搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

抽运-自旋定向-探测技术及其应用

陈聪 梁盼 胡蓉蓉 贾天卿 孙真荣 冯东海

引用本文:
Citation:

抽运-自旋定向-探测技术及其应用

陈聪, 梁盼, 胡蓉蓉, 贾天卿, 孙真荣, 冯东海

Pump-orientation-probe technique and its applications

Chen Cong, Liang Pan, Hu Rong-Rong, Jia Tian-Qing, Sun Zhen-Rong, Feng Dong-Hai
PDF
导出引用
  • 抽运-自旋定向-探测是最近发展起来的一种新型瞬态测量技术,该技术在胶体纳米结构电荷分离超快动力学探测中具有独特的优势.本文在比较传统的两光束载流子抽运-探测以及自旋抽运-探测的基础上,深入分析了三光束抽运-自旋定向-探测技术的特点、光路配置及其在胶体量子点光致负荷电、正荷电探测中的应用.最后对三光束抽运-自旋定向-探测技术的更多应用前景作出展望.
    The pump-orientation-probe technique is a recently-developed novel transient measurement technique, which has unique advantages in probing the ultrafast dynamics of charge separation in colloidal nanostructures. In this technique, the linearly-polarized pump pulse is applied to generating electron-hole pairs, and the circularly-polarized spin-orientation pulse is used to establish the electron spin polarization, whose dynamics is detected by monitoring the polarization change of the linearly-polarized probe pulse. Initially, the wavefunctions of the electron-hole pairs are spatially overlapped, and the lifetime of the electron spin is short because of the strong electron-hole exchange interaction. If the electrons or the holes are trapped by the surfaces of the colloidal nanostructures, the spatial separations between the electrons and the holes weaken the exchange effect, and thus the lifetime of the electron spin is largely lengthened. The evolutions of electrons and holes from their spatial overlap to separation can be revealed by monitoring the change of the electron spin dynamics. Based on the introduction of the conventional two-beam carrier pump-probe and spin pump-probe techniques, the features and optical layout of three-beam pump-orientation-probe technique are described in depth. The application to probing negative or positive photocharging in CdS colloidal quantum dots is taken for example and discussed in depth. Compared with the conventional time-resolved absorption or time-resolved fluorescence spectroscopy, the pump-orientation-probe technique can detect the dynamics of trapping electrons or holes and distinguish the type of charging state easily and directly, which has particular advantages under the high-power excitation condition. Further outlook of the three-beam pump-orientation-probe technique is also presented finally.
      通信作者: 冯东海, dhfeng@phy.ecnu.edu.cn
    • 基金项目: 国家高技术研究发展计划(批准号:2014AA123401)、国家重点研发计划(批准号:2016YFB0501601)、国家自然科学基金(批准号:11374099,11474097,11727810,61720106009,11474096)、上海市科学技术委员会基金(批准号:16520721200)和高等学校学科创新引智计划(111计划)(批准号:B12024)资助的课题.
      Corresponding author: Feng Dong-Hai, dhfeng@phy.ecnu.edu.cn
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2014AA123401), the National Key Research and Development Program of China (Grant No. 2016YFB0501601), the National Natural Science Foundation of China (Grant Nos. 11374099, 11474097, 11727810, 61720106009, 11474096), the Shanghai Municipal Science and Technology Commission, China (Grant No. 16520721200), and the 111 Project, China (Grant No. B12024).
    [1]

    Demtrder W 2008 Laser Spectroscopy (3rd Ed.) (Berlin: Springer) pp609-677

    [2]

    Feng D H, Pan X Q, Li X, Jia T Q, Sun Z R 2013 J. Appl. Phys. 114 093513

    [3]

    Liang P, Hu R R, Chen C, Belykh V V, Jia T Q, Sun Z R, Feng D H, Yakovlev D R, Bayer M 2017 Appl. Phys. Lett. 110 222405

    [4]

    Li X, Feng D H, He H Y, Jia T Q, Shan L F, Sun Z R, Xu Z Z 2012 Acta Phys. Sin. 61 197801 (in Chinese) [李霞, 冯东海, 何红燕, 贾天卿, 单璐繁, 孙真荣, 徐至展 2012 物理学报 61 197801]

    [5]

