搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种新型光学微腔的理论分析

谷红明 黄永清 王欢欢 武刚 段晓峰 刘凯 任晓敏

引用本文:
Citation:

一种新型光学微腔的理论分析

谷红明, 黄永清, 王欢欢, 武刚, 段晓峰, 刘凯, 任晓敏

Theoretical analysis of new optical microcavity

Gu Hong-Ming, Huang Yong-Qing, Wang Huan-Huan, Wu Gang, Duan Xiao-Feng, Liu Kai, Ren Xiao-Min
PDF
导出引用
  • 应用波动光学理论,分析了一种新型锥顶柱状光学微腔的本征模式,得到了谐振腔的谐振波长表达式.在谐振波长1550 nm附近进行了设计与仿真优化,优化结果显示新型谐振腔与传统平行腔相比,在腔长为4512.5 nm,直径为3134.4 nm时,其品质因数可以提高22.4%,达到了49928.5,同时谐振腔的有效模式体积减小了47.8%.
    Optical microcavity can confine light into a small volume by resonant recirculation. Devices based on optical microcavities are already indispensable for a wide range of applications and studies. They not only apply to traditional optics, but also have broad application prospects in quantum information and integrated optoelectronic chips. In quantum optical devices, microcavity can cause atoms or quantum dots to emit spontaneous photons in a desired direction or can provide an environment where dissipative mechanisms such as spontaneous emission are overcome so that quantum entanglement of radiation and matter is possible. For better application in quantum communication, optical microcavity needs to have a high quality factor and a low mode volume. Considering the beam coupling, spot shape and experimental production and others, the Fabry-Perot (F-P) microcavity has been widely applied to the field of optoelectronics. However, the Q-factor of the F-P microcavity is generally low, and the mode volume is large, so it needs to be improved.In addition, high Q-factor microcavity can also play a large role in detecting particles and biological macromolecules.In this paper, through the theory of wave optics, the eigenmodes of a new type of cone-top cylindrical optical micro-cavity are analyzed, and the resonant wavelength expression of the resonant cavity is obtained. We discuss the effects of the top mirror angle on the resonator performance and application of COMSOL simulation software to verify the proposed cone-top cylindrical microcavity. The optimized design and simulation results show that the quality factor of the new resonator can be increased by 22.4% to 49928.5 and the effective mode volume of the resonator can be reduced by 47.8% compared with the traditional parallel resonator. In this case, the corresponding new cavity length is 4.51 μm and the diameter is 3.13 μm. In this article its fabrications are also discussed.
      通信作者: 黄永清, yqhuang@bupt.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61574019,61674018,61674020)和信息光子学与光通信国家重点实验室自主课题(批准号:IPOC2017ZZ01)资助的课题.
      Corresponding author: Huang Yong-Qing, yqhuang@bupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61574019, 61674018, 61674020) and the Fund of State Key Laboratory of Information Photonics and Optical Communications, China (Grant No. IPOC2017ZZ01).
    [1]

    Zhang Y, Chen M X, Li Y Y, Yuan J 2015 Laser Optoelectron. Prog. 52 11 (in Chinese) [张莹, 陈梅雄, 李莹颖, 袁杰 2015 激光与光电子学进展 52 11]

    [2]

    Vahala K J 2003 Nature 424 839

    [3]

    Wang Q, Huang Y, Ren X 2001 Proceedings of SPIE–the International Society for Optical Engineering 4580 577

    [4]

    Liu K, Huang Y Q, Ren X M 2000 Appl. Opt. 39 423

    [5]

    Cao S, Xu X L 2014 Physics 43 740 (in Chinese) [曹硕, 许秀来 2014 物理 43 740]

    [6]

    Kim J, Benson O, Kan H, Yamamoto Y 1999 Nature 397 500

    [7]

    He Y M, He Y, Wei Y J, Wu D, Atatre M, Schneider C, Höfling S, Kamp M, Lu C Y, Pan J W 2013 Nat. Nanotech. 8 213

    [8]

    Löffler A, Reithmaier J P, Sek G, Hofmann C, Reitzenstein S, Kamp M, Forchel A 2005 Appl. Phys. Lett. 86 111105

    [9]

    Strauf S, Stoltz N G, Rakher M T, Coldren L A, Petroff P M, Bouwmeester D 2007 Nat. Photon. 1 704

