搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分数阶Willis环脑迟发性动脉瘤时滞系统混沌分析

高飞 胡道楠 童恒庆 王传美

引用本文:
Citation:

分数阶Willis环脑迟发性动脉瘤时滞系统混沌分析

高飞, 胡道楠, 童恒庆, 王传美

Chaotic analysis of fractional Willis delayed aneurysm system

Gao Fei, Hu Dao-Nan, Tong Heng-Qing, Wang Chuan-Mei
PDF
导出引用
  • 在脑血动脉瘤的临床研究中,Willis环脑动脉血管瘤系统(Willis aneurysm system,WAS)起着重要作用,分数阶WAS尽管能进一步加深该系统的机理刻画,但是不能描述原因不明的迟发性动脉瘤.鉴于此,本文提出分数阶Willis环脑迟发性动脉瘤时滞系统(fractional Willis aneurysm system with time-delay,FWASTD)并验证了其有效性;利用时间序列图、相图、Poincar截面等证实了FWASTD的混沌特性;研究时滞对于系统的重要生理参量的影响,发现了血流阻力系数在时滞状态下对系统稳定的重要性;根据分数阶时滞系统的稳定性理论,设计相应线性控制器,对FWASTD进行了有效控制,同时也探讨了时滞系统的自同步控制.本文完善了脑动脉瘤系统的理论基础.
    The dynamic system of Willis aneurysm (WAS) has played an important role in theoretical and clinical research of cerebral aneurysms. Fractional differential is an effective mathematical tool that can describe the cerebral aneurysm system accurately and profoundly. However, the existing fractional Willis aneurysm system (FWAS) cannot describe the delayed aneurysm rupture of unknown cause in reality. Therefore, by introducing the time-delay factors into the existing fractional Willis aneurysm system as a rational extension, a new fractional Willis aneurysm system with time-delay (FWASTD) is proposed in this paper.First, FWASTD is introduced in the context, and the comparison of time sequences map between FWAS and FWASTD proves that FWASTD is feasible in the depiction of time-delay situations. The bifurcation diagram and the largest Lyapunov exponent diagram as well as the phase diagram of fractional order also confirm the chaotic characteristics of the FWASTD.Then, the classical analysis methods in chaotic dynamics, such as time series diagram, phase diagram and Poincar section are used to analyze FWASTD in detail. When studying the diagrams of time-delay factors for the important physiological parameters of the system, we find that blood flow resistance coefficient can exert a remarkable effect on the system stability under time-delay. Besides, the experimental results show that the FWASTD becomes stable with the increase of blood flow resistance under a certain condition. Usually, promoting thrombosis is a kind of adjunctive therapy in clinic for cerebral aneurysm. The results of this part can accord with the treatment in clinic and has great significance in clinical diagnosis.Finally, as the chaotic state of the time-delay system indicates that cerebral aneurysm is in a dangerous situation, the primary task of the control for this new system is to achieve stability rather than synchronization. The stability theory of fractional time-delayed system is adopted in a strict proof of the uniqueness of solution for the FWASTD. To make FWASTD stable, a corresponding linear controller is designed based on the stability theory of fractional order delay system. The numerical simulation indicates that the linear controller can control the blood flow velocity and speed up the periodic fluctuation within a small range, which illustrates that it is not easy to rupture the cerebral aneurysm. We also make self-synchronization control between FWASTD and FWAS just in case that the coefficients of the system are not clear.The research results in this paper, to some extent, can serve as theoretical guidance for the clinical diagnosis and the treatment of aneurysm.
      通信作者: 高飞, hgaofei@gmail.com
    • 基金项目: 国家自然科学基金重大研究计划(批准号:91324201)、中央高校基本科研业务费(批准号:2018IB017)、湖北省自然科学基金(批准号:2014CFB865)和教育部人文社科青年基金项目(批准号:14YJCZH143)资助的课题.
      Corresponding author: Gao Fei, hgaofei@gmail.com
    • Funds: Project supported by the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91324201), the Fundamental Research Funds for the Central Universities, China (Grant No. 2018IB017), the Natural Science Foundation of Hubei Province, China (Grant No. 2014CFB865), and the Humanity and Social Science Youth foundation of Ministry of Education of China (Grant No. 14YJCZH143).
    [1]