    Wheeler D A, Zhang J Z 2013 Adv. Mater. 25 2878

    [6]

    Loss D, DiVincenzo D P 1998 Phys. Rev. A 57 120

    [7]

    Yakovlev D R, Bayer M (edited by Dyakonov M I) 2008 Spin Physics in Semiconductors (Berlin: Springer-Verlag) pp135-177

    [8]

    Feng D H, Akimov I A, Henneberger F 2007 Phys. Rev. Lett. 99 036604

    [9]

    Akimov I A, Feng D H, Henneberger F 2006 Phys. Rev. Lett. 97 056602

    [10]

    Žutić I, Fabian J, Sarma S D 2004 Rev. Mod. Phys. 76 323

    [11]

    Xia J B, Ge W K, Chang K 2008 Semiconductor Spintronics (Beijing: Science Press) pp1-9 (in Chinese) [夏建白, 葛惟昆, 常凯 2008 半导体自旋电子学 (北京: 科学出版社)第19页]

    [12]

    Li X, Feng D H, Tong H F, Jia T Q, Deng L, Sun Z R, Xu Z Z 2014 J. Phys. Chem. Lett. 5 4310

    [13]

    Feng D H, Yakovlev D R, Pavlov V V, Rodina A V, Shornikova E V, Mund J, Bayer M 2017 Nano Lett. 17 2844

    [14]

    Wu K F, Zhu H M, Liu Z, Rodrguez-Crdoba W, Lian T Q 2012 J. Am. Chem. Soc. 134 10337

    [15]

    Kanai Y, Wu Z G, Grossman J C 2010 J. Mater. Chem. 20 1053

    [16]

    He J, Lo S S, Kim J, Scholes G D 2008 Nano Lett. 8 4007

    [17]

    He J, Zhong H Z, Scholes G D 2010 Phys. Rev. Lett. 105 046601

    [18]

    Jones M, Lo S S, Scholes G D 2009 Proc. Natl. Acad. Sci. U. S. A. 106 3011

    [19]

    Knowles K E, McArthur E A, Weiss E A 2011 ACS Nano 5 2026

    [20]

    Klimov V I, McBranch D W, Leatherdale C A, Bawendi M G 1999 Phys. Rev. B 60 13740

    [21]

    Kambhampati P 2011 J. Phys. Chem. C 115 22089

    [22]

    Crooker S A, Awschalom D D, Baumberg J J, Flack F, Samarth N 1997 Phys. Rev. B 56 7574

    [23]

    Feng D H, Li X, Jia T Q, Pan X Q, Sun Z R, Xu Z Z 2012 Appl. Phys. Lett. 100 122406

    [24]

    Tong H F, Feng D H, Li X, Deng L, Leng Y X, Jia T Q, Sun Z R 2013 Materials 6 4523

    [25]

    Li X, Feng D H, Pan X Q, Jia T Q, Shan L F, Deng L, Sun Z R 2012 Acta Phys. Sin. 61 207202 (in Chinese) [李霞, 冯东海, 潘贤群, 贾天卿, 单璐繁, 邓莉, 孙真荣 2012 物理学报 61 207202]

    [26]

    Zhu C R, Zhang K, Glazov M, Urbaszek B, Amand T, Ji Z W, Liu B L, Marie X 2014 Phys. Rev. B 90 161302

    [27]

    Pan Q F, Zhang Z Y, Wang H Z, Lin X, Jin Z M, Cheng Z X, Ma G H 2016 Acta Phys. Sin. 65 127802 (in Chinese) [潘群峰, 张泽宇, 王会真, 林贤, 金钻明, 程振祥, 马国宏 2016 物理学报 65 127802]

    [28]

    Glazov M M, Yugova I A, Spatzek S, Schwan A, Varwig S, Yakovlev D R, Reuter D, Wieck A D, Bayer M 2010 Phys. Rev. B 82 155325

    [29]

    Yugova I A, Glazov M M, Ivchenko E L, Efros Al L 2009 Phys. Rev. B 80 104436

    [30]

    Fang S Y, Lu H M, Lai T S 2015 Acta Phys. Sin. 64 157201 (in Chinese) [方少寅, 陆海铭, 赖天树 2015 物理学报 64 157201]

    [31]

