-
采用全腔输出结构后,相对论磁控管径向尺寸显著减小,轴向长度也有较大幅度的缩短.但是,由于输出结构为三个相对独立的扇形波导,实际应用时,一般需要对微波输出模式进行转换.针对全腔输出相对论磁控管,本文研究了两种输出模式转换结构并利用三维全电磁粒子模拟程序对其进行了研究.首先研究了将三个扇形波导角向增宽从而渐变或者突变为一个同轴波导的情况,研究结果表明,两种情况下输出微波功率均大于采用传统三个独立扇形波导输出时的90%,输出模式主要是TEM模.其次研究了输出区由三个扇形输出波导分别变换为三个截面大小与之接近的矩形输出波导的可行性,研究结果表明,注入扇形波导中的TE11模式几乎全部转换为矩形波导中的TE10模式.实际应用时,可根据需要选择上述输出模式转换结构.A relativistic magnetron using all cavity extraction and semi-transparent cathode has the virtues of compactness, high output power and high efficiency. The three-dimensional particle-in-cell simulations show that 1.15 GW output microwave with an efficiency about 50% can be obtained at S-band with pure TE11 mode of the fan waveguide. However, due to the fact that the output structure is composed of three detached fan waveguides, mode conversion structure in the output region is required for the convenience of practical applications. Therefore, two mode conversion structures are studied for the output mode conversion. The first structure is to widen gradually or abruptly the fan waveguide in the azimuthal direction from a given position (starting point) along the microwave transport direction. And then the three fan waveguides are connected into one coaxial waveguide. The effects of the position of the starting point on the beam-wave interaction and microwave extraction are numerically studied. For the convenience of description, we define L as the axial distance between the center of the output coupling hole and starting point. Simulation results show that for the abrupt and gradual variation case, when the length of L changes in a relatively wide region, the output power is larger than 1.0 GW in TEM mode at S-band. It is about 90% of the conventional fan waveguide with 1.15 GW. For the gradual variation case, the optimal value of L equals 10.0 cm, and the corresponding output power is beyond 1.0 GW. For the abrupt variation case, the optimal value of L equals 13.75 cm, the corresponding output power is about 1.15 GW. But in the abrupt variation case, the output power is a little more sensitive to the value of L. The second structure is to convert the fan waveguide into a rectangular waveguide. Acompound waveguide composed of a section of fan waveguide and a section of rectangular waveguide is designed for studying its feasibility. In the compound waveguide, the wide edges of the cross section of the rectangular waveguide are tangent to the inner and outer arc of the fan cross section respectively. And the narrow edges cross the end points of the outer arc. Simulation results show that in the compound waveguide the microwave with TE11 mode of the fan waveguide input at the inlet can be changed into the TE10 mode of the rectangular waveguide at the outlet with almost no power loss. In all, the output microwave power larger than 1.0 GW could be obtained after using the two proposed mode conversion structures. In practical applications, one could choose the relevant mode conversion structure according to the requirement.
-
Keywords:
- relativistic magnetron /
- semi-transparent cathode /
- all cavity output /
- fan waveguide
[1] Barker R J, Schamiloglu E 2001 High-Power Microwave Sources and Technologies (New York: Institute of Electrical and Electronics Engineer, Inc.) pp54-57
[2] Kim H J, Choi J J 2007 IEEE Trans. Dielectr. Elect. Insul. 14 1045
[3] Lau Y Y, Luginsland J W, Cartwright K L, Simon D H, Tang W, Hoff B W, Gilgenbach R M 2010 Phys. Plasmas 17 033102
[4] Liu M Q, Fuks M I, Schamiloglu E, Liu C L 2012 IEEE Trans. Plasma Sci. 40 1569
[5] Leopold J G, Shlapakovski A S, Sayapin A, Krasik Y E 2015 IEEE Trans. Plasma Sci. 43 3168
