搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

薄膜异质结中磁性斯格明子的相关研究

李文静 光耀 于国强 万蔡华 丰家峰 韩秀峰

引用本文:
Citation:

薄膜异质结中磁性斯格明子的相关研究

李文静, 光耀, 于国强, 万蔡华, 丰家峰, 韩秀峰

Skyrmions in magnetic thin film heterostructures

Li Wen-Jing, Guang Yao, Yu Guo-Qiang, Wan Cai-Hua, Feng Jia-Feng, Han Xiu-Feng
PDF
导出引用
  • 磁性斯格明子由于具有拓扑保护、尺寸小、驱动电流密度低等优异的属性,有望作为未来超高密度磁存储和逻辑功能器件的信息载体.为了满足器件中信息写入和读取的基本要求,需要在室温下实现斯格明子的精确产生、操控和探测.该综述简要介绍最近我们针对上述问题取得的一系列研究进展,包括:1)证明可以通过控制磁性薄膜材料的垂直磁各向异性在室温下产生斯格明子,并进一步在基于反铁磁的薄膜异质结中发现了室温、零磁场下稳定存在的斯格明子;2)证明能够利用电流产生的自旋轨道力矩操控斯格明子,并进一步制备出一种基于斯格明子的原理型器件,实现了利用电学方式产生和操控数量可控的斯格明子.
    Magnetic skyrmion is expected to function as an ideal information carrier for ultra-high density magnetic storage and logic functional device in the future due to its superior properties, such as topological protection, small size, and low driving current density for motion. In order to meet the basic requirements for writing and reading information in devices, one needs to be able to accurately generate, manipulate, and probe skyrmion at room temperature. Given that the history and latest developments of the skyrmion research will be reviewed comprehensively in other articles, in order to avoid repetition, in this article we briefly review a series of recent research advances we have made in magnetic multilayer materials in recent years, and discuss the advantages of relevant device applications and problems that need to be solved. They are included in three aspects as follows. 1) The room temperature skyrmion was observed in a wedge film Ta (5 nm)/Co20Fe60B20 (CoFeB) (1 nm)/Ta (t)/MgO (2 nm)/Ta (2 nm) by a polar magneto-optical Kerr microscope. Results showed that skyrmion can be created at room temperature by controlling the perpendicular magnetic anisotropy of magnetic thin film. In the following, we designed a thin film heterojunction containing an antiferromagnetic layer IrMn. The introduction of antiferromagnetic material can produce an exchange bias field in the magnetic layer, which can play the same role as an external magnetic field, making it possible to realize zero-field skyrmion. In this study, we have successfully observed a stable skyrmion at room temperature and zero magnetic field. 2) The spin-orbit torque generated by the current proved to be able to be used to manipulate the created skyrmion. In the fourth part of this review, we discuss the dynamic process of skyrmion driven by spin-orbit torque in IrMn/CoFeB heterojunctions, and the chirality of skyrmion can be deduced by the direction of its longitudinal motion driven by an applied current. Finally, a principle device based on the skyrmion is further fabricated. In this device, a set of binary data was recorded in the track in the presence and absence of skyrmion. Generating and manipulating numbers of skyrmions were realized by using a series of pulse currents with different amplitudes and widths. The detection of a skyrmion can be achieved by using a magnetic tunnel junction at the right end of the device. 3) The advantages of skyrmion as a storage device and the problems that need to be solved for practical applications were discussed.
      通信作者: 于国强, guoqiangyu@iphy.ac.cn
    • 基金项目: 国家自然科学基金委员会与爱尔兰科学基金会合作研究项目(批准号:51861135104)、国家千人计划青年项目、科技部国家重点研发计划(纳米计划)(批准号:2017YFA0206200)、国家自然科学基金(批准号:11434014,51620105004,11174341,51701203)、中国科学院战略先导项目(B类)(批准号:XDB07030200)、中国科学院前沿科学重点研究计划(批准号:QYZDJ-SSW-SLH016)和中国科学院国际合作局对外合作重点项目(批准号:112111KYSB20170090)资助的课题.
      Corresponding author: Yu Guo-Qiang, guoqiangyu@iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China and Science Foundation Ireland International Partnership Program (Grant No. 51861135104), Youth 1000 Plan, the National Key Research and Development Program of China (Grant No. 2017YFA0206200), the National Natural Science Foundation of China (Grant Nos. 11434014, 51620105004, 11174341, 51701203), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB07030200), the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (Grant No. QYZDJ-SSW-SLH016), and the International Partnership Program of the Chinese Academy of Sciences (CAS) (Grant No. 112111KYSB20170090).
    [1]

