搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

外电场极化对纳米氧化锌拉曼活性及气敏性能的影响

李酽 李娇 陈丽丽 连晓雪 朱俊武

引用本文:
Citation:

外电场极化对纳米氧化锌拉曼活性及气敏性能的影响

李酽, 李娇, 陈丽丽, 连晓雪, 朱俊武

Polarization effect of external electric field on Raman activity and gas sensing of nano zinc oxide

Li Yan, Li Jiao, Chen Li-Li, Lian Xiao-Xue, Zhu Jun-Wu
PDF
导出引用
  • 采用沉淀法制备了纳米氧化锌粒子,着重对其进行了不同条件(电场强度、极化温度)下的外电场极化处理.以X射线衍射仪和拉曼光谱仪对产物的结构、拉曼位移等进行了表征.测试了氧化锌极化产物在乙醇、丙酮气体中的气敏性能,研究了外电场效应对纳米氧化锌拉曼光谱和气敏性能的影响机制.结果表明,纳米氧化锌样品在外电场中存在着极化电场强度和温度的阈值,当电场强度和温度分别大于9375 V·cm-1和150 ℃时,纳米氧化锌试片出现明显的漏电现象,极化效应显著降低并消失.在电场强度和温度阈值范围内,外电场极化作用能够导致氧化锌437 cm-1处的拉曼特征峰强度明显降低.随外电场强度和极化温度增加,纳米氧化锌元件在丙酮气体中的灵敏度逐渐升高,在乙醇气体中的灵敏度逐渐降低,即外电场极化可以有效调控纳米氧化锌的气敏选择性.
    Control and administration of various dangerous gases existing in the environment is very important both for safety in the workplace and for quality of daily life, such as acetone and ethanol, etc. Zinc oxide, a well-known n-type semiconductor with a direct wide band-gap of 3.37 eV, is a very promising gas sensing material. However, zinc oxide's limited selectivity, relatively long response/recovery time, high-power consumption, and lack of long-term stability have restricted its applications in high-standard gas detection. Therefore, increasing gas sensing selectivity is a crucial issue for ZnO application in the gas sensing field. So far, many researches have reported and discussed the effects of morphologies, structures, doping of gas sensing materials, on its sensing performance. In this work, we intend to investigate and theoretically analyze how the polarization of the external electric field affects gas sensing performance and selectivity. Zinc oxide nanoparticles, as a testing gas sensing material, are synthesized by simple precipitation method. Then they are pressed into a disc and polarized under an external electric field with different electric field intensities at different temperatures. The structure and Raman activity for each of the unpolarized ZnO and the polarized ZnO are characterized using X-ray diffraction and Raman spectrometry, respectively. The gas sensing performances of unpolarized and polarized ZnO based sensors to ethanol and acetone are carefully examined using a chemical gas sensing system. The mechanism of external electric field polarization effect on gas sensitivity is discussed. The results reveal that there exists a threshold value for each of voltage and temperature for ZnO polarization under an external electric field. When the voltage and temperature are over 9375 V·cm-1 and 150℃, respectively, the leakage of electricity in ZnO disk happens and the polarization effect gradually disappears. Within the above voltage and temperature limits, Raman peak intensity of the polarized ZnO at 437 cm-1 obviously decreases after external electric field polarization. The response of the polarized ZnO sensor to acetone increases with external electronic field and polarization temperature increasing, while the response to ethanol decreases, which indicates that external electric field polarization can effectively adjust the gas sensing selectivity of nano zinc oxide. Raman analysis indirectly shows that the enhanced gas sensing selectivity of ZnO by the polarization effect of the external electric field is due to oxygen vacancy and zinc vacancy directionally moving under the action of an external electric field. Thus it can be seen that the polarization of the external electric field acting on gas sensing material is a promising effective method to improve gas sensing selectivity.
      通信作者: 李酽, liyan01898@163.com
    • 基金项目: 南京理工大学软化学与功能材料教育部重点实验室开放基金(批准号:30916014103)资助的课题.
      Corresponding author: Li Yan, liyan01898@163.com
    • Funds: Project supported by the Opening Project of Key Laboratory for Soft Chemistry and Functional Materials (Nanjing University of Science and Technology), Ministry of Education, China (Grant No. 30916014103).
    [1]

    Wang J X, Yang J, Han N, Zhou X Y, Gong S Y, Yang J F, Hu P, Chen Y F 2017 Mater. Design 121 69

    [2]

    Pushpa N, Kokila M K 2017 J. Lumin. 190 100

    [3]

