20]

    Braun M 1979 Phys. Scr. 19 33

    [21]

    White C W, Tolk N H 1971 Phys. Rev. Lett. 26 486

    [22]

    Ryabchikova T A, Landstreet J D, Gelbmann M J, Bolgova G T, Tsymbal V V, Weiss W W 1997 Astron. Astrophys. 327 1137

    [23]

    Cowley C R, Mathys G 1998 Astron. Astrophys. 339 165

    [24]

    Cowley C R, Hubrig S 2012 Astron. Nachr. AN 333 34

    [25]

    Yong D, Brito A A, Costa G S D, Alonso-Garca J, Karakas A I, Pignatari M, Roederer I U, Aoki W, Fishlock C K, Grundahl F, Norris J E 2014 Mon. Not. R. Astron. Soc. 439 2638

    [26]

    Carraro G, Villanova S, Monaco L, Beccari G, Ahumada J A, Boffin H M J 2014 Astron. Astrophys. 562 A39

    [27]

    Fuhr J R, Martin G A, Wlese W L, Younger S M 1981 J. Phys. Chem. Ref. 10 305

    [28]

    Morishita Y, Kanai Y, Ando K, Hutton R, Brage T, Torii H A, Komaki K, Masuda H, Ishii K, Rosmej F B, Yamazaki Y 2003 Nucl. Instrum. Methods B 205 758

    [29]

    Lake R E, Pomeroy J M, Sosolik C E 2011 Nucl. Instrum. Methods B 269 1199

    [30]

    Miller M H, Roig R A, Bengtson R D 1973 Phys. Rev. A 8 480

    [31]

    Jimenez E, Campos J, Sanchezdel R C 1974 J. Opt. Soc. Am. 64 1009

    [32]

    Coetzer F J, Westhuizen P 1980 Z. Physik A 294 199

    [33]

    Pegg D J, Gaillard M L, Bingham C R, Carter H K, Mlekodaj R L 1982 Nucl. Instrum. Methods 202 153

    [34]

    Das M B, Karmakar S 2005 Eur. Phys. J. D 32 285

    [35]

    Suchanska M 1997 Prog. Surf. Sci. 54 165

    [36]

    Tribble R E, Prior M H, Stokstad R G 1990 Nucl. Instrum. Methods B 44 412

    [37]

    Postawa Z, Rutkowski J, Poradzisz A, Czuba P, Szymonski M 1986 Nucl. Instrum. Methods B 18 574

    [38]

    Assad C, Liu W, Tribble R E 1991 Nucl. Instrum. Methods B 62 201

    [39]

    Veje E 1983 Phys. Rev. B 28 88

    [40]

    Veje E 1983 Phys. Rev. B 28 5029

    [41]

    Veje E 1988 Z. Phys. B:Condens. Matter 70 55

    [42]

    Takahashi S, Nagata K, Tona M, Sakurai M, Naka-mura N, Yamada C, Ohtani S 2005 Surf. Sci. 593 318

    [43]