    Nagaosa N, Tokura Y 2013 Nat. Nanotech. 8 899

    [2]

    Fert A, Cros V, Sampaio J 2013 Nat. Nanotech. 8 152

    [3]

    Fert A, Reyren N, Cros V 2017 Nat. Rev. Mater. 2 17031

    [4]

    Jiang W, Chen G, Liu K, Zang J, te Velthuis S G E, Hoffmann A 2017 Sci. Rep. 704 1

    [5]

    Upadhyaya P, Yu G, Amiri P K, Wang K L 2015 Phys. Rev. B 92 134411

    [6]

    Yu X Z, Kanazawa N, Zhang W Z, Nagai T, Hara T, Kimoto K, Matsui Y, Onose Y, Tokura Y 2012 Nat. Commun. 3 988

    [7]

    Sampaio J, Cros V, Rohart S, Thiaville A, Fert A 2013 Nat. Nanotech. 8 839

    [8]

    Tomasello R, Martinez E, Zivieri R, Torres L, Carpentieri M, Finocchio G 2014 Sci. Rep. 4 6784

    [9]

    Sun L, Cao R, Miao B, Feng Z, You B, Wu D, Zhang W, Hu A, Ding H 2013 Phys. Rev. Lett. 110 167201

    [10]

    Zhou Y, Ezawa M 2014 Nat. Commun. 5 4652

    [11]

    Iwasaki J, Mochizuki M, Nagaosa N 2013 Nat. Nanotechnol. 8 742

    [12]

    Zhang X, Zhao G P, Fangohr H, Liu J P, Xia W X, Xia J, Morvan F J 2015 Sci. Rep. 5 7643

    [13]

    Zhang X, Ezawa M, Zhou Y 2015 Sci. Rep. 5 9400

    [14]

    Huang Y Q, Kang W, Zhang X C, Zhou Y, Zhao W S 2017 Nanotechnology 28 08LT02

    [15]

    Luo S, Song M, Li X, Zhang Y, Hong J, Yang X, Zou X, Xu N, You L 2018 Nano Lett. 18 1180

    [16]

    Wang C J, Xiao D, Chen X, Zhou Y, Liu Y W 2017 New J. Phys. 19 083008

    [17]

    Zhang S F, Wang J B, Zheng Q, Zhu Q Y, Liu X Y, Chen S J, Jin C D, Liu Q F, Jia C L, Xue D S 2015 New J. Phys. 17 023061

    [18]

    Dai Y Y, Wang H, Tao P, Yang T, Ren W J, Zhang Z D 2013 Phys. Rev. B 88 054403

    [19]

    Rler U K, Bogdanov A N, Pfleiderer C 2006 Nature 442 797

    [20]

    Emori S, Bauer U, Ahn S M, Martinez E, Beach G S D 2013 Nat. Mater. 12 611

    [21]

    Ryu K S, Thomas L, Yang S H, Parkin S 2013 Nat. Nanotech. 8 527

    [22]

    Chen G, Zhu J, Quesada A, Li J, N'Diaye A, Huo Y, Ma T, Chen Y, Kwon H, Won C, Qiu Z, Schmid A, Wu Y 2013 Phys. Rev. Lett. 110 77204

    [23]

    Pappas C, Lelivre-Berna E, Falus P, Bentley P M, Moskvin E, Grigoriev S, Fouquet P, Farago B 2009 Phys. Rev. Lett. 102 197202

    [24]

    Neubauer A, Pfleiderer C, Binz B, Rosch A, Ritz R, Niklowitz P G, Bni P 2009 Phys. Rev. Lett. 102 186602

    [25]

    Mhlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Bni P 2009 Science 323 915

    [26]

    Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N, Tokura Y 2010 Nature 465 901