    Lan Q 2015 Chin. J. Neurosurg. 31 541 (in Chinese) [兰青 2015 中华神经外科杂志 31 541]

    [2]

    Liang S K, Jiang C H 2016 Chin. J. Neurosurg. 32 1071 (in Chinese) [梁士凯, 姜除寒 2016 中华神经外科杂志 32 1071]

    [3]

    Liu A H 2017 Chin. J. Stroke 12 850 (in Chinese) [刘爱华 2017 中国卒中杂志 12 850]

    [4]

    Fiorella D, Woo H H, Albuquerque F C, Nelson P K 2008 Neurosurgery 62 1115

    [5]

    Liu J, Jing L K, Wang C, Paliwal N, Wang S Z, Zhang Y, Xiang J P, Siddiqui A H, Meng H, Yang X J 2016 J. Neurointerv. Surg. 8 1140

    [6]

    Zhang Y, Yang X J 2016 Chin. J. Cerebrovasc. Dis. 7 372 (in Chinese) [张莹, 杨新健 2016 中国脑血管病杂志 7 372]

    [7]

    Radaelli A G, Augsburger L, Cebral J R, Ohta M, Rufenacht D A, Balossino R, Benndorf G, Hose D R, Marzo A, Metcalfe R, Mortier P, Mut F, Reymond P, Socci L, Verhegghe B, Frangi A F 2008 J. Bio. 41 2069

    [8]

    Connolly J E S, Rabinstein A A, Carhuapoma J R, Derdeyn C P, Dion J, Higashida R T, Hoh B L, Kirkness C J, Naidech A M, Ogilvy C S, Patel A B, Thompson B G, Vespa P, Council A H A S, Int C C R, Nursing C C, Anesthes C C S, Cardiology C C 2012 Stroke 43 1711

    [9]

    Gonzalez C F, Cho Y I, Ortega H V, Moret J 1992 Am. J. Neuroradiol. 13 181

    [10]

    Dai X, Qiao A K 2016 J. Med. Biomech. 31 461 (in Chinese) [戴璇, 乔爱科 2016 医用生物力学 31 461]

    [11]

    Austin G 1971 Math. Biosci. 11 163

    [12]

    Cao J D, Liu T Y 1993 J. Biomath. 8 9 (in Chinese) [曹进德, 刘天一 1993 生物数学学报 8 9]

    [13]

    Yang C H, Zhu S M 2003 Acta Sci. Nat. Univ. Sunyatseni 43 1 (in Chinese) [杨翠红, 朱思铭 2003 中山大学学报(自然科学版) 43 1]

    [14]

    Gu Y F, Xiao J 2014 Acta Phys. Sin. 63 160501 (in Chinese) [古元凤, 肖剑 2014 物理学报 63 160501]

    [15]

    Li Y M, Yu S 2008 J. Biomath. 23 235 (in Chinese) [李医民, 于霜 2008 生物数学学报 23 235]

    [16]

    Sun M H 2016 M. S. Thesis (Chongqing: University of Chongqing) (in Chinese) [孙梦晗 2016 硕士学位论文 (重庆: 重庆大学)]

    [17]

    Gao F, Li T, Tong H Q, Ou Z L 2016 Acta Phys. Sin. 65 230502 (in Chinese) [高飞, 李腾, 童恒庆, 欧卓玲 2016 物理学报 65 230502]

    [18]

    Lu K Q, Liu J X 2009 Physics 38 453 (in Chinese) [陆坤权, 刘寄星 2009 物理 38 453]

    [19]