    Teng L H, Mou L J 2017 Acta Phys. Sin. 66 046802 (in Chinese) [滕利华, 牟丽君 2017 物理学报 66 046802]

    [32]

    Huxter V M, Kovalevskij V, Scholes G D 2005 J. Phys. Chem. B 109 20060

    [33]

    Scholes G D, Kim J, Wong C Y 2006 Phys. Rev. B 73 195325

    [34]

    Feng D H, Shan L F, Jia T Q, Pan X Q, Tong H F, Deng L, Sun Z R, Xu Z Z 2013 Appl. Phys. Lett. 102 062408

    [35]

    Klimov V I, Mikhailovsky A A, McBranch D W, Leatherdale C A, Bawendi M G 2000 Science 287 1011

    [36]

    Nirmal M, Dabbousi B O, Bawendi M G, Macklin J J, Trautman J K, Harris T D, Brus L E 1996 Nature 383 802

    [37]

    Efros A L, Nesbitt D J 2016 Nat. Nanotechnol. 11 661

    [38]

    Park Y S, Bae W K, Pietryga J M, Klimov V I 2014 ACS Nano 8 7288

  • [1]

    Demtrder W 2008 Laser Spectroscopy (3rd Ed.) (Berlin: Springer) pp609-677

    [2]

    Feng D H, Pan X Q, Li X, Jia T Q, Sun Z R 2013 J. Appl. Phys. 114 093513

    [3]

    Liang P, Hu R R, Chen C, Belykh V V, Jia T Q, Sun Z R, Feng D H, Yakovlev D R, Bayer M 2017 Appl. Phys. Lett. 110 222405

    [4]

    Li X, Feng D H, He H Y, Jia T Q, Shan L F, Sun Z R, Xu Z Z 2012 Acta Phys. Sin. 61 197801 (in Chinese) [李霞, 冯东海, 何红燕, 贾天卿, 单璐繁, 孙真荣, 徐至展 2012 物理学报 61 197801]

    [5]

    Wheeler D A, Zhang J Z 2013 Adv. Mater. 25 2878

    [6]

    Loss D, DiVincenzo D P 1998 Phys. Rev. A 57 120

    [7]

    Yakovlev D R, Bayer M (edited by Dyakonov M I) 2008 Spin Physics in Semiconductors (Berlin: Springer-Verlag) pp135-177

    [8]

    Feng D H, Akimov I A, Henneberger F 2007 Phys. Rev. Lett. 99 036604

    [9]

    Akimov I A, Feng D H, Henneberger F 2006 Phys. Rev. Lett. 97 056602

    [10]

    Žutić I, Fabian J, Sarma S D 2004 Rev. Mod. Phys. 76 323

    [11]

    Xia J B, Ge W K, Chang K 2008 Semiconductor Spintronics (Beijing: Science Press) pp1-9 (in Chinese) [夏建白, 葛惟昆, 常凯 2008 半导体自旋电子学 (北京: 科学出版社)第19页]

    [12]

    Li X, Feng D H, Tong H F, Jia T Q, Deng L, Sun Z R, Xu Z Z 2014 J. Phys. Chem. Lett. 5 4310

    [13]

    Feng D H, Yakovlev D R, Pavlov V V, Rodina A V, Shornikova E V, Mund J, Bayer M 2017 Nano Lett. 17 2844

    [14]

    Wu K F, Zhu H M, Liu Z, Rodrguez-Crdoba W, Lian T Q 2012 J. Am. Chem. Soc. 134 10337

    [15]

    Kanai Y, Wu Z G, Grossman J C 2010 J. Mater. Chem. 20 1053

    [16]

    He J, Lo S S, Kim J, Scholes G D 2008 Nano Lett. 8 4007

    [17]

    He J, Zhong H Z, Scholes G D 2010 Phys. Rev. Lett. 105 046601

    [18]

    Jones M, Lo S S, Scholes G D 2009 Proc. Natl. Acad. Sci. U. S. A. 106 3011

    [19]

    Knowles K E, McArthur E A, Weiss E A 2011 ACS Nano 5 2026

    [20]

    Klimov V I, McBranch D W, Leatherdale C A, Bawendi M G 1999 Phys. Rev. B 60 13740

    [21]