    Park S H, Hong W P, Kim J J 2017 Solid State Commun. 261 21

    [4]

    Xu J Q, Xue Z J, Qin N, Cheng Z X, Xiang Q 2017 Sensor Actuat. B: Chem. 242 148

    [5]

    Calestani D, Villani M, Culiolo M, Delmonte D, Coppedé N, Zappettini A 2017 Sensor Actuat. B: Chem. 245 166

    [6]

    Yang S, Liu Y L, Chen T, Jin W, Yang T Q, Cao M C, Liu S S, Zhou J, Zakharova G S, Chen W 2017 Appl. Surf. Sci. 393 377

    [7]

    Chen R S, Wang J, Xia Y, Xiang L 2018 Sensor Actuat. B: Chem. 255 2538

    [8]

    Wang H, Li H Y, Li S C, Liu L, Wang L Y, Guo X X 2017 J. Mater. Sci.: Mater. El. 28 958

    [9]

    Pimpang P, Zoolfakar A S, Rani R A, Kadir R A, Wongratanaphisan D, Gardchareon A, Kalantar-zadeh K, Choopun S 2017 Ceram. Int. 43 S511

    [10]

    Al-Hadeethi Y, Umar A, Al-Heniti S H, Kumar R, Kim S H, Zhang X X, Raffah B M 2017 Ceram. Int. 43 2418

    [11]

    Khayatian A, Safa S, Azimirad R, Kashi M A, Akhtarianfar S F 2016 Physica E 84 71

    [12]

    Lupan O, Postica V, Gröttrup J, Mishra A K, Leeuw N H, Adelung R 2017 Sensor Actuat. B: Chem. 245 448

    [13]

    Uddin A S M I, Phan D T, Chung G S 2015 Sensor Actuat. B: Chem. 207 362

    [14]

    Kim G, Bernholc J, Kwon Y K 2010 Appl. Phys. Lett. 97 063113

    [15]

    Tang K, Qin R, Zhou J, Qu H, Zheng J X, Fei R X, Li H, Zheng Q Y, Gao Z X, Lu J 2011 J. Phys. Chem. C 115 9458

    [16]

    Alfieri J, Kimoto T 2010 Appl. Phys. Lett. 97 043108

    [17]

    An Y H, Xiong B T, Xing Y, Shen J X, Li P G, Zhu Z Y, Tang W H 2013 Acta Phys. Sin. 62 073103 (in Chinese) [安跃华, 熊必涛, 邢云, 申婧翔, 李培刚, 朱志艳, 唐为华 2013 物理学报 62 073103]

    [18]

    Wang Y Z, Wang B L, Zhang Q F, Zhao J J, Shi D N, Yunoki S J, Kong F J, Xu N 2012 J. Appl. Phys. 111 073704

    [19]

    Zhang Q, Qi J J, Huang Y H, Li X, Zhang Y 2011 Appl. Phys. Lett. 99 063105

    [20]

    Li S M, Zhang L X, Zhu M Y, Ji G J, Zhao L X, Yin J, Bie L J 2017 Sensor Actuat. B: Chem. 249 611

    [21]

    Li Y, Liu M, L T, Wang Q, Zhou Y L, Lian X X, Liu H P 2015 Electron. Mater. Lett. 11 1085

    [22]

    Hansen M, Truong J, Xie T, Hahm J 2017 Nanoscale 9 8470

    [23]

    Jammula R K, Pittala S, Srinath S, Srikanth V V S S 2015 Phys. Chem. Chem. Phys. 17 17237

    [24]

    Ni H Q, Lu Y F, Liu Z Y, Qiu H, Wang W J, Ren Z M, Chow S K, Jie Y X 2001 Appl. Phys. Lett. 79 812

    [25]

    David R L 2005 CRC Handbook of Chemistry and Physics (Boca Raton: Copyright CRC Press LLC) pp9-47

    [26]

    Gholami M, Khodadadi A, Firooz A, Mortazavi Y 2015 Sensor Actuat. B: Chem. 212 395

  • [1]

    Wang J X, Yang J, Han N, Zhou X Y, Gong S Y, Yang J F, Hu P, Chen Y F 2017 Mater. Design 121 69

    [2]

    Pushpa N, Kokila M K 2017 J. Lumin. 190 100

    [3]

    Park S H, Hong W P, Kim J J 2017 Solid State Commun. 261 21

    [4]

    Xu J Q, Xue Z J, Qin N, Cheng Z X, Xiang Q 2017 Sensor Actuat. B: Chem. 242 148

    [5]