    [27]

    Mnzer W, Neubauer A, Adams T, Mhlbauer S, Franz C, Jonietz F, Georgii R, Bni P, Pedersen B, Schmidt M, Rosch A, Pfleiderer C 2010 Phys. Rev. B 81 041203

    [28]

    Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y, Tokura Y 2010 Nature Mater. 10 106

    [29]

    Wang C, Du H, Zhao X, Jin C, Tian M, Zhang Y, Che R 2017 Nano Lett. 17 2921

    [30]

    Du H, Che R, Kong L, Zhao X, Jin C, Wang C, Yang J, Ning W, Li R, Jin C, Chen X, Zang J, Zhang Y, Tian M 2015 Nat. Commun. 6 8504

    [31]

    Seki S, Yu X Z, Ishiwata S, Tokura Y 2012 Science 336 198

    [32]

    Adams T, Chacon A, Wagner M, Bauer A, Brandl G, Pedersen B, Berger H, Lemmens P, Pfleiderer C 2012 Phys. Rev. Lett. 108 237204

    [33]

    Seki S, Ishiwata S, Tokura Y 2012 Phys. Rev. B 86 06403

    [34]

    Wang W H, Zhang Y, Xu G Z, Peng L C, Ding B, Wang Y, Hou Z P, Zhang X M, Li X Y, Liu E K, Wang S G, Cai J W, Wang F W, Li J Q, Hu F X, Wu G H, Shen B G, Zhang X X 2016 Adv. Mater. 28 6887

    [35]

    Peng L C, Zhag Y, Wang W H, He M, Li L L, Ding B, Li J Q, Sun Y, Zhang X G, Cai J W, Wang S G, Wu G H, Shen B G 2017 Nano Lett. 17 7075

    [36]

    Heinze S, von Bergmann K, Menzel M, Brede J, Kubetzka A, Wiesendanger R, Bihlmayer G, Blgel S 2011 Nat. Phys. 7 713

    [37]

    Romming N, Hanneken C, Menzel M, Bickel J E, Wolter B, von Bergmann K, Kubetzka A, Wiesendanger R 2013 Science 341 636

    [38]

    Jiang W, Upadhyaya P, Zhang W, Yu G, Jungfleisch M B, Fradin F Y, Pearson J E, Tserkovnyak Y, Wang K L, Heinonen O, te Velthuis S G E, Hoffmann A 2015 Science 349 283

    [39]

    Jiang W, Zhang X, Yu G, Zhang W, Wang X, Benjamin Jungfleisch M, Pearson John E, Cheng X, Heinonen O, Wang K L, Zhou Y, Hoffmann A, te Velthuis Suzanne G E 2016 Nat. Phys. 13 162

    [40]

    Yu G, Upadhyaya P, Shao Q, Wu H, Yin G, Li X, He C, Jiang W, Han X, Amiri P K, Wang K L 2016 Nano Lett. 17 261

    [41]

    Yu G, Upadhyaya P, Li X, Li W, Kim S K, Fan Y, Wong K L, Tserkovnyak Y, Amiri P K, Wang K L 2016 Nano Lett. 16 1981

    [42]

    Legrand W, Maccariello D, Reyren N, Garcia K, Moutafis C, Moreau-Luchaire C, Collin S, Bouzehouane K, Cros V, Fert A 2017 Nano Lett. 17 2703

    [43]

    Pulecio J F, Hrabec A, Zeissler K, Zhu Y, Marrows C H 2016 arXiv preprint arXiv:1611.00209

    [44]

    Pulecio J F, Hrabec A, Zeissler K, White R M, Zhu Y, Marrows C H 2016 arXiv preprint arXiv:1611.06869

    [45]

    Soumyanarayanan A, Raju M, Gonzalez Oyarce A L, Tan A K C, Im M Y, Petrović A P, Ho P, Khoo K H, Tran M, Gan C K, Ernult F, Panagopoulos C 2017 Nature Mater. 16 898

    [46]

    He M, Peng L C, Zhu Z Z, Li G, Cai J W, Li J Q, Wei H X, Gu L, Wang S G, Zhao T Y, Shen B G, Zhang Y 2017 Appl. Phys. Lett. 111 202403