    [10]

    Kryzhanovskaya N V, Maximov M V, Zhukov A, Nadtochiy A M, Moiseev E I, Shostak I I, Kulagina M M, Vashanova K A, Zadiranov Y M, Troshkov S I, Nevedomsky V V, Ruvimov S A, Lipovskii A A, Kalyuzhnyy N A, Mintairov S A 2015 J. Lightw. Technol. 33 171

    [11]

    Campenhout J V, Romeo P R, Thourhout D V, Seassal C, Regreny P, Cioccio L D, Fedeli J M, Baets R 2008 J. Lightw. Technol. 26 52

    [12]

    Ma X W, Huang Y Z, Long H, Yang Y D, Wang F L, Xiao J L, Du Y 2016 J. Lightw. Technol. 34 5263

    [13]

    Albert F, Hopfmann C, Eberspacher A, Amold F, Emmerling M, Schneider C, Höfling S, Forchel A, Kamp M, Wiersig J, Reitzenstein S 2012 Appl. Phys. Lett. 101 245

    [14]

    Ma C S, Liu S Y 2006 Optical Waveguide Mode Theory (Changchun: Jilin University Press) pp16-18 (in Chinese) [马春生, 刘式墉 2006 光波导模式理论(长春: 吉林大学出版社) 第16–18页]

    [15]

    Song H Z, Takemoto K, Miyazawa T, Takatsu M, Iwamoto S, Yamamoto T, Arakawa Y 2013 Opt. Lett. 38 3241

    [16]

    Li H H, Wang Q K 2009 Acta Sin. Quantum Opt. 15 380 (in Chinese) [黎慧华, 王庆康 2009 量子光学学报 15 380]

    [17]

    Macleod H A (translated by Xu D G) 2016 Thin-Film Optical Filters (Fourth Edition) (Beijing: Science Press) p32 (in Chinese) [安格斯·麦克劳德H. 著 (徐德纲 译) 2016 薄膜光学 (北京: 科学出版社)第32页]

    [18]

    Fang H L 2014 Optical Resonant Cavity and Gravitational Wave Detection (Beijing: Science Press) p17 (in Chinese) [方洪烈 2014 光学谐振腔与引力波探测(北京: 科学出版社) 第17 页]

    [19]

    Han J, Li J J, Deng J, Xing Y H, Yu X D, Lin W Z, Liu Y, Shen G D 2008 J. Optoelectronics Laser 19 456 (in Chinese) [韩军, 李建军, 邓军, 邢艳辉, 于晓东, 林委之, 刘莹, 沈光地 2008 光电子·激光 19 456]

    [20]

    Wang Q, Huang H, Wang X Y, Ren A G, Wu P, Huang C, Huang Y Q, Ren X M 2005 Chin. J. Lasers 32 1045 (in Chinese) [王琦, 黄辉, 王兴妍, 任爱光, 武鹏, 黄成, 黄永清, 任晓敏 2005 中国激光 32 1045]

    [21]

    Huang H, Huang Y, Ren X 2003 Electron. Lett. 39 113

  • [1]

    Zhang Y, Chen M X, Li Y Y, Yuan J 2015 Laser Optoelectron. Prog. 52 11 (in Chinese) [张莹, 陈梅雄, 李莹颖, 袁杰 2015 激光与光电子学进展 52 11]

    [2]

    Vahala K J 2003 Nature 424 839

    [3]

    Wang Q, Huang Y, Ren X 2001 Proceedings of SPIE–the International Society for Optical Engineering 4580 577

    [4]

    Liu K, Huang Y Q, Ren X M 2000 Appl. Opt. 39 423

    [5]

    Cao S, Xu X L 2014 Physics 43 740 (in Chinese) [曹硕, 许秀来 2014 物理 43 740]

    [6]

    Kim J, Benson O, Kan H, Yamamoto Y 1999 Nature 397 500

    [7]

    He Y M, He Y, Wei Y J, Wu D, Atatre M, Schneider C, Höfling S, Kamp M, Lu C Y, Pan J W 2013 Nat. Nanotech. 8 213

    [8]

    Löffler A, Reithmaier J P, Sek G, Hofmann C, Reitzenstein S, Kamp M, Forchel A 2005 Appl. Phys. Lett. 86 111105

    [9]