    Kambhampati P 2011 J. Phys. Chem. C 115 22089

    [22]

    Crooker S A, Awschalom D D, Baumberg J J, Flack F, Samarth N 1997 Phys. Rev. B 56 7574

    [23]

    Feng D H, Li X, Jia T Q, Pan X Q, Sun Z R, Xu Z Z 2012 Appl. Phys. Lett. 100 122406

    [24]

    Tong H F, Feng D H, Li X, Deng L, Leng Y X, Jia T Q, Sun Z R 2013 Materials 6 4523

    [25]

    Li X, Feng D H, Pan X Q, Jia T Q, Shan L F, Deng L, Sun Z R 2012 Acta Phys. Sin. 61 207202 (in Chinese) [李霞, 冯东海, 潘贤群, 贾天卿, 单璐繁, 邓莉, 孙真荣 2012 物理学报 61 207202]

    [26]

    Zhu C R, Zhang K, Glazov M, Urbaszek B, Amand T, Ji Z W, Liu B L, Marie X 2014 Phys. Rev. B 90 161302

    [27]

    Pan Q F, Zhang Z Y, Wang H Z, Lin X, Jin Z M, Cheng Z X, Ma G H 2016 Acta Phys. Sin. 65 127802 (in Chinese) [潘群峰, 张泽宇, 王会真, 林贤, 金钻明, 程振祥, 马国宏 2016 物理学报 65 127802]

    [28]

    Glazov M M, Yugova I A, Spatzek S, Schwan A, Varwig S, Yakovlev D R, Reuter D, Wieck A D, Bayer M 2010 Phys. Rev. B 82 155325

    [29]

    Yugova I A, Glazov M M, Ivchenko E L, Efros Al L 2009 Phys. Rev. B 80 104436

    [30]

    Fang S Y, Lu H M, Lai T S 2015 Acta Phys. Sin. 64 157201 (in Chinese) [方少寅, 陆海铭, 赖天树 2015 物理学报 64 157201]

    [31]

    Teng L H, Mou L J 2017 Acta Phys. Sin. 66 046802 (in Chinese) [滕利华, 牟丽君 2017 物理学报 66 046802]

    [32]

    Huxter V M, Kovalevskij V, Scholes G D 2005 J. Phys. Chem. B 109 20060

    [33]

    Scholes G D, Kim J, Wong C Y 2006 Phys. Rev. B 73 195325

    [34]

    Feng D H, Shan L F, Jia T Q, Pan X Q, Tong H F, Deng L, Sun Z R, Xu Z Z 2013 Appl. Phys. Lett. 102 062408

    [35]

    Klimov V I, Mikhailovsky A A, McBranch D W, Leatherdale C A, Bawendi M G 2000 Science 287 1011

    [36]

    Nirmal M, Dabbousi B O, Bawendi M G, Macklin J J, Trautman J K, Harris T D, Brus L E 1996 Nature 383 802

    [37]

    Efros A L, Nesbitt D J 2016 Nat. Nanotechnol. 11 661

    [38]

