搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧化铟/聚(3,4-乙烯二氧噻吩)复合材料的微结构及其热电性能研究

陶颖 祁宁 王波 陈志权 唐新峰

引用本文:
Citation:

氧化铟/聚(3,4-乙烯二氧噻吩)复合材料的微结构及其热电性能研究

陶颖, 祁宁, 王波, 陈志权, 唐新峰

Microstructure and thermoelectric properties of In2O3/poly(3, 4-ethylenedioxythiophene) composites

Tao Ying, Qi Ning, Wang Bo, Chen Zhi-Quan, Tang Xin-Feng
PDF
导出引用
  • 通过化学氧化合成的方法将纳米In2O3复合到聚(3,4-乙烯二氧噻吩)(PEDOT)中得到In2O3/PEDOT复合材料.利用X射线衍射、红外光谱、电子显微镜及正电子湮没等方法对复合材料的微观结构进行了系统研究,同时对材料的热学和电学性能进行了表征.结果表明,当In2O3的含量在22 wt%以下时,In2O3能很好地分散到PEDOT基体中.热电性能测试则显示In2O3/PEDOT复合材料的导电率随In2O3含量增加明显增大.纯PEDOT的电导率仅为7.5 S/m,而含12.3 wt% In2O3的复合材料的电导率达到25.75 S/m.该复合材料相应的功率因子(68.8×10-4μW/m·K2)相对于纯的PEDOT(14.5×10-4μW/m·K2)提高了近4倍.另外,复合材料的热导率相对于纯PEDOT也有所降低.最终复合材料的热电优值由0.015×10-4提高到了0.073×10-4.结果表明,In2O3/PEDOT复合材料的热电性能相对于纯PEDOT的热电性能得到了比较明显的提高.
    Poly(3, 4-ethylenedioxythiophene) (PEDOT) has applications in many areas due to its exciting electrical performance and high stability. Since it has very low thermal conductivity, it is also a good organic thermoelectric material. However, the ZT value of pure PEDOT is rather low, because the electrical properties such as conductivity are still not satisfactory. It is found that the thermoelectric performance can be enhanced by adding inorganic thermoelectric materials into PEDOT to form composites. In this paper, we synthesize a composite of In2O3/PEDOT by chemical oxidation. Microstructure of the composite is studied by X-ray diffraction, infrared spectroscopy, transmission electron microscope, and positron annihilation spectroscopy. The XRD measurements show that the pure PEDOT sample is amorphous, and the crystallinity in composite sample is contributed by In2O3. Besides, the diffraction peaks become sharper with increasing the In2O3 content. Transmission electron microscope measurements confirm that the PEDOT sample is amorphous and the shapes of In2O3 particles are regular. The surfaces of the In2O3 particles are wholly coated with thin layers of PEDOT, and when the In2O3 content is higher than 22 wt%, the In2O3 particles cannot be uniformly dispersed in pure PEDOT layers. The positron annihilation measurements reveal the interface structure in the In2O3/PEDOT composite, which can capture positron and cause the lifetime of positron to increase. The relative quantity of interface increases with In2O3 content increasing. However, when the In2O3 content is more than 22 wt%, the interface structure is destroyed. All the measurements show that when the In2O3 content is lower than 22 wt%, the In2O3 nanoparticles are well dispersed in PEDOT. The electrical conductivity of In2O3/PEDOT composite increases with In2O3 content increasing. At room temperature, the electrical conductivity of PEDOT is 7.5 S/m, while in the In2O3/PEDOT sample with 12.3 wt% In2O3, a maximum electrical conductivity of 25.75 S/m is obtained. When the In2O3 content increases from 0 to 22 wt%, the power factor of the composite increases rapidly from 14.5×10-4 to 68.8×10-4 μW/m·K2. On the contrary, the thermal conductivity shows decrease compared with the thermal conductivity of pure PEDOT. The ZT value of the composite increases from 0.015×10-4 to 0.073×10-4. Our results indicate that the thermoelectric properties of In2O3/PEDOT composite can be effectively improved compared with those of the pure PEDOT
      通信作者: 祁宁, ningqi@whu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11575131,11775163)资助的课题.
      Corresponding author: Qi Ning, ningqi@whu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11575131, 11775163).
    [1]