    Strauf S, Stoltz N G, Rakher M T, Coldren L A, Petroff P M, Bouwmeester D 2007 Nat. Photon. 1 704

    [10]

    Kryzhanovskaya N V, Maximov M V, Zhukov A, Nadtochiy A M, Moiseev E I, Shostak I I, Kulagina M M, Vashanova K A, Zadiranov Y M, Troshkov S I, Nevedomsky V V, Ruvimov S A, Lipovskii A A, Kalyuzhnyy N A, Mintairov S A 2015 J. Lightw. Technol. 33 171

    [11]

    Campenhout J V, Romeo P R, Thourhout D V, Seassal C, Regreny P, Cioccio L D, Fedeli J M, Baets R 2008 J. Lightw. Technol. 26 52

    [12]

    Ma X W, Huang Y Z, Long H, Yang Y D, Wang F L, Xiao J L, Du Y 2016 J. Lightw. Technol. 34 5263

    [13]

    Albert F, Hopfmann C, Eberspacher A, Amold F, Emmerling M, Schneider C, Höfling S, Forchel A, Kamp M, Wiersig J, Reitzenstein S 2012 Appl. Phys. Lett. 101 245

    [14]

    Ma C S, Liu S Y 2006 Optical Waveguide Mode Theory (Changchun: Jilin University Press) pp16-18 (in Chinese) [马春生, 刘式墉 2006 光波导模式理论(长春: 吉林大学出版社) 第16–18页]

    [15]

    Song H Z, Takemoto K, Miyazawa T, Takatsu M, Iwamoto S, Yamamoto T, Arakawa Y 2013 Opt. Lett. 38 3241

    [16]

    Li H H, Wang Q K 2009 Acta Sin. Quantum Opt. 15 380 (in Chinese) [黎慧华, 王庆康 2009 量子光学学报 15 380]

    [17]

    Macleod H A (translated by Xu D G) 2016 Thin-Film Optical Filters (Fourth Edition) (Beijing: Science Press) p32 (in Chinese) [安格斯·麦克劳德H. 著 (徐德纲 译) 2016 薄膜光学 (北京: 科学出版社)第32页]

    [18]

    Fang H L 2014 Optical Resonant Cavity and Gravitational Wave Detection (Beijing: Science Press) p17 (in Chinese) [方洪烈 2014 光学谐振腔与引力波探测(北京: 科学出版社) 第17 页]

    [19]

    Han J, Li J J, Deng J, Xing Y H, Yu X D, Lin W Z, Liu Y, Shen G D 2008 J. Optoelectronics Laser 19 456 (in Chinese) [韩军, 李建军, 邓军, 邢艳辉, 于晓东, 林委之, 刘莹, 沈光地 2008 光电子·激光 19 456]

    [20]

    Wang Q, Huang H, Wang X Y, Ren A G, Wu P, Huang C, Huang Y Q, Ren X M 2005 Chin. J. Lasers 32 1045 (in Chinese) [王琦, 黄辉, 王兴妍, 任爱光, 武鹏, 黄成, 黄永清, 任晓敏 2005 中国激光 32 1045]

    [21]