    [47]

    Yang H, Thiaville A, Rohart S, Fert A, Chshiev M 2015 Phys. Rev. Lett. 115 267210

    [48]

    Hrabec A, Porter N, Wells A, Benitez M, Burnell G, McVitie S, McGrouther D, Moore T, Marrows C 2014 Phys. Rev. B 90 020402

    [49]

    Nembach H, Shaw J, Weiler M, Jue E, Silva T 2015 Nat. Phys. 11 825

    [50]

    Di K, Zhang V, Lim H, Ng S, Kuok M, Yu J, Yoon J, Qiu X, Yang H 2015 Phys. Rev. Lett. 114 047201

    [51]

    Heide M, Bihlmayer G, Blugel S 2008 Phys. Rev. B 78 140403

    [52]

    Chauleau J Y, Legrand W, Reyren N, Maccariello D, Collin S, Popescu H, Bouzehouane K, Cros V, Jaouen N, Fert A 2018 Phys. Rev. Lett. 120 037202

    [53]

    Heinze S, von Bergmann K, Menzel M, Brede J, Kubetzka A, Wiesendanger R, Bihlmayer G, Blugel S 2011 Nat. Phys. 7 713

    [54]

    Tetienne J P, Hingant T, Martinez L J, Rohart S, Thiaville A, Diez L H, Garcia K, Adam J P, Kim J V, Roch J F, Miron I M, Gaudin G, Vila L, Ocker B, Ravelosona D, Jacques V 2015 Nat. Commun. 6 6733

    [55]

    Chen G, Kang S P, Ophus C, N'Diaye A, Diaye A T, Kwon H Y, Qiu R T, Won C, Liu K, Wu Y Z, Schmid A K 2017 Nat. Commun. 8 15302

    [56]

    Pollard S, Garlow J, Yu J, Wang Z, Zhu Y, Yang H 2017 Nat. Commun. 8 14761

    [57]

    Korner H S, Stigloher J, Bauer H G, Hata H, Taniguchi T, Moriyama T, Ono T, Back C H 2015 Phys. Rev. B 92 220413

    [58]

    Belmeguenai M, Adam J P, Roussigne Y, Eimer S, Devolder T, Kim J V, Cherif S M, Stashkevich A, Thiaville A 2015 Phys. Rev. B 91 180405

    [59]

    Yu G, Upadhyaya P, Wong K L, Jiang W, Alzate J G, Tang J, Amiri P K, Wang K L 2014 Phys. Rev. B 89 104421

    [60]

    Ma X, Yu G, Li X, Wang T, Wu D, Olsson K S, Chu Z, An K, Xiao J Q, Wang K L, Li X 2016 Phys. Rev. B 94 180408

    [61]

    Ma X, Yu G, Razavi S A, Sasaki S S, Li X, Hao K, Tolbert S H, Wang K L, Li X 2017 Phys. Rev. Lett. 119 027202

    [62]

    Ma X, Yu G, Tang C, Li X, He C, Shi J, Wang K L, Li X 2018 Phys. Rev. Lett. 120 157204

    [63]

    Yu G, Wang Z, Abolfath-Beygi M, He C, Li X, Wong K L, Nordeen P, Wu H, Carman G P, Han X, Alhomoudi I A, Amiri P K, Wang K L 2015 Appl. Phys. Lett. 106 072402

    [64]

    Dieny B, Chshiev M 2017 Rev. Mod. Phys. 89 025008

    [65]

    Upadhyaya P, Yu G, Amiri P, Wang K 2015 Phys. Rev. B 92 134411

    [66]

    Yu G, Jenkins A, Ma X, Razavi S A, He C, Yin G, Shao Q, He Q l, Wu H, Li W, Jiang W, Han X, Li X E, Bleszynski Jayich A C, Amiri P K, Wang K L 2017 Nano Lett. 18 980

    [67]

    Wu D, Yu G, Chen C, Razavi S, Shao Q, Li X, Zhao B, Wong K, He C, Zhang Z, Amiri P, Wang K 2016 Appl. Phys. Lett. 109 222401

    [68]