    Bakker F L, Slachter A, Adam J P, van Wees B J 2010 Phys. Rev. Lett. 105 136601

    [2]

    McGrail B T, Sehirlioglu A, Pentzer E 2015 Angewandte Chemie International Edition 54 1710

    [3]

    Venkatasubramanian R 2000 Phys. Rev. B 61 3091

    [4]

    Bux S K, Blair R G, Gogna P K, Lee H, Chen G, Dresselhaus M S, Kaner R B, Fleurial J P 2009 Adv. Funct. Mater. 19 2445

    [5]

    Du Y, Shen S Z, Cai K, Casey P S 2012 Prog. Polymer Sci. 37 820

    [6]

    Wang J, Cai K F, Shen S 2015 Organic Electron. 17 151

    [7]

    Culebras M, García Barberá A, Serrano Claumarchirant J F, Gómez C M, Cantarero A 2017 Synthetic Metals 225 103

    [8]

    Chen G, Dresselhaus M S, Dresselhaus G, Fleurial J P, Caillat T 2003 Int. Mater. Rev. 48 45

    [9]

    Tritt T M, Boettner H, Chen L 2008 MRS Bull. 33 366

    [10]

    Wang J, Cai K F, Yin J L, Shen S 2017 Synthetic Metals 224 27

    [11]

    Li Y Y, Du Y, Dou Y C, Cai K F, Xu J Y 2017 Synthetic Metals 226 119

    [12]

    Sun Y M, Sheng P, Di C A, Jiao F, Xu W, Qiu D, Zhu D B 2012 Adv. Mater. 24 932

    [13]

    Kim G H, Shao L, Zhang K, Pipe K P 2013 Nature Mater. 12 719

    [14]

    Shakouri A 2011 Ann. Rev. Mater. Res. 41 399

    [15]

    Leonov V, Vullers R J M 2009 J. Electr. Mater. 38 1491

    [16]

    Frankenfield D, Roth-Yousey L, Compher C 2005 J. Am. Dietet. Associat. 105 775

    [17]

    Moriarty G P 2013 Ph. D. Dissertation (Texas:A&M University)

    [18]

    Jonasa F, Morrison T 1997 Synthetic Metals 85 1397

    [19]

    Kemp N T, Kaiser A B, Liu C J, Chapman B, Mercier O, Carr A M, Trodahl H J, Buckley R G, Partridge A C, Lee J Y, Kim C Y, Bartl A, Dunsch L, Smith W T, Shapiro J S 1999 J. Polymer Sci. Part B:Polymer Phys. 37 953

    [20]

    Yao Q, Chen L D, Zhang W Q, Liufu S C, Chen X H 2010 ACS Nano 4 2445

    [21]

    Sun J, Yeh M L, Jung B J, Zhang B, Feser J, Majumdar A, Katz H E 2010 Macromolecules 43 2897

    [22]

    Lu B Y, Liu C C, Lu S, Xu J K, Jiang F X, Li Y Z, Zhang Z 2010 Chin. Phys. Lett. 27 057201

    [23]

    Lévesque I, Bertrand P O, Blouin N, Leclerc M, Zecchin S, Zotti G, Ratcliffe C I, Klug D D, Gao X, Gao F M, Tse J S 2007 Chem. Mater. 19 2128

    [24]

    Nardes A M, Kemerink M, de Kok M M, Vinken E, Maturova K, Janssen R A J 2008 Organic Electron. 9 727

    [25]

    Elschner A, Kirchmeyer S, Lövenich W, Merker U, Reuter K 2011 PEDOT:Principles and Applications of an Intrinsically Conductive Polymer (Vol. 10) (Boca Raton, London, New York:CRC Press, Taylor & Francis Group)

    [26]

    Tantavichet N, Pritzker M D, Burns C M 2001 J. Appl. Electrochem. 31 281

    [27]

    Kim T, Kim J, Kim Y, Lee T, Kim W, Suh K S 2009 Current Appl. Phys. 9 120

    [28]

    Heywang G, Jonas F 1992 Adv. Mater. 4 116

    [29]

    Ludwig K A, Uram J D, Yang J, Martin D C, Kipke D R 2006 J. Neural Engineer. 3 59

    [30]