[6] Yang W, Dong Z, Yang Y, Dong Y 2014 IEEE Trans. Plasma Sci. 42 3458
[7] Shi D F, Wang H G, Li W, Qian B L 2013 Acta Phys. Sin. 62 151101 (in Chinese) [史迪夫, 王弘刚, 李伟, 钱宝良 2013 物理学报 62 151101]
[8] Vintizenko I I, Mashchenko A I 2018 Instrum. Exp. Tech. 61 65
[9] Fuks M I, Kovalev N F, Andreev A D, Schamiloglu E 2006 IEEE Trans. Plasma Sci. 34 620
[10] Daimon M, Jiang W 2007 Appl. Phys. Lett. 91 191503
[11] Fuks M I, Schamiloglu E 2010 IEEE Trans. Plasma Sci. 38 1302
[12] Li W, Liu Y Q, Zhang J, Yang H W, Qian B L 2012 Phys. Plasmas 19 113108
[13] Leach C, Prasad S, Fuks M I, Buchenauer J, McConaha J W, Schamiloglu E 2017 IEEE Trans. Plasma Sci. 45 282
[14] Jiang Y Q, Li T M, Hao J L 2016 High Power Laser and Particle Beams 28 033003 (in Chinese) [姜亚群, 李天明, 郝晶龙 2016 强激光与粒子束 28 033003]
[15] Greenwood A D 2006 US Patent 7 106 004 [2006-9-12]
[16] Yang W Y, Dong Y, Dong Z W 2016 Acta Phys. Sin. 65 248401 (in Chinese) [杨温渊, 董烨, 董志伟 2016 物理学报 65 248401]
[17] Wang D, Qin F, Yang Y L, Zhang Y, Xu S 2016 High Power Laser and Particle Beams 28 033013 (in Chinese) [王冬, 秦奋, 杨郁林, 张勇, 徐莎 2016 强激光与粒子束 28 033013]
[18] Shi D F, Qian B L, Wang H G, Li W, Du G X 2017 Sci. Rep. 7 1491
[19] Shi D F, Qian B L, Wang H G, Li W, Du G X 2017 J. Phys. D: Appl. Phys. 49 465104
[20] Zhang K Q, Li D J 2001 Electromagnetic Theory in Microwaves and Optoelectronics (1st Ed.) (Beijing: Publishing House of Electronics Industry) pp279-297 (in Chinese) [张克潜, 李德杰 2001 微波与光电子学中的电磁理论(第1版) (北京: 电子工业出版社)第279297页]
-
[1] Barker R J, Schamiloglu E 2001 High-Power Microwave Sources and Technologies (New York: Institute of Electrical and Electronics Engineer, Inc.) pp54-57
[2] Kim H J, Choi J J 2007 IEEE Trans. Dielectr. Elect. Insul. 14 1045
[3] Lau Y Y, Luginsland J W, Cartwright K L, Simon D H, Tang W, Hoff B W, Gilgenbach R M 2010 Phys. Plasmas 17 033102
[4] Liu M Q, Fuks M I, Schamiloglu E, Liu C L 2012 IEEE Trans. Plasma Sci. 40 1569
[5] Leopold J G, Shlapakovski A S, Sayapin A, Krasik Y E 2015 IEEE Trans. Plasma Sci. 43 3168
[6] Yang W, Dong Z, Yang Y, Dong Y 2014 IEEE Trans. Plasma Sci. 42 3458
[7] Shi D F, Wang H G, Li W, Qian B L 2013 Acta Phys. Sin. 62 151101 (in Chinese) [史迪夫, 王弘刚, 李伟, 钱宝良 2013 物理学报 62 151101]
[8] Vintizenko I I, Mashchenko A I 2018 Instrum. Exp. Tech. 61 65
[9] Fuks M I, Kovalev N F, Andreev A D, Schamiloglu E 2006 IEEE Trans. Plasma Sci. 34 620
[10] Daimon M, Jiang W 2007 Appl. Phys. Lett. 91 191503
[11] Fuks M I, Schamiloglu E 2010 IEEE Trans. Plasma Sci. 38 1302
[12] Li W, Liu Y Q, Zhang J, Yang H W, Qian B L 2012 Phys. Plasmas 19 113108
[13] Leach C, Prasad S, Fuks M I, Buchenauer J, McConaha J W, Schamiloglu E 2017 IEEE Trans. Plasma Sci. 45 282
[14] Jiang Y Q, Li T M, Hao J L 2016 High Power Laser and Particle Beams 28 033003 (in Chinese) [姜亚群, 李天明, 郝晶龙 2016 强激光与粒子束 28 033003]
[15] Greenwood A D 2006 US Patent 7 106 004 [2006-9-12]
[16] Yang W Y, Dong Y, Dong Z W 2016 Acta Phys. Sin. 65 248401 (in Chinese) [杨温渊, 董烨, 董志伟 2016 物理学报 65 248401]
[17] Wang D, Qin F, Yang Y L, Zhang Y, Xu S 2016 High Power Laser and Particle Beams 28 033013 (in Chinese) [王冬, 秦奋, 杨郁林, 张勇, 徐莎 2016 强激光与粒子束 28 033013]
[18] Shi D F, Qian B L, Wang H G, Li W, Du G X 2017 Sci. Rep. 7 1491
[19] Shi D F, Qian B L, Wang H G, Li W, Du G X 2017 J. Phys. D: Appl. Phys. 49 465104
[20] Zhang K Q, Li D J 2001 Electromagnetic Theory in Microwaves and Optoelectronics (1st Ed.) (Beijing: Publishing House of Electronics Industry) pp279-297 (in Chinese) [张克潜, 李德杰 2001 微波与光电子学中的电磁理论(第1版) (北京: 电子工业出版社)第279297页]
计量
- 文章访问数: 5613
- PDF下载量: 61
- 被引次数: 0