    Zhu K Q 2009 Mech. Pract. 31 104 (in Chinese) [朱克勤 2009 力学与实践 31 104]

    [20]

    Ahmed E, El-Sayed A M A, El-Saka H A A 2007 J. Math. Anal. Appl. 325 542

    [21]

    Dokoumetzidis A, Macheras P 2009 J. Pharmacokinet. Pharmacodyn. 36 165

    [22]

    Liang Y, Wang X Y 2013 Acta Phys. Sin. 62 018901 (in Chinese) [梁义, 王兴元 2013 物理学报 62 018901]

    [23]

    Ouyang C, Lin W T, Cheng R J, Mo J Q 2013 Acta Phys. Sin. 62 060201 (in Chinese) [欧阳成, 林万涛, 程荣军, 莫嘉琪 2013 物理学报 62 060201]

    [24]

    Podlubny I 1999 Fractional Differential Equations (New York: Academic Press) p41

    [25]

    Huo R, Wang X L, Wu G R 2014 J. Inner Mongolia Agric. Univ. (Nat. Sci. Edn.) 35 167 (in Chinese) [霍冉, 王晓丽, 吴国荣 2014 内蒙古农业大学学报 35 167]

    [26]

    Hu J, Lu G, Zhang S, Zhao L 2015 Commun. Nonlinear Sci. 20 905

    [27]

    Bhalekar S, Daftardar-Gejji V 2010 Commun. Nonlinear Sci. 15 2178

    [28]

    Diethelm K, Neville F 2002 Nonlinear Dynam. 29 3

    [29]

    Guan M, Shi H, Zhang G 2017 Chin. J. Cerebrovasc Dis. 14 46 (in Chinese) [关明浩, 史怀璋, 张广 2017 中国脑血管病杂志 14 46]

  • [1]

    Lan Q 2015 Chin. J. Neurosurg. 31 541 (in Chinese) [兰青 2015 中华神经外科杂志 31 541]

    [2]

    Liang S K, Jiang C H 2016 Chin. J. Neurosurg. 32 1071 (in Chinese) [梁士凯, 姜除寒 2016 中华神经外科杂志 32 1071]

    [3]

    Liu A H 2017 Chin. J. Stroke 12 850 (in Chinese) [刘爱华 2017 中国卒中杂志 12 850]

    [4]

    Fiorella D, Woo H H, Albuquerque F C, Nelson P K 2008 Neurosurgery 62 1115

    [5]

    Liu J, Jing L K, Wang C, Paliwal N, Wang S Z, Zhang Y, Xiang J P, Siddiqui A H, Meng H, Yang X J 2016 J. Neurointerv. Surg. 8 1140

    [6]

    Zhang Y, Yang X J 2016 Chin. J. Cerebrovasc. Dis. 7 372 (in Chinese) [张莹, 杨新健 2016 中国脑血管病杂志 7 372]

    [7]

    Radaelli A G, Augsburger L, Cebral J R, Ohta M, Rufenacht D A, Balossino R, Benndorf G, Hose D R, Marzo A, Metcalfe R, Mortier P, Mut F, Reymond P, Socci L, Verhegghe B, Frangi A F 2008 J. Bio. 41 2069

    [8]

    Connolly J E S, Rabinstein A A, Carhuapoma J R, Derdeyn C P, Dion J, Higashida R T, Hoh B L, Kirkness C J, Naidech A M, Ogilvy C S, Patel A B, Thompson B G, Vespa P, Council A H A S, Int C C R, Nursing C C, Anesthes C C S, Cardiology C C 2012 Stroke 43 1711

    [9]

    Gonzalez C F, Cho Y I, Ortega H V, Moret J 1992 Am. J. Neuroradiol. 13 181

    [10]

    Dai X, Qiao A K 2016 J. Med. Biomech. 31 461 (in Chinese) [戴璇, 乔爱科 2016 医用生物力学 31 461]

    [11]

    Austin G 1971 Math. Biosci. 11 163

    [12]