    Zhang W, Jungfleisch M, Jiang W, Pearson J, Hoffmann A, Freimuth F, Mokrousov Y 2014 Phys. Rev. Lett. 113 196602

  • [1]

    Nagaosa N, Tokura Y 2013 Nat. Nanotech. 8 899

    [2]

    Fert A, Cros V, Sampaio J 2013 Nat. Nanotech. 8 152

    [3]

    Fert A, Reyren N, Cros V 2017 Nat. Rev. Mater. 2 17031

    [4]

    Jiang W, Chen G, Liu K, Zang J, te Velthuis S G E, Hoffmann A 2017 Sci. Rep. 704 1

    [5]

    Upadhyaya P, Yu G, Amiri P K, Wang K L 2015 Phys. Rev. B 92 134411

    [6]

    Yu X Z, Kanazawa N, Zhang W Z, Nagai T, Hara T, Kimoto K, Matsui Y, Onose Y, Tokura Y 2012 Nat. Commun. 3 988

    [7]

    Sampaio J, Cros V, Rohart S, Thiaville A, Fert A 2013 Nat. Nanotech. 8 839

    [8]

    Tomasello R, Martinez E, Zivieri R, Torres L, Carpentieri M, Finocchio G 2014 Sci. Rep. 4 6784

    [9]

    Sun L, Cao R, Miao B, Feng Z, You B, Wu D, Zhang W, Hu A, Ding H 2013 Phys. Rev. Lett. 110 167201

    [10]

    Zhou Y, Ezawa M 2014 Nat. Commun. 5 4652

    [11]

    Iwasaki J, Mochizuki M, Nagaosa N 2013 Nat. Nanotechnol. 8 742

    [12]

    Zhang X, Zhao G P, Fangohr H, Liu J P, Xia W X, Xia J, Morvan F J 2015 Sci. Rep. 5 7643

    [13]

    Zhang X, Ezawa M, Zhou Y 2015 Sci. Rep. 5 9400

    [14]

    Huang Y Q, Kang W, Zhang X C, Zhou Y, Zhao W S 2017 Nanotechnology 28 08LT02

    [15]

    Luo S, Song M, Li X, Zhang Y, Hong J, Yang X, Zou X, Xu N, You L 2018 Nano Lett. 18 1180

    [16]

    Wang C J, Xiao D, Chen X, Zhou Y, Liu Y W 2017 New J. Phys. 19 083008

    [17]

    Zhang S F, Wang J B, Zheng Q, Zhu Q Y, Liu X Y, Chen S J, Jin C D, Liu Q F, Jia C L, Xue D S 2015 New J. Phys. 17 023061

    [18]

    Dai Y Y, Wang H, Tao P, Yang T, Ren W J, Zhang Z D 2013 Phys. Rev. B 88 054403

    [19]

    Rler U K, Bogdanov A N, Pfleiderer C 2006 Nature 442 797

    [20]

    Emori S, Bauer U, Ahn S M, Martinez E, Beach G S D 2013 Nat. Mater. 12 611

    [21]

    Ryu K S, Thomas L, Yang S H, Parkin S 2013 Nat. Nanotech. 8 527

    [22]

    Chen G, Zhu J, Quesada A, Li J, N'Diaye A, Huo Y, Ma T, Chen Y, Kwon H, Won C, Qiu Z, Schmid A, Wu Y 2013 Phys. Rev. Lett. 110 77204

    [23]

    Pappas C, Lelivre-Berna E, Falus P, Bentley P M, Moskvin E, Grigoriev S, Fouquet P, Farago B 2009 Phys. Rev. Lett. 102 197202

    [24]

    Neubauer A, Pfleiderer C, Binz B, Rosch A, Ritz R, Niklowitz P G, Bni P 2009 Phys. Rev. Lett. 102 186602

    [25]

    Mhlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Bni P 2009 Science 323 915

    [26]

    Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N, Tokura Y 2010 Nature 465 901

    [27]

    Mnzer W, Neubauer A, Adams T, Mhlbauer S, Franz C, Jonietz F, Georgii R, Bni P, Pedersen B, Schmidt M, Rosch A, Pfleiderer C 2010 Phys. Rev. B 81 041203

    [28]

    Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y, Tokura Y 2010 Nature Mater. 10 106

    [29]

    Wang C, Du H, Zhao X, Jin C, Tian M, Zhang Y, Che R 2017 Nano Lett. 17 2921

    [30]

    Du H, Che R, Kong L, Zhao X, Jin C, Wang C, Yang J, Ning W, Li R, Jin C, Chen X, Zang J, Zhang Y, Tian M 2015 Nat. Commun. 6 8504

    [31]

    Seki S, Yu X Z, Ishiwata S, Tokura Y 2012 Science 336 198

    [32]

    Adams T, Chacon A, Wagner M, Bauer A, Brandl G, Pedersen B, Berger H, Lemmens P, Pfleiderer C 2012 Phys. Rev. Lett. 108 237204

    [33]

    Seki S, Ishiwata S, Tokura Y 2012 Phys. Rev. B 86 06403

    [34]

    Wang W H, Zhang Y, Xu G Z, Peng L C, Ding B, Wang Y, Hou Z P, Zhang X M, Li X Y, Liu E K, Wang S G, Cai J W, Wang F W, Li J Q, Hu F X, Wu G H, Shen B G, Zhang X X 2016 Adv. Mater. 28 6887

    [35]

    Peng L C, Zhag Y, Wang W H, He M, Li L L, Ding B, Li J Q, Sun Y, Zhang X G, Cai J W, Wang S G, Wu G H, Shen B G 2017 Nano Lett. 17 7075

    [36]

    Heinze S, von Bergmann K, Menzel M, Brede J, Kubetzka A, Wiesendanger R, Bihlmayer G, Blgel S 2011 Nat. Phys. 7 713

    [37]

    Romming N, Hanneken C, Menzel M, Bickel J E, Wolter B, von Bergmann K, Kubetzka A, Wiesendanger R 2013 Science 341 636

    [38]

    Jiang W, Upadhyaya P, Zhang W, Yu G, Jungfleisch M B, Fradin F Y, Pearson J E, Tserkovnyak Y, Wang K L, Heinonen O, te Velthuis S G E, Hoffmann A 2015 Science 349 283

    [39]

    Jiang W, Zhang X, Yu G, Zhang W, Wang X, Benjamin Jungfleisch M, Pearson John E, Cheng X, Heinonen O, Wang K L, Zhou Y, Hoffmann A, te Velthuis Suzanne G E 2016 Nat. Phys. 13 162

    [40]

    Yu G, Upadhyaya P, Shao Q, Wu H, Yin G, Li X, He C, Jiang W, Han X, Amiri P K, Wang K L 2016 Nano Lett. 17 261

    [41]

    Yu G, Upadhyaya P, Li X, Li W, Kim S K, Fan Y, Wong K L, Tserkovnyak Y, Amiri P K, Wang K L 2016 Nano Lett. 16 1981

    [42]

    Legrand W, Maccariello D, Reyren N, Garcia K, Moutafis C, Moreau-Luchaire C, Collin S, Bouzehouane K, Cros V, Fert A 2017 Nano Lett. 17 2703

    [43]

    Pulecio J F, Hrabec A, Zeissler K, Zhu Y, Marrows C H 2016 arXiv preprint arXiv:1611.00209

    [44]

    Pulecio J F, Hrabec A, Zeissler K, White R M, Zhu Y, Marrows C H 2016 arXiv preprint arXiv:1611.06869

    [45]

    Soumyanarayanan A, Raju M, Gonzalez Oyarce A L, Tan A K C, Im M Y, Petrović A P, Ho P, Khoo K H, Tran M, Gan C K, Ernult F, Panagopoulos C 2017 Nature Mater. 16 898

    [46]

    He M, Peng L C, Zhu Z Z, Li G, Cai J W, Li J Q, Wei H X, Gu L, Wang S G, Zhao T Y, Shen B G, Zhang Y 2017 Appl. Phys. Lett. 111 202403

    [47]

    Yang H, Thiaville A, Rohart S, Fert A, Chshiev M 2015 Phys. Rev. Lett. 115 267210

    [48]

    Hrabec A, Porter N, Wells A, Benitez M, Burnell G, McVitie S, McGrouther D, Moore T, Marrows C 2014 Phys. Rev. B 90 020402