    Calestani D, Villani M, Culiolo M, Delmonte D, Coppedé N, Zappettini A 2017 Sensor Actuat. B: Chem. 245 166

    [6]

    Yang S, Liu Y L, Chen T, Jin W, Yang T Q, Cao M C, Liu S S, Zhou J, Zakharova G S, Chen W 2017 Appl. Surf. Sci. 393 377

    [7]

    Chen R S, Wang J, Xia Y, Xiang L 2018 Sensor Actuat. B: Chem. 255 2538

    [8]

    Wang H, Li H Y, Li S C, Liu L, Wang L Y, Guo X X 2017 J. Mater. Sci.: Mater. El. 28 958

    [9]

    Pimpang P, Zoolfakar A S, Rani R A, Kadir R A, Wongratanaphisan D, Gardchareon A, Kalantar-zadeh K, Choopun S 2017 Ceram. Int. 43 S511

    [10]

    Al-Hadeethi Y, Umar A, Al-Heniti S H, Kumar R, Kim S H, Zhang X X, Raffah B M 2017 Ceram. Int. 43 2418

    [11]

    Khayatian A, Safa S, Azimirad R, Kashi M A, Akhtarianfar S F 2016 Physica E 84 71

    [12]

    Lupan O, Postica V, Gröttrup J, Mishra A K, Leeuw N H, Adelung R 2017 Sensor Actuat. B: Chem. 245 448

    [13]

    Uddin A S M I, Phan D T, Chung G S 2015 Sensor Actuat. B: Chem. 207 362

    [14]

    Kim G, Bernholc J, Kwon Y K 2010 Appl. Phys. Lett. 97 063113

    [15]

    Tang K, Qin R, Zhou J, Qu H, Zheng J X, Fei R X, Li H, Zheng Q Y, Gao Z X, Lu J 2011 J. Phys. Chem. C 115 9458

    [16]

    Alfieri J, Kimoto T 2010 Appl. Phys. Lett. 97 043108

    [17]

    An Y H, Xiong B T, Xing Y, Shen J X, Li P G, Zhu Z Y, Tang W H 2013 Acta Phys. Sin. 62 073103 (in Chinese) [安跃华, 熊必涛, 邢云, 申婧翔, 李培刚, 朱志艳, 唐为华 2013 物理学报 62 073103]

    [18]

    Wang Y Z, Wang B L, Zhang Q F, Zhao J J, Shi D N, Yunoki S J, Kong F J, Xu N 2012 J. Appl. Phys. 111 073704

    [19]

    Zhang Q, Qi J J, Huang Y H, Li X, Zhang Y 2011 Appl. Phys. Lett. 99 063105

    [20]

    Li S M, Zhang L X, Zhu M Y, Ji G J, Zhao L X, Yin J, Bie L J 2017 Sensor Actuat. B: Chem. 249 611

    [21]

    Li Y, Liu M, L T, Wang Q, Zhou Y L, Lian X X, Liu H P 2015 Electron. Mater. Lett. 11 1085

    [22]

    Hansen M, Truong J, Xie T, Hahm J 2017 Nanoscale 9 8470

    [23]

    Jammula R K, Pittala S, Srinath S, Srikanth V V S S 2015 Phys. Chem. Chem. Phys. 17 17237

    [24]

    Ni H Q, Lu Y F, Liu Z Y, Qiu H, Wang W J, Ren Z M, Chow S K, Jie Y X 2001 Appl. Phys. Lett. 79 812

    [25]

    David R L 2005 CRC Handbook of Chemistry and Physics (Boca Raton: Copyright CRC Press LLC) pp9-47

    [26]

    Gholami M, Khodadadi A, Firooz A, Mortazavi Y 2015 Sensor Actuat. B: Chem. 212 395