    Park Y S, Bae W K, Pietryga J M, Klimov V I 2014 ACS Nano 8 7288

  • [1] 杨旭, 冯红梅, 刘佳南, 张向群, 何为, 成昭华. 超快自旋动力学: 从飞秒磁学到阿秒磁学. 物理学报, 2024, 73(15): 157501. doi: 10.7498/aps.73.20240646
    [2] 赵零一, 刘金磊, 江涛, 郎跃, 赵增秀. 强场激发Rydberg态的激光包络调控. 物理学报, 2024, 73(24): 243201. doi: 10.7498/aps.73.20241222
    [3] 贺佟佟, 刘子超, 李盈傧, 黄诚. 平行偏振三色场对原子非次序双电离的调控. 物理学报, 2024, 73(16): 163201. doi: 10.7498/aps.73.20240737
    [4] 贾韫哲, 孟胜. 光激发下水体系的超快动力学. 物理学报, 2024, 73(8): 084204. doi: 10.7498/aps.73.20240047
    [5] 陶琛玉, 雷建廷, 余璇, 骆炎, 马新文, 张少锋. 阿秒脉冲的发展及其在原子分子超快动力学中的应用. 物理学报, 2023, 72(5): 053202. doi: 10.7498/aps.72.20222436
    [6] 卢欣, 谢孟琳, 刘景, 金蔚, 李春, GeorgiosLefkidis, WolfgangHübner. FemB20 (m = 1, 2)团簇中超快自旋动力学的第一性原理研究. 物理学报, 2021, 70(12): 127505. doi: 10.7498/aps.70.20210056
    [7] 黄瑞, 李春, 金蔚, GeorgiosLefkidis, WolfgangHübner. 双磁性中心内嵌富勒烯Y2C2@C82-C2(1)中的超快自旋动力学行为. 物理学报, 2019, 68(2): 023101. doi: 10.7498/aps.68.20181887
    [8] 向天, 程亮, 齐静波. 拓扑绝缘体中的超快电荷自旋动力学. 物理学报, 2019, 68(22): 227202. doi: 10.7498/aps.68.20191433
    [9] 秦朝朝, 崔明焕, 宋迪迪, 何伟. CdSeS合金结构量子点的多激子俄歇复合过程. 物理学报, 2019, 68(10): 107801. doi: 10.7498/aps.68.20190291
    [10] 叶树集, 李传召, 张佳慧, 谈军军, 罗毅. 生物分子结合水的结构与动力学研究进展. 物理学报, 2019, 68(1): 013101. doi: 10.7498/aps.68.20181273
    [11] 罗金龙, 凌丰姿, 李帅, 王艳梅, 张冰. 丁酮3s里德堡态的超快光解动力学研究. 物理学报, 2017, 66(2): 023301. doi: 10.7498/aps.66.023301
    [12] 李高芳, 马国宏, 马红, 初凤红, 崔昊杨, 刘伟景, 宋小军, 江友华, 黄志明, 褚君浩. 光抽运太赫兹探测技术研究ZnSe的光致载流子动力学特性. 物理学报, 2016, 65(24): 247201. doi: 10.7498/aps.65.247201
    [13] 李霞, 冯东海, 潘贤群, 贾天卿, 单璐繁, 邓莉, 孙真荣. 室温下CdSe胶体量子点超快自旋动力学. 物理学报, 2012, 61(20): 207202. doi: 10.7498/aps.61.207202
    [14] 席善斌, 陆妩, 王志宽, 任迪远, 周东, 文林, 孙静. 中带电压法分离栅控横向pnp双极晶体管辐照感生缺. 物理学报, 2012, 61(7): 076101. doi: 10.7498/aps.61.076101
    [15] 李霞, 冯东海, 何红燕, 贾天卿, 单璐繁, 孙真荣, 徐至展. CdTe/CdS核壳结构量子点超快载流子动力学. 物理学报, 2012, 61(19): 197801. doi: 10.7498/aps.61.197801
    [16] 席善斌, 陆妩, 任迪远, 周东, 文林, 孙静, 吴雪. 栅控横向PNP双极晶体管辐照感生电荷的定量分离. 物理学报, 2012, 61(23): 236103. doi: 10.7498/aps.61.236103
    [17] 李春, 杨帆, Georgios Lefkidis, Wolfgang Hübner. 磁性纳米结构中由激光引起的超快自旋动力学研究. 物理学报, 2011, 60(1): 017802. doi: 10.7498/aps.60.017802
    [18] 金 华, 刘 舒, 张振中, 张立功, 郑著宏, 申德振. (CdZnTe, ZnSeTe)/ZnTe复合量子阱中激子隧穿过程. 物理学报, 2008, 57(10): 6627-6630. doi: 10.7498/aps.57.6627
    [19] 孙 涛, 黄锦圣, 张伟力, 柴 路, 王清月, 王克伦. ZnO粉末中无序激射现象时间分辨的研究. 物理学报, 2003, 52(9): 2127-2130. doi: 10.7498/aps.52.2127
    [20] 任立勇, 姚保利, 侯 洵, 易文辉, 汪敏强. 有机聚合物薄膜激光诱导相位孔衍射的实验和理论. 物理学报, 2000, 49(10): 1973-1977. doi: 10.7498/aps.49.1973
计量
  • 文章访问数:  6521
  • PDF下载量:  195
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-31
  • 修回日期:  2018-03-02
  • 刊出日期:  2018-05-05

/

返回文章
返回