搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

窄带随机激励双稳压电悬臂梁响应机制与能量采集研究

吴娟娟 冷永刚 乔海 刘进军 张雨阳

引用本文:
Citation:

窄带随机激励双稳压电悬臂梁响应机制与能量采集研究

吴娟娟, 冷永刚, 乔海, 刘进军, 张雨阳

Mechanism of a nonlinear bistable piezoelectric cantilever beam under narrow-band random excitations and its energy harvesting

Wu Juan-Juan, Leng Yong-Gang, Qiao Hai, Liu Jin-Jun, Zhang Yu-Yang
PDF
导出引用
  • 具有中心频率的窄带随机振动是一种典型的环境振动,其振动特征与环境的变化密切相关.本文以双稳压电悬臂梁能量采集系统为研究对象,分析系统在不同磁铁间距下的等效线性固有频率特性,以带通滤波器输出一定带宽的窄带随机激励模拟环境振动,研究系统的响应和能量采集特征.研究表明,对于一定带宽的窄带随机激励,一方面系统始终存在一个固定的磁铁间距使其输出达到峰值,另一方面当激励中心频率在一定范围内变化时,系统还分别存在另外两个或一个不同磁铁间距也能使系统输出达到峰值,而且该峰值特性是系统在其等效线性固有频率处诱导双稳或单稳“共振”形成的.研究结果可为具有窄带随机激励特征的振动能量采集提供一定的理论和技术支持.
    While wireless sensors, data transmission devices and medical implant devices tend to miniaturization and low consumption, energy supply modes such as batteries, solar energy and wind energy are limited due to their defects. Instead, vibration energy harvesting can open up new possibilities for self-supplying the low-consumption devices. The narrow-band random vibration with center frequency is a typical vibration in the environment, and its characteristics are closely related to the environment.This paper takes the energy harvesting system with bi-stable piezoelectric cantilever beam as a research object, and the characteristics of system's equivalent linear natural frequency, linear and nonlinear stiffness under different intervals between magnets are analyzed. By using the narrow-band random excitation with a certain bandwidth output of the bandpass filter to simulate environment vibration and using Runge-Kutta method to solve the system equation numerically, the response of system and the characteristics of energy harvesting are studied.It is observed that the variation of the magnet spacings at peak output voltage, which possesses a central frequency, is related to the variation of the equivalent linear natural frequency of the system with the interval between magnets. When the variation of magnet spacing is triggered by the narrow-band random excitation with a certain bandwidth, there is always a constant interval between magnets, making the system produce a peak output, which is like a bi-stable system that produces the peak output at optimal spacing under broad-band excitation. On the other hand, there are also more than one or two different magnet spacings making the system produce peak outputs while excitation's center frequency changes in a certain range, and the peak outputs are formed by bi-stable or single-stable “resonance” of the system, induced at the equivalent linear natural frequency. And the demarcation point spacing of the single-stable and bi-stable vibration of the system are the magnet spacing when linear stiffness is zero.Therefore, for the narrow-band random excitation in the actual environment, the magnet spacing of the energy harvesting system can be reasonably arranged according to the specific working conditions to achieve better electromechanical energy conversion. The findings in this paper can provide some theoretical and technical support for the study of harvesting the vibration energy with characteristics of narrow-band random excitation.
      通信作者: 冷永刚, leng_yg@tju.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51675370)和天津市应用基础与前沿技术研究计划(批准号:15JCZDJC32200)资助的课题.
      Corresponding author: Leng Yong-Gang, leng_yg@tju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51675370) and the Tianjin Research Program of Application Foundation and Advanced Technology, China (Grant No. 15JCZDJC32200).
    [1]

    Daqaq M F, Masana R, Erturk A, Quinn D D 2014 Appl. Mech. Rev. 66 040801

    [2]

    Roundy S, Wright P K, Rabaey J 2003 Comput. Commun. 26 1131

    [3]

    Wang H Y, Xie T, Shan X B, Yuan J B 2010 J. Xi'an Jiaotong Univ. 44 114 (in Chinese)[王红艳, 谢涛, 单小彪, 袁江波 2010 西安交通大学学报 44 114]

    [4]

    Priya S, Inman D J (translated by Huang J Q, Huang Q A) 2011 Energy Harvesting Technologies (Nanjing: Dongnan University Press) pp34-62 (in Chinese)[(普利亚S, 茵曼D J 著 (黄见秋, 黄庆安 译) 2011 能量收集技术 (南京: 东南大学出版社) 第34–62页]

    [5]

    Cottone F, Vocca H, Gammaitoni L 2009 Phys. Rev. Lett. 102 080601

    [6]

    Gammaitoni L, Neri I, Vocca H 2009 Appl. Phys. Lett. 94 164102

    [7]

    Ferrari M, Ferrari V, Guizzetti M, Andó B, Baglio S, Trigona C 2010 Sens. Actuat. A: Phys. 162 425