  • [1] 齐凯, 朱星光, 王军, 夏国栋. 外电场作用下纳米结构表面的固-液界面传热特性. 物理学报, 2024, 73(15): 156801. doi: 10.7498/aps.73.20240698
    [2] 张钰业, 张镱议, 韦文厂, 苏至诚, 兰丹泉, 罗世豪. 纳米氧化锌改性纤维素绝缘纸力学和热学性能的分子动力学模拟. 物理学报, 2024, 73(12): 127701. doi: 10.7498/aps.73.20240208
    [3] 宋梦婷, 张悦, 黄文娟, 候华毅, 陈相柏. 拉曼光谱研究退火氧化镍中二阶磁振子散射增强. 物理学报, 2021, 70(16): 167201. doi: 10.7498/aps.70.20210454
    [4] 杜建宾, 冯志芳, 张倩, 韩丽君, 唐延林, 李奇峰. 外电场作用下MoS2的分子结构和电子光谱. 物理学报, 2019, 68(17): 173101. doi: 10.7498/aps.68.20190781
    [5] 李东珂, 贺冰彦, 陈坤权, 皮明雨, 崔玉亭, 张丁可. Au纳米颗粒负载WO3纳米花复合结构的二甲苯气敏性能. 物理学报, 2019, 68(19): 198101. doi: 10.7498/aps.68.20190678
    [6] 李酽, 张琳彬, 李娇, 连晓雪, 朱俊武. 电场条件下氧化锌结晶特性及极化产物的拉曼光谱分析. 物理学报, 2019, 68(7): 070701. doi: 10.7498/aps.68.20181961
    [7] 冯秋菊, 李芳, 李彤彤, 李昀铮, 石博, 李梦轲, 梁红伟. 外电场辅助化学气相沉积方法制备网格状β-Ga2O3纳米线及其特性研究. 物理学报, 2018, 67(21): 218101. doi: 10.7498/aps.67.20180805
    [8] 李世雄, 张正平, 隆正文, 秦水介. 硼球烯B40在外电场下的基态性质和光谱特性. 物理学报, 2017, 66(10): 103102. doi: 10.7498/aps.66.103102
    [9] 杨涛, 刘代俊, 陈建钧. 外电场下二氧化硫的分子结构及其特性. 物理学报, 2016, 65(5): 053101. doi: 10.7498/aps.65.053101
    [10] 张玮祎, 胡明, 刘星, 李娜, 闫文君. 硅纳米线/氧化钒纳米棒复合材料的制备与气敏性能研究. 物理学报, 2016, 65(9): 090701. doi: 10.7498/aps.65.090701
    [11] 吴永刚, 李世雄, 郝进欣, 徐梅, 孙光宇, 令狐荣锋. 外电场下CdSe的基态性质和光谱特性研究. 物理学报, 2015, 64(15): 153102. doi: 10.7498/aps.64.153102
    [12] 严达利, 李申予, 刘士余, 竺云. 银纳米颗粒/多孔硅复合材料的制备与气敏性能研究. 物理学报, 2015, 64(13): 137102. doi: 10.7498/aps.64.137102
    [13] 严达利, 李申予, 刘士余, 竺云. 银纳米颗粒/多孔硅复合材料的制备与气敏性能研究. 物理学报, 2015, 64(13): 137104. doi: 10.7498/aps.64.137104
    [14] 胡杰, 邓霄, 桑胜波, 李朋伟, 李刚, 张文栋. 微流控技术制备ZnO纳米线阵列及其气敏特性. 物理学报, 2014, 63(20): 207102. doi: 10.7498/aps.63.207102
    [15] 李涛, 唐延林, 凌智钢, 李玉鹏, 隆正文. 外电场对对硝基氯苯分子结构与电子光谱影响的研究. 物理学报, 2013, 62(10): 103103. doi: 10.7498/aps.62.103103
    [16] 杜建宾, 唐延林, 隆正文. 外电场作用下的五氯酚分子结构和电子光谱的研究. 物理学报, 2012, 61(15): 153101. doi: 10.7498/aps.61.153101
    [17] 姜明, 苟富均, 闫安英, 张传武, 苗峰. BeO分子在不同方向外电场中的能量和光谱. 物理学报, 2010, 59(11): 7743-7748. doi: 10.7498/aps.59.7743
    [18] 徐国亮, 吕文静, 刘玉芳, 朱遵略, 张现周, 孙金锋. 外电场作用下二氧化硅分子的光激发特性研究. 物理学报, 2009, 58(5): 3058-3063. doi: 10.7498/aps.58.3058
    [19] 秦秀娟, 邵光杰, 刘日平, 王文魁, 姚玉书, 孟惠民. 高性能ZnO纳米块体材料的制备及其拉曼光谱学特征. 物理学报, 2006, 55(7): 3760-3765. doi: 10.7498/aps.55.3760
    [20] 丁 硕, 刘玉龙, 萧季驹. 不同晶粒尺寸SnO2纳米粒子的拉曼光谱研究. 物理学报, 2005, 54(9): 4416-4421. doi: 10.7498/aps.54.4416
计量
  • 文章访问数:  6811
  • PDF下载量:  167
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-25
  • 修回日期:  2018-03-30
  • 刊出日期:  2019-07-20

/

返回文章
返回