    [49]

    Nembach H, Shaw J, Weiler M, Jue E, Silva T 2015 Nat. Phys. 11 825

    [50]

    Di K, Zhang V, Lim H, Ng S, Kuok M, Yu J, Yoon J, Qiu X, Yang H 2015 Phys. Rev. Lett. 114 047201

    [51]

    Heide M, Bihlmayer G, Blugel S 2008 Phys. Rev. B 78 140403

    [52]

    Chauleau J Y, Legrand W, Reyren N, Maccariello D, Collin S, Popescu H, Bouzehouane K, Cros V, Jaouen N, Fert A 2018 Phys. Rev. Lett. 120 037202

    [53]

    Heinze S, von Bergmann K, Menzel M, Brede J, Kubetzka A, Wiesendanger R, Bihlmayer G, Blugel S 2011 Nat. Phys. 7 713

    [54]

    Tetienne J P, Hingant T, Martinez L J, Rohart S, Thiaville A, Diez L H, Garcia K, Adam J P, Kim J V, Roch J F, Miron I M, Gaudin G, Vila L, Ocker B, Ravelosona D, Jacques V 2015 Nat. Commun. 6 6733

    [55]

    Chen G, Kang S P, Ophus C, N'Diaye A, Diaye A T, Kwon H Y, Qiu R T, Won C, Liu K, Wu Y Z, Schmid A K 2017 Nat. Commun. 8 15302

    [56]

    Pollard S, Garlow J, Yu J, Wang Z, Zhu Y, Yang H 2017 Nat. Commun. 8 14761

    [57]

    Korner H S, Stigloher J, Bauer H G, Hata H, Taniguchi T, Moriyama T, Ono T, Back C H 2015 Phys. Rev. B 92 220413

    [58]

    Belmeguenai M, Adam J P, Roussigne Y, Eimer S, Devolder T, Kim J V, Cherif S M, Stashkevich A, Thiaville A 2015 Phys. Rev. B 91 180405

    [59]

    Yu G, Upadhyaya P, Wong K L, Jiang W, Alzate J G, Tang J, Amiri P K, Wang K L 2014 Phys. Rev. B 89 104421

    [60]

    Ma X, Yu G, Li X, Wang T, Wu D, Olsson K S, Chu Z, An K, Xiao J Q, Wang K L, Li X 2016 Phys. Rev. B 94 180408

    [61]

    Ma X, Yu G, Razavi S A, Sasaki S S, Li X, Hao K, Tolbert S H, Wang K L, Li X 2017 Phys. Rev. Lett. 119 027202

    [62]

    Ma X, Yu G, Tang C, Li X, He C, Shi J, Wang K L, Li X 2018 Phys. Rev. Lett. 120 157204

    [63]

    Yu G, Wang Z, Abolfath-Beygi M, He C, Li X, Wong K L, Nordeen P, Wu H, Carman G P, Han X, Alhomoudi I A, Amiri P K, Wang K L 2015 Appl. Phys. Lett. 106 072402

    [64]

    Dieny B, Chshiev M 2017 Rev. Mod. Phys. 89 025008

    [65]

    Upadhyaya P, Yu G, Amiri P, Wang K 2015 Phys. Rev. B 92 134411

    [66]

    Yu G, Jenkins A, Ma X, Razavi S A, He C, Yin G, Shao Q, He Q l, Wu H, Li W, Jiang W, Han X, Li X E, Bleszynski Jayich A C, Amiri P K, Wang K L 2017 Nano Lett. 18 980

    [67]

    Wu D, Yu G, Chen C, Razavi S, Shao Q, Li X, Zhao B, Wong K, He C, Zhang Z, Amiri P, Wang K 2016 Appl. Phys. Lett. 109 222401

    [68]

    Zhang W, Jungfleisch M, Jiang W, Pearson J, Hoffmann A, Freimuth F, Mokrousov Y 2014 Phys. Rev. Lett. 113 196602