    [8]

    Ferrari M, Baù M, Guizzetti M, Ferrari V 2011 Sens. Actuat. A: Phys. 172 287

    [9]

    Chen Z S, Yang Y M 2011 Acta Phys. Sin. 60 074301 (in Chinese)[陈仲生, 杨拥民 2011 物理学报 60 074301]

    [10]

    Gao Y J, Leng Y G, Fan S B, Lai Z H 2014 Smart Mater. Struct. 23 095003

    [11]

    Beeby S P, Wang L, Zhu D, Weddell A S, Merrett G V 2013 Smart Mater. Struct. 22 075022

    [12]

    Wischke M, Masur M, Kroner M, Woias P 2011 Smart Mater. Struct. 20 085014

    [13]

    Harne R L, Wang K W 2013 J. Vib. Acoust. 136 021009

    [14]

    Green P L, Papatheou E, Sims N D 2013 J. Intell. Mater. Syst. Struct. 24 1494

    [15]

    Tan D, Leng Y G, Fan S B, Gao Y J 2015 Acta Phys. Sin. 64 060502 (in Chinese)[谭丹, 冷永刚, 范胜波, 高毓璣 2015 物理学报 64 060502]

    [16]

    Guo K K 2015 Ph. D. Dissertation (Tianjin: Tianjin University) (in Chinese)[郭抗抗 2015 博士学位论文 (天津: 天津大学)]

    [17]

    He Q, Daqaq M F 2015 J. Vib. Acoust. 137 021009

    [18]

    Daqaq M F 2010 J. Sound Vib. 329 3621

    [19]

    Masana R, Daqaq M F 2013 J. Sound Vib. 332 6755

    [20]

    Barton D A W, Burrow S G, Clare L R 2010 J. Vib. Acoust. 132 021009

  • [1]

    Daqaq M F, Masana R, Erturk A, Quinn D D 2014 Appl. Mech. Rev. 66 040801

    [2]

    Roundy S, Wright P K, Rabaey J 2003 Comput. Commun. 26 1131

    [3]

    Wang H Y, Xie T, Shan X B, Yuan J B 2010 J. Xi'an Jiaotong Univ. 44 114 (in Chinese)[王红艳, 谢涛, 单小彪, 袁江波 2010 西安交通大学学报 44 114]

    [4]

    Priya S, Inman D J (translated by Huang J Q, Huang Q A) 2011 Energy Harvesting Technologies (Nanjing: Dongnan University Press) pp34-62 (in Chinese)[(普利亚S, 茵曼D J 著 (黄见秋, 黄庆安 译) 2011 能量收集技术 (南京: 东南大学出版社) 第34–62页]

    [5]

    Cottone F, Vocca H, Gammaitoni L 2009 Phys. Rev. Lett. 102 080601

    [6]

    Gammaitoni L, Neri I, Vocca H 2009 Appl. Phys. Lett. 94 164102

    [7]

    Ferrari M, Ferrari V, Guizzetti M, Andó B, Baglio S, Trigona C 2010 Sens. Actuat. A: Phys. 162 425

    [8]

    Ferrari M, Baù M, Guizzetti M, Ferrari V 2011 Sens. Actuat. A: Phys. 172 287

    [9]

    Chen Z S, Yang Y M 2011 Acta Phys. Sin. 60 074301 (in Chinese)[陈仲生, 杨拥民 2011 物理学报 60 074301]

    [10]

    Gao Y J, Leng Y G, Fan S B, Lai Z H 2014 Smart Mater. Struct. 23 095003

    [11]

    Beeby S P, Wang L, Zhu D, Weddell A S, Merrett G V 2013 Smart Mater. Struct. 22 075022

    [12]

    Wischke M, Masur M, Kroner M, Woias P 2011 Smart Mater. Struct. 20 085014

    [13]

    Harne R L, Wang K W 2013 J. Vib. Acoust. 136 021009

    [14]

    Green P L, Papatheou E, Sims N D 2013 J. Intell. Mater. Syst. Struct. 24 1494

    [15]

    Tan D, Leng Y G, Fan S B, Gao Y J 2015 Acta Phys. Sin. 64 060502 (in Chinese)[谭丹, 冷永刚, 范胜波, 高毓璣 2015 物理学报 64 060502]

    [16]

    Guo K K 2015 Ph. D. Dissertation (Tianjin: Tianjin University) (in Chinese)[郭抗抗 2015 博士学位论文 (天津: 天津大学)]

    [17]

    He Q, Daqaq M F 2015 J. Vib. Acoust. 137 021009

    [18]

    Daqaq M F 2010 J. Sound Vib. 329 3621

    [19]

    Masana R, Daqaq M F 2013 J. Sound Vib. 332 6755

    [20]