    Huang H, Huang Y, Ren X 2003 Electron. Lett. 39 113

  • [1] 李雨晴, 王洪广, 翟永贵, 杨文晋, 王玥, 李韵, 李永东. 品质因数对TM02模相对论返波管工作模式影响. 物理学报, 2024, 73(3): 035202. doi: 10.7498/aps.73.20231577
    [2] 郭状, 欧阳峰, 卢志舟, 王梦宇, 谭庆贵, 谢成峰, 魏斌, 何兴道. 氟化镁微瓶腔光频梳光谱分析及优化. 物理学报, 2024, 73(3): 034202. doi: 10.7498/aps.73.20231126
    [3] 金星, 肖莘宇, 龚旗煌, 杨起帆. 微腔光梳的产生、发展及应用. 物理学报, 2023, 72(23): 234203. doi: 10.7498/aps.72.20231816
    [4] 许凡, 赵妍, 吴宇航, 王文驰, 金雪莹. 高阶色散下双耦合微腔中克尔光频梳的稳定性和非线性动力学分析. 物理学报, 2022, 71(18): 184204. doi: 10.7498/aps.71.20220691
    [5] 蔡成欣, 陈韶赓, 王学梅, 梁俊燕, 王兆宏. 各向异性三维非对称双锥五模超材料的能带结构及品质因数. 物理学报, 2020, 69(13): 134302. doi: 10.7498/aps.69.20200364
    [6] 孟令俊, 王梦宇, 沈远, 杨煜, 徐文斌, 张磊, 王克逸. 具有内参考热补偿功能的三层膜结构微球腔折射率传感器. 物理学报, 2020, 69(1): 014203. doi: 10.7498/aps.69.20191265
    [7] 徐昕, 金雪莹, 胡晓鸿, 黄新宁. 光学微腔中倍频光场演化和光谱特性. 物理学报, 2020, 69(2): 024203. doi: 10.7498/aps.69.20191294
    [8] 徐昕, 金雪莹, 高浩然, 程杰, 陆洋, 陈东, 于连栋. 耦合光学微腔的频率调谐过程分析. 物理学报, 2020, 69(18): 184207. doi: 10.7498/aps.69.20200530
    [9] 王梦宇, 孟令俊, 杨煜, 钟汇凯, 吴涛, 刘彬, 张磊, 伏燕军, 王克逸. 扁长型微瓶腔中的回音壁模式选择及Fano谐振. 物理学报, 2020, 69(23): 234203. doi: 10.7498/aps.69.20200817
    [10] 赵泽宇, 刘晋侨, 李爱武, 牛立刚, 徐颖. 基于微腔-抗反射谐振杂化模式的吸收增强型有机太阳能电池的理论研究. 物理学报, 2016, 65(24): 248801. doi: 10.7498/aps.65.248801
    [11] 王延娜, 赵迪, 方爱平, 蒋臣威, 高韶燕, 李福利. 利用高阶拉盖尔-高斯横模精确测量法布里-珀罗腔内原子的运动轨迹. 物理学报, 2015, 64(22): 224214. doi: 10.7498/aps.64.224214
    [12] 刘向远, 钱仙妹, 张穗萌, 崔朝龙. 宏-微脉冲激光激发钠信标回波光子数的数值计算与探讨. 物理学报, 2015, 64(9): 094206. doi: 10.7498/aps.64.094206
    [13] 张添乐, 黄曦, 郑凯, 张欣梧, 王宇杰, 武丽明, 张晓青, 郑洁, 朱彪. 极化电压对聚丙烯压电驻极体膜压电性能的影响. 物理学报, 2014, 63(15): 157703. doi: 10.7498/aps.63.157703
    [14] 李文芳, 杜金锦, 文瑞娟, 杨鹏飞, 李刚, 张天才. 强耦合腔量子电动力学中单原子转移的实验及模拟. 物理学报, 2014, 63(24): 244205. doi: 10.7498/aps.63.244205
    [15] 邱康生, 赵彦辉, 刘相波, 冯宝华, 许秀来. 弯曲氧化锌微米线微腔中的回音壁模. 物理学报, 2014, 63(17): 177802. doi: 10.7498/aps.63.177802
    [16] 杜金锦, 李文芳, 文瑞娟, 李刚, 张天才. 超高精细度微光学腔共振频率及有效腔长的精密测量. 物理学报, 2013, 62(19): 194203. doi: 10.7498/aps.62.194203
    [17] 宋顾周, 马继明, 王奎禄, 周鸣. 厚针孔射线成像品质因数的研究. 物理学报, 2012, 61(10): 102902. doi: 10.7498/aps.61.102902
    [18] 丁燕红, 李明吉, 杨保和, 马叙. Fe15.38Co61.52Cu0.6Nb2.5Si11B9纳米晶软磁合金的交流磁性. 物理学报, 2011, 60(9): 097502. doi: 10.7498/aps.60.097502
    [19] 程正富, 龙晓霞, 郑瑞伦. 温度对光学微腔光子激子系统玻色凝聚的影响. 物理学报, 2010, 59(12): 8377-8384. doi: 10.7498/aps.59.8377
    [20] 刘涛, 张天才, 王军民, 彭堃墀. 高精细度光学微腔中原子的偶极俘获. 物理学报, 2004, 53(5): 1346-1351. doi: 10.7498/aps.53.1346
计量
  • 文章访问数:  8537
  • PDF下载量:  267
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-10
  • 修回日期:  2018-03-21
  • 刊出日期:  2019-07-20

/

返回文章
返回