    Cao J D, Liu T Y 1993 J. Biomath. 8 9 (in Chinese) [曹进德, 刘天一 1993 生物数学学报 8 9]

    [13]

    Yang C H, Zhu S M 2003 Acta Sci. Nat. Univ. Sunyatseni 43 1 (in Chinese) [杨翠红, 朱思铭 2003 中山大学学报(自然科学版) 43 1]

    [14]

    Gu Y F, Xiao J 2014 Acta Phys. Sin. 63 160501 (in Chinese) [古元凤, 肖剑 2014 物理学报 63 160501]

    [15]

    Li Y M, Yu S 2008 J. Biomath. 23 235 (in Chinese) [李医民, 于霜 2008 生物数学学报 23 235]

    [16]

    Sun M H 2016 M. S. Thesis (Chongqing: University of Chongqing) (in Chinese) [孙梦晗 2016 硕士学位论文 (重庆: 重庆大学)]

    [17]

    Gao F, Li T, Tong H Q, Ou Z L 2016 Acta Phys. Sin. 65 230502 (in Chinese) [高飞, 李腾, 童恒庆, 欧卓玲 2016 物理学报 65 230502]

    [18]

    Lu K Q, Liu J X 2009 Physics 38 453 (in Chinese) [陆坤权, 刘寄星 2009 物理 38 453]

    [19]

    Zhu K Q 2009 Mech. Pract. 31 104 (in Chinese) [朱克勤 2009 力学与实践 31 104]

    [20]

    Ahmed E, El-Sayed A M A, El-Saka H A A 2007 J. Math. Anal. Appl. 325 542

    [21]

    Dokoumetzidis A, Macheras P 2009 J. Pharmacokinet. Pharmacodyn. 36 165

    [22]

    Liang Y, Wang X Y 2013 Acta Phys. Sin. 62 018901 (in Chinese) [梁义, 王兴元 2013 物理学报 62 018901]

    [23]

    Ouyang C, Lin W T, Cheng R J, Mo J Q 2013 Acta Phys. Sin. 62 060201 (in Chinese) [欧阳成, 林万涛, 程荣军, 莫嘉琪 2013 物理学报 62 060201]

    [24]

    Podlubny I 1999 Fractional Differential Equations (New York: Academic Press) p41

    [25]

    Huo R, Wang X L, Wu G R 2014 J. Inner Mongolia Agric. Univ. (Nat. Sci. Edn.) 35 167 (in Chinese) [霍冉, 王晓丽, 吴国荣 2014 内蒙古农业大学学报 35 167]

    [26]

    Hu J, Lu G, Zhang S, Zhao L 2015 Commun. Nonlinear Sci. 20 905

    [27]

    Bhalekar S, Daftardar-Gejji V 2010 Commun. Nonlinear Sci. 15 2178

    [28]

    Diethelm K, Neville F 2002 Nonlinear Dynam. 29 3

    [29]

    Guan M, Shi H, Zhang G 2017 Chin. J. Cerebrovasc Dis. 14 46 (in Chinese) [关明浩, 史怀璋, 张广 2017 中国脑血管病杂志 14 46]