    Barton D A W, Burrow S G, Clare L R 2010 J. Vib. Acoust. 132 021009

  • [1] 曾闵, 罗颖, 江虹. 无线能量传输支持的设备到设备多播能量协作传输机制. 物理学报, 2022, 71(16): 168801. doi: 10.7498/aps.71.20220345
    [2] 孙帅令, 冷永刚, 张雨阳, 苏徐昆, 范胜波. 双磁铁多稳态悬臂梁磁力及势能函数分析. 物理学报, 2020, 69(14): 140502. doi: 10.7498/aps.69.20191981
    [3] 张咪, 左西, 杨同青, 张晓青. 基于压电驻极体的微能量采集. 物理学报, 2020, 69(24): 247701. doi: 10.7498/aps.69.20200815
    [4] 秦立振, 张振宇, 张坤, 丁建桥, 段智勇, 苏宇锋. 抗磁悬浮振动能量采集器动力学响应的仿真分析. 物理学报, 2018, 67(1): 018501. doi: 10.7498/aps.67.20171551
    [5] 张雨阳, 冷永刚, 谭丹, 刘进军, 范胜波. 基于磁化电流法的双稳压电悬臂梁磁力精确分析. 物理学报, 2017, 66(22): 220502. doi: 10.7498/aps.66.220502
    [6] 代显智, 刘小亚, 陈蕾. 一种采用双换能器和摆式结构的宽频振动能量采集器. 物理学报, 2016, 65(13): 130701. doi: 10.7498/aps.65.130701
    [7] 蓝春波, 秦卫阳, 李海涛. 随机激励下双稳态压电俘能系统的相干共振及实验验证. 物理学报, 2015, 64(8): 080503. doi: 10.7498/aps.64.080503
    [8] 武丽明, 张晓青. 交联聚丙烯压电驻极体的压电性能及振动能量采集研究. 物理学报, 2015, 64(17): 177701. doi: 10.7498/aps.64.177701
    [9] 谭丹, 冷永刚, 范胜波, 高毓璣. 外加磁场压电悬臂梁能量采集系统的磁化电流法磁力研究. 物理学报, 2015, 64(6): 060502. doi: 10.7498/aps.64.060502
    [10] 李海涛, 秦卫阳, 周志勇, 蓝春波. 带有分数阶阻尼的压电能量采集系统相干共振. 物理学报, 2014, 63(22): 220504. doi: 10.7498/aps.63.220504
    [11] 谢文贤, 李东平, 许鹏飞, 蔡力, 靳艳飞. 具有固有频率涨落的记忆阻尼线性系统的随机共振. 物理学报, 2014, 63(10): 100502. doi: 10.7498/aps.63.100502
    [12] 李海涛, 秦卫阳. 宽频随机激励下非线性压电能量采集器的相干共振. 物理学报, 2014, 63(12): 120505. doi: 10.7498/aps.63.120505
    [13] 高毓璣, 冷永刚, 范胜波, 赖志慧. 弹性支撑双稳压电悬臂梁振动响应及能量采集研究. 物理学报, 2014, 63(9): 090501. doi: 10.7498/aps.63.090501
    [14] 唐炜, 王小璞, 曹景军. 非线性磁式压电振动能量采集系统建模与分析. 物理学报, 2014, 63(24): 240504. doi: 10.7498/aps.63.240504
    [15] 彭皓, 钟苏川, 屠浙, 马洪. 线性调频信号激励过阻尼双稳系统的随机共振现象研究. 物理学报, 2013, 62(8): 080501. doi: 10.7498/aps.62.080501
    [16] 张良英, 金国祥, 曹力. 具有频率涨落的简谐力激励下线性谐振子的随机共振. 物理学报, 2012, 61(8): 080502. doi: 10.7498/aps.61.080502
    [17] 陈仲生, 杨拥民. 悬臂梁压电振子宽带低频振动能量俘获的随机共振机理研究. 物理学报, 2011, 60(7): 074301. doi: 10.7498/aps.60.074301
    [18] 代显智, 文玉梅, 李平, 杨进, 江小芳. 采用磁电换能器的振动能量采集器. 物理学报, 2010, 59(3): 2137-2146. doi: 10.7498/aps.59.2137
    [19] 戎海武, 王向东, 徐伟, 方同. 窄带随机噪声作用下单自由度非线性干摩擦系统的响应. 物理学报, 2009, 58(11): 7558-7564. doi: 10.7498/aps.58.7558
    [20] 王炜, 张琪昌, 王雪娇. 待定固有频率法在分析系统混沌临界值问题中的应用. 物理学报, 2009, 58(8): 5162-5168. doi: 10.7498/aps.58.5162
计量
  • 文章访问数:  4859
  • PDF下载量:  110
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-10
  • 修回日期:  2018-07-30
  • 刊出日期:  2018-11-05

/

返回文章
返回