    Fabretto M V, Evans D R, Mueller M, Zuber K, Hojati-Talemi P, Short R D, Wallace G G, Murphy P J 2012 Chem. Mater. 24 3998

    [31]

    Selvaganesh S V, Mathiyarasu J, Phani K L N, Yegnaraman V 2007 Nanoscale Res. Lett. 2 546

    [32]

    Shin H J, Jeon S S, Im S S 2011 Synthetic Metals 161 1284

    [33]

    Xiao Y M, Lin J Y, Tai S Y, Chou S W, Yue G, Wu J H 2012 J. Mater. Chem. 22 19919

    [34]

    Harish S, Mathiyarasu J, Phani K L N, Yegnaraman V 2008 Catal. Lett. 128 197

    [35]

    Brandt W, Paulin R 1968 Phys. Rev. Lett. 21 193

    [36]

    Li C Y, Zhao B, Zhou B, Qi N, Chen Z Q, Zhou W 2017 Phys. Chem. Chem. Phys. 19 7659

    [37]

    Sharma S K, Prakash J, Sudarshan K, Maheshwari P, Sathiyamoorthy D, Pujari P K 2012 Phys. Chem. Chem. Phys. 14 10972

    [38]

    Krause-Rehberg R, Leipner H S 1999 Positron Annihilation in Semiconductors:Defect Studies (Vol. 127) (Berlin:Springer Science & Business Media)

    [39]

    Shek C H, Lai J K L, Lin G M 1999 J. Phys. Chem. Solids 60 189

  • [1]

    Bakker F L, Slachter A, Adam J P, van Wees B J 2010 Phys. Rev. Lett. 105 136601

    [2]

    McGrail B T, Sehirlioglu A, Pentzer E 2015 Angewandte Chemie International Edition 54 1710

    [3]

    Venkatasubramanian R 2000 Phys. Rev. B 61 3091

    [4]

    Bux S K, Blair R G, Gogna P K, Lee H, Chen G, Dresselhaus M S, Kaner R B, Fleurial J P 2009 Adv. Funct. Mater. 19 2445

    [5]

    Du Y, Shen S Z, Cai K, Casey P S 2012 Prog. Polymer Sci. 37 820

    [6]

    Wang J, Cai K F, Shen S 2015 Organic Electron. 17 151

    [7]

    Culebras M, García Barberá A, Serrano Claumarchirant J F, Gómez C M, Cantarero A 2017 Synthetic Metals 225 103

    [8]

    Chen G, Dresselhaus M S, Dresselhaus G, Fleurial J P, Caillat T 2003 Int. Mater. Rev. 48 45

    [9]

    Tritt T M, Boettner H, Chen L 2008 MRS Bull. 33 366

    [10]

    Wang J, Cai K F, Yin J L, Shen S 2017 Synthetic Metals 224 27

    [11]

    Li Y Y, Du Y, Dou Y C, Cai K F, Xu J Y 2017 Synthetic Metals 226 119

    [12]

    Sun Y M, Sheng P, Di C A, Jiao F, Xu W, Qiu D, Zhu D B 2012 Adv. Mater. 24 932

    [13]

    Kim G H, Shao L, Zhang K, Pipe K P 2013 Nature Mater. 12 719

    [14]

    Shakouri A 2011 Ann. Rev. Mater. Res. 41 399

    [15]

    Leonov V, Vullers R J M 2009 J. Electr. Mater. 38 1491

    [16]

    Frankenfield D, Roth-Yousey L, Compher C 2005 J. Am. Dietet. Associat. 105 775

    [17]

    Moriarty G P 2013 Ph. D. Dissertation (Texas:A&M University)

    [18]

    Jonasa F, Morrison T 1997 Synthetic Metals 85 1397

    [19]

    Kemp N T, Kaiser A B, Liu C J, Chapman B, Mercier O, Carr A M, Trodahl H J, Buckley R G, Partridge A C, Lee J Y, Kim C Y, Bartl A, Dunsch L, Smith W T, Shapiro J S 1999 J. Polymer Sci. Part B:Polymer Phys. 37 953

    [20]

    Yao Q, Chen L D, Zhang W Q, Liufu S C, Chen X H 2010 ACS Nano 4 2445

    [21]

    Sun J, Yeh M L, Jung B J, Zhang B, Feser J, Majumdar A, Katz H E 2010 Macromolecules 43 2897