  • [1] 赵珂楠, 李晟, 芦增星, 劳斌, 郑轩, 李润伟, 汪志明. SrRuO3薄膜中自旋轨道力矩效率和磁矩翻转的晶向调控. 物理学报, 2024, 73(11): 117701. doi: 10.7498/aps.73.20240367
    [2] 陈进龙, 陶然, 李冲, 张健磊, 付琛, 罗景庭. 基于SnS2/In2O3的气体传感器及其室温下高性能NO2检测. 物理学报, 2024, 73(10): 106801. doi: 10.7498/aps.73.20231554
    [3] 郭玺, 左亚路, 崔宝山, 申铁龙, 盛彦斌, 席力. 离子辐照对材料磁性的调控及其应用. 物理学报, 2024, 73(13): 136101. doi: 10.7498/aps.73.20240541
    [4] 史猛, 王伟伟, 杜海峰. 基于符号回归方法探索磁性斯格明子结构近似解析式. 物理学报, 2024, 73(1): 011201. doi: 10.7498/aps.73.20231473
    [5] 熊宜浓, 吴闯文, 任传童, 孟德全, 陈是位, 梁世恒. 基于二维磁性材料的自旋轨道力矩研究进展. 物理学报, 2024, 73(1): 017502. doi: 10.7498/aps.73.20231244
    [6] 董逸蒙, 孙永娇, 侯煜晨, 王炳亮, 陆志远, 张文栋, 胡杰. SnO2/ZnS异质结气体传感器的制备及其室温NO2敏感特性. 物理学报, 2023, 72(16): 160701. doi: 10.7498/aps.72.20230735
    [7] 张静言, 窦鹏伟, 赵云驰, 张石磊, 刘佳强, 祁杰, 吕浩昌, 刘若洋, 于广华, 姜勇, 沈保根, 王守国. 霍尔天平材料的多场调控. 物理学报, 2021, 70(4): 048501. doi: 10.7498/aps.70.20201799
    [8] 刘益, 钱正洪, 朱建国. 室温磁性斯格明子材料及其应用研究进展. 物理学报, 2020, 69(23): 231201. doi: 10.7498/aps.69.20200984
    [9] 赵巍胜, 黄阳棋, 张学莹, 康旺, 雷娜, 张有光. 斯格明子电子学的研究进展. 物理学报, 2018, 67(13): 131205. doi: 10.7498/aps.67.20180554
    [10] 董博闻, 张静言, 彭丽聪, 何敏, 张颖, 赵云驰, 王超, 孙阳, 蔡建旺, 王文洪, 魏红祥, 沈保根, 姜勇, 王守国. 磁性斯格明子的多场调控研究. 物理学报, 2018, 67(13): 137507. doi: 10.7498/aps.67.20180931
    [11] 刘艺舟, 臧佳栋. 磁性斯格明子的研究现状和展望. 物理学报, 2018, 67(13): 131201. doi: 10.7498/aps.67.20180619
    [12] 胡杨凡, 万学进, 王彪. 磁性斯格明子晶格的磁弹现象与机理. 物理学报, 2018, 67(13): 136201. doi: 10.7498/aps.67.20180251
    [13] 梁雪, 赵莉, 邱雷, 李双, 丁丽红, 丰友华, 张溪超, 周艳, 赵国平. 磁性斯格明子的赛道存储. 物理学报, 2018, 67(13): 137510. doi: 10.7498/aps.67.20180764
    [14] 侯志鹏, 丁贝, 李航, 徐桂舟, 王文洪, 吴光恒. 宽温域跨室温磁斯格明子材料的发现及器件研究. 物理学报, 2018, 67(13): 137509. doi: 10.7498/aps.67.20180419
    [15] 陈浩, 彭同江, 刘波, 孙红娟, 雷德会. 还原温度对氧化石墨烯结构及室温下H2敏感性能的影响. 物理学报, 2017, 66(8): 080701. doi: 10.7498/aps.66.080701
    [16] 顾建军, 孙会元, 刘力虎, 岂云开, 徐芹. 结构相变对Fe掺杂TiO2薄膜室温铁磁性的影响. 物理学报, 2012, 61(1): 017501. doi: 10.7498/aps.61.017501
    [17] 杨天勇, 孔春阳, 阮海波, 秦国平, 李万俊, 梁薇薇, 孟祥丹, 赵永红, 方