    Makoto S, Kouji S, Takahiro M 2016 J. Surf. Sci. Nanotechnol. 14 1

  • [1] 刘鑫, 汶伟强, 李冀光, 魏宝仁, 肖君. 高电荷态类硼离子2P3/22P1/2跃迁的实验和理论研究进展. 物理学报, 2024, 73(20): 203102. doi: 10.7498/aps.73.20241190
    [2] 吴怡娇, 孟天鸣, 张献文, 谭旭, 马蒲芳, 殷浩, 任百惠, 屠秉晟, 张瑞田, 肖君, 马新文, 邹亚明, 魏宝仁. 高电荷态Ar8+离子与He原子碰撞中双电子俘获量子态选择截面实验研究. 物理学报, 2024, 73(24): 240701. doi: 10.7498/aps.73.20241290
    [3] 史路林, 程锐, 王昭, 曹世权, 杨杰, 周泽贤, 陈燕红, 王国东, 惠得轩, 金雪剑, 吴晓霞, 雷瑜, 王瑜玉, 苏茂根. 近玻尔速度能区高电荷态离子与激光等离子体相互作用实验研究装置. 物理学报, 2023, 72(13): 133401. doi: 10.7498/aps.72.20230214
    [4] 张大成, 葛韩星, 巴雨璐, 汶伟强, 张怡, 陈冬阳, 汪寒冰, 马新文. 高电荷态离子阿秒激光光谱研究展望. 物理学报, 2023, 72(19): 193201. doi: 10.7498/aps.72.20230986
    [5] 刘鑫, 周晓鹏, 汶伟强, 陆祺峰, 严成龙, 许帼芹, 肖君, 黄忠魁, 汪寒冰, 陈冬阳, 邵林, 袁洋, 汪书兴, 马万路, 马新文. 电子束离子阱光谱标定和Ar13+离子M1跃迁波长精密测量. 物理学报, 2022, 71(3): 033201. doi: 10.7498/aps.71.20211663
    [6] 张秉章, 宋张勇, 刘璇, 钱程, 方兴, 邵曹杰, 王伟, 刘俊亮, 徐俊奎, 冯勇, 朱志超, 郭艳玲, 陈林, 孙良亭, 杨治虎, 于得洋. 低能高电荷态${\boldsymbol{ {\rm{O}}^{q+}}}$离子与Al表面作用产生的X射线. 物理学报, 2021, 70(19): 193201. doi: 10.7498/aps.70.20210757
    [7] 卞晓鸽, 周胜, 张磊, 何天博, 李劲松. 基于标准样品回归算法和腔增强光谱的NO2检测方法. 物理学报, 2021, 70(5): 050702. doi: 10.7498/aps.70.20201322
    [8] 刘鑫, 周晓鹏, 汶伟强, 陆祺峰, 严成龙, 许帼芹, 肖君, 黄忠魁, 汪寒冰, 陈冬阳, 邵林, 袁洋, 汪书兴, 马万路(Wan-Lu MA), 马新文. 电子束离子阱光谱标定和Ar13+离子M1跃迁波长精密测量. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211663
    [9] 张小安, 梅策香, 张颖, 梁昌慧, 周贤明, 曾利霞, 李耀宗, 柳钰, 向前兰, 孟惠, 王益军. 129Xeq+离子入射Cu靶表面激发的近红外光谱线和X射线谱. 物理学报, 2020, 69(21): 213301. doi: 10.7498/aps.69.20200500
    [10] 杨兆锐, 张小安, 徐秋梅, 杨治虎. 高电荷态Krq+与Al表面碰撞发射可见光的研究. 物理学报, 2013, 62(4): 043401. doi: 10.7498/aps.62.043401
    [11] 张小安, 李耀宗, 赵永涛, 梁昌慧, 程锐, 周贤明, 王兴, 雷瑜, 孙渊博, 徐戈, 李锦玉, 肖国青. Arq+入射金表面激发靶原子M-X射线的动能和势能的阈值. 物理学报, 2012, 61(11): 113401. doi: 10.7498/aps.61.113401
    [12] 张丽卿, 张崇宏, 杨义涛, 姚存峰, 孙友梅, 李炳生, 赵志明, 宋书建. 高电荷态离子126Xeq+引起GaN表面形貌变化研究. 物理学报, 2009, 58(8): 5578-5584. doi: 10.7498/aps.58.5578
    [13] 徐忠锋, 刘丽莉, 赵永涛, 陈亮, 朱键, 王瑜玉, 肖国青. 不同能量的高电荷态Ar12+离子辐照对Au纳米颗粒尺寸的影响. 物理学报, 2009, 58(6): 3833-3838. doi: 10.7498/aps.58.3833
    [14] 张小安, 杨治虎, 王党朝, 梅策香, 牛超英, 王伟, 戴斌, 肖国青. 类钴氙离子入射Ni表面激发的红外光谱线和X射线谱. 物理学报, 2009, 58(10): 6920-6925. doi: 10.7498/aps.58.6920
    [15] 彭海波, 王铁山, 韩运成, 丁大杰, 徐 鹤, 程 锐, 赵永涛, 王瑜玉. 高电荷态离子与Si(110)晶面碰撞的沟道效应研究. 物理学报, 2008, 57(4): 2161-2164. doi: 10.7498/aps.57.2161
    [16] 王 立, 张小安, 杨治虎, 陈熙萌, 张红强, 崔 莹, 邵剑雄, 徐 徐. 高电荷态离子入射Al表面库仑势对靶原子特征谱线强度的影响. 物理学报, 2008, 57(1): 137-142. doi: 10.7498/aps.57.137
    [17] 赵永涛, 肖国青, 徐忠锋, Abdul Qayyum, 王瑜玉, 张小安, 李福利, 詹文龙. 高电荷态离子40Arq+与Si表面作用中的电子发射产额. 物理学报, 2007, 56(10): 5734-5738. doi: 10.7498/aps.56.5734
    [18] 杨治虎, 宋张勇, 陈熙萌, 张小安, 张艳萍, 赵永涛, 崔 莹, 张红强, 徐 徐, 邵健雄, 于得洋, 蔡晓红. 高电荷态离子Arq+与不同金属靶作用产生的X射线. 物理学报, 2006, 55(5): 2221-2227. doi: 10.7498/aps.55.2221
    [19] 张小安, 赵永涛, 李福利, 杨治虎, 肖国青, 詹文龙. 129Xe30+轰击Ni表面激发靶原子偶极跃迁和禁戒 (M1和E2)跃迁的特征光谱线. 物理学报, 2004, 53(10): 3341-3346. doi: 10.7498/aps.53.3341
    [20] 文 静, 孙卫国, 冯 灏. 用能量自洽法研究碱金属双原子分子的势能曲线. 物理学报, 2000, 49(12): 2352-2356. doi: 10.7498/aps.49.2352
计量
  • 文章访问数:  5618
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-02
  • 修回日期:  2018-02-13
  • 刊出日期:  2019-04-20

/

返回文章
返回