    [22]

    Lu B Y, Liu C C, Lu S, Xu J K, Jiang F X, Li Y Z, Zhang Z 2010 Chin. Phys. Lett. 27 057201

    [23]

    Lévesque I, Bertrand P O, Blouin N, Leclerc M, Zecchin S, Zotti G, Ratcliffe C I, Klug D D, Gao X, Gao F M, Tse J S 2007 Chem. Mater. 19 2128

    [24]

    Nardes A M, Kemerink M, de Kok M M, Vinken E, Maturova K, Janssen R A J 2008 Organic Electron. 9 727

    [25]

    Elschner A, Kirchmeyer S, Lövenich W, Merker U, Reuter K 2011 PEDOT:Principles and Applications of an Intrinsically Conductive Polymer (Vol. 10) (Boca Raton, London, New York:CRC Press, Taylor & Francis Group)

    [26]

    Tantavichet N, Pritzker M D, Burns C M 2001 J. Appl. Electrochem. 31 281

    [27]

    Kim T, Kim J, Kim Y, Lee T, Kim W, Suh K S 2009 Current Appl. Phys. 9 120

    [28]

    Heywang G, Jonas F 1992 Adv. Mater. 4 116

    [29]

    Ludwig K A, Uram J D, Yang J, Martin D C, Kipke D R 2006 J. Neural Engineer. 3 59

    [30]

    Fabretto M V, Evans D R, Mueller M, Zuber K, Hojati-Talemi P, Short R D, Wallace G G, Murphy P J 2012 Chem. Mater. 24 3998

    [31]

    Selvaganesh S V, Mathiyarasu J, Phani K L N, Yegnaraman V 2007 Nanoscale Res. Lett. 2 546

    [32]

    Shin H J, Jeon S S, Im S S 2011 Synthetic Metals 161 1284

    [33]

    Xiao Y M, Lin J Y, Tai S Y, Chou S W, Yue G, Wu J H 2012 J. Mater. Chem. 22 19919

    [34]

    Harish S, Mathiyarasu J, Phani K L N, Yegnaraman V 2008 Catal. Lett. 128 197

    [35]

    Brandt W, Paulin R 1968 Phys. Rev. Lett. 21 193

    [36]

    Li C Y, Zhao B, Zhou B, Qi N, Chen Z Q, Zhou W 2017 Phys. Chem. Chem. Phys. 19 7659

    [37]

    Sharma S K, Prakash J, Sudarshan K, Maheshwari P, Sathiyamoorthy D, Pujari P K 2012 Phys. Chem. Chem. Phys. 14 10972

    [38]

    Krause-Rehberg R, Leipner H S 1999 Positron Annihilation in Semiconductors:Defect Studies (Vol. 127) (Berlin:Springer Science & Business Media)

    [39]