  • [1] 高飞, 李腾, 童恒庆, 欧卓玲. 分数阶Willis环脑动脉瘤系统的混沌动力学分析与控制. 物理学报, 2016, 65(23): 230502. doi: 10.7498/aps.65.230502
    [2] 李睿, 张广军, 姚宏, 朱涛, 张志浩. 参数不确定的分数阶混沌系统广义错位延时投影同步. 物理学报, 2014, 63(23): 230501. doi: 10.7498/aps.63.230501
    [3] 王斌, 吴超, 朱德兰. 一个新的分数阶混沌系统的翼倍增及滑模同步. 物理学报, 2013, 62(23): 230506. doi: 10.7498/aps.62.230506
    [4] 尚慧琳. 时滞位移反馈对Helmholtz振子系统的分形侵蚀安全域的控制. 物理学报, 2011, 60(7): 070501. doi: 10.7498/aps.60.070501
    [5] 张丽萍, 王惠南, 徐敏. 一个三时滞生物捕食被捕食系统分岔的混合控制. 物理学报, 2011, 60(1): 010506. doi: 10.7498/aps.60.010506
    [6] 杨红, 王瑞. 基于反馈和多最小二乘支持向量机的分数阶混沌系统控制. 物理学报, 2011, 60(7): 070508. doi: 10.7498/aps.60.070508
    [7] 刘福才, 李俊义, 臧秀凤. 基于自适应主动及滑模控制的分数阶超混沌系统异结构反同步. 物理学报, 2011, 60(3): 030504. doi: 10.7498/aps.60.030504
    [8] 赵灵冬, 胡建兵, 包志华, 章国安, 徐晨, 张士兵. 分数阶系统有限时间稳定性理论及分数阶超混沌Lorenz系统有限时间同步. 物理学报, 2011, 60(10): 100507. doi: 10.7498/aps.60.100507
    [9] 陶洪峰, 胡寿松. 参数未知分段混沌系统的时滞广义投影同步. 物理学报, 2011, 60(1): 010514. doi: 10.7498/aps.60.010514
    [10] 胡建兵, 章国安, 赵灵冬, 曾金全. 间歇同步分数阶统一混沌系统. 物理学报, 2011, 60(6): 060504. doi: 10.7498/aps.60.060504
    [11] 黄丽莲, 何少杰. 分数阶状态空间系统的稳定性分析及其在分数阶混沌控制中的应用. 物理学报, 2011, 60(4): 044703. doi: 10.7498/aps.60.044703
    [12] 赵灵冬, 胡建兵, 刘旭辉. 参数未知的分数阶超混沌Lorenz系统的自适应追踪控制与同步. 物理学报, 2010, 59(4): 2305-2309. doi: 10.7498/aps.59.2305
    [13] 阎晓妹, 刘丁. 基于最小二乘支持向量机的分数阶混沌系统控制. 物理学报, 2010, 59(5): 3043-3048. doi: 10.7498/aps.59.3043
    [14] 胡建兵, 韩焱, 赵灵冬. 自适应同步参数未知的异结构分数阶超混沌系统. 物理学报, 2009, 58(3): 1441-1445. doi: 10.7498/aps.58.1441
    [15] 张若洵, 杨世平. 分数阶共轭Chen混沌系统中的混沌及其电路实验仿真. 物理学报, 2009, 58(5): 2957-2962. doi: 10.7498/aps.58.2957
    [16] 胡建兵, 韩焱, 赵灵冬. 一种新的分数阶系统稳定理论及在back-stepping方法同步分数阶混沌系统中的应用. 物理学报, 2009, 58(4): 2235-2239. doi: 10.7498/aps.58.2235
    [17] 陈向荣, 刘崇新, 李永勋. 基于非线性观测器的一类分数阶混沌系统完全状态投影同步. 物理学报, 2008, 57(3): 1453-1457. doi: 10.7498/aps.57.1453
    [18] 马跃超, 黄丽芳, 张庆灵. 时变不确定时滞连续系统的鲁棒H∞保成本控制. 物理学报, 2007, 56(7): 3744-3752. doi: 10.7498/aps.56.3744
    [19] 邵仕泉, 高 心, 刘兴文. 两个耦合的分数阶Chen系统的混沌投影同步控制. 物理学报, 2007, 56(12): 6815-6819. doi: 10.7498/aps.56.6815
    [20] 王发强, 刘崇新. 分数阶临界混沌系统及电路实验的研究. 物理学报, 2006, 55(8): 3922-3927. doi: 10.7498/aps.55.3922
计量
  • 文章访问数:  7142
  • PDF下载量:  137
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-02
  • 修回日期:  2018-04-16
  • 刊出日期:  2018-08-05

/

返回文章
返回