    Shek C H, Lai J K L, Lin G M 1999 J. Phys. Chem. Solids 60 189

  • [1] 张雪, KimBokyung, LeeHyeonju, ParkJaehoon. 低温快速制备基于溶液工艺的高性能氧化铟薄膜及晶体管. 物理学报, 2024, 73(9): 096802. doi: 10.7498/aps.73.20240082
    [2] 但敏, 陈伦江, 贺岩斌, 吕兴旺, 万俊豪, 张虹, 张珂嘉, 杨莹, 金凡亚. H+离子辐照Y0.5Gd0.5Ba2Cu3O7-δ超导层中的缺陷演化. 物理学报, 2023, 0(0): 0-0. doi: 10.7498/aps.72.20221612
    [3] 但敏, 陈伦江, 贺岩斌, 吕兴旺, 万俊豪, 张虹, 张珂嘉, 杨莹, 金凡亚. H+离子辐照Y0.5Gd0.5Ba2Cu3O7–δ超导层中的缺陷演化. 物理学报, 2022, 71(23): 237401. doi: 10.7498/aps.71.20221612
    [4] 袁珉慧, 乐文凯, 谈小建, 帅晶. 二维共价键子结构Zintl相热电材料研究及进展. 物理学报, 2021, 70(20): 207304. doi: 10.7498/aps.70.20211010
    [5] 朱特, 曹兴忠. 正电子湮没谱学在金属材料氢/氦行为研究中的应用. 物理学报, 2020, 69(17): 177801. doi: 10.7498/aps.69.20200724
    [6] 薛丽, 任一鸣. CuGaTe2和CuInTe2的电子和热电性质的第一性原理研究. 物理学报, 2016, 65(15): 156301. doi: 10.7498/aps.65.156301
    [7] 张丽娟, 张传超, 廖威, 刘建党, 谷冰川, 袁晓东, 叶邦角. 氘化对KH2PO4晶体微观缺陷影响的正电子湮没研究. 物理学报, 2015, 64(9): 097802. doi: 10.7498/aps.64.097802
    [8] 刘海云, 刘湘涟, 田定琪, 杜正良, 崔教林. 含硫宽禁带Ga2Te3基热电半导体的声电输运特性. 物理学报, 2015, 64(19): 197201. doi: 10.7498/aps.64.197201
    [9] 刘义, 张清, 李海金, 李勇, 刘厚通. Sr掺杂钙钛矿型氧化物Y1-xSrxCoO3的溶胶-凝胶制备及电阻率温度关系研究. 物理学报, 2013, 62(4): 047202. doi: 10.7498/aps.62.047202
    [10] 祁宁, 王元为, 王栋, 王丹丹, 陈志权. Co掺杂纳米ZnO微结构的正电子湮没研究. 物理学报, 2011, 60(10): 107805. doi: 10.7498/aps.60.107805
    [11] 张帆, 朱航天, 骆军, 梁敬魁, 饶光辉, 刘泉林. Sb2Te3 纳米结构的制备与表征. 物理学报, 2010, 59(10): 7232-7238. doi: 10.7498/aps.59.7232
    [12] 周凯, 李辉, 王柱. 正电子湮没谱和光致发光谱研究掺锌GaSb质子辐照缺陷. 物理学报, 2010, 59(7): 5116-5121. doi: 10.7498/aps.59.5116
    [13] 范平, 郑壮豪, 梁广兴, 张东平, 蔡兴民. Sb2Te3热电薄膜的离子束溅射制备与表征. 物理学报, 2010, 59(2): 1243-1247. doi: 10.7498/aps.59.1243
    [14] 王海云, 翁惠民, Ling C. C.. GaN/SiC异质结的慢正电子研究. 物理学报, 2008, 57(9): 5906-5910. doi: 10.7498/aps.57.5906
    [15] 谢自力, 张 荣, 修向前, 刘 斌, 朱顺明, 赵 红, 濮 林, 韩 平, 江若琏, 施 毅, 郑有炓. InN薄膜的氧化特性研究. 物理学报, 2007, 56(2): 1032-1035. doi: 10.7498/aps.56.1032
    [16] 刘玮书, 张波萍, 李敬锋, 刘 静. 机械合金化合成CoSb3过程中的固相反应机理的热力学解释. 物理学报, 2006, 55(1): 465-471. doi: 10.7498/aps.55.465
    [17] 陈镇平, 薛运才, 苏玉玲, 宫世成, 张金仓. Gd替代YBa2Cu3O7-δ超导体的相结构与局域电子结构的研究. 物理学报, 2005, 54(11): 5382-5388. doi: 10.7498/aps.54.5382
    [18] 吕 强, 荣剑英, 赵 磊, 张红晨, 胡建民, 信江波. 热压工艺参数对n型和p型Bi2Te3基赝三元热电材料电学性能的影响. 物理学报, 2005, 54(7): 3321-3326. doi: 10.7498/aps.54.3321
    [19] 陈镇平, 张金仓, 曹桂新, 曹世勋. La系收缩效应对RBa2Cu3Q7-δ体系局域电子结构和超导电性的影响. 物理学报, 2002, 51(9): 2150-2154. doi: 10.7498/aps.51.2150
    [20] 刘丽华, 董成, 邓冬梅, 陈镇平, 张金仓. Fe掺杂YBCO体系结构变化与团簇效应的正电子实验研究. 物理学报, 2001, 50(4): 769-774. doi: 10.7498/aps.50.769
计量
  • 文章访问数:  7067
  • PDF下载量:  93
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-03
  • 修回日期:  2018-07-07
  • 刊出日期:  2018-10-05

/

返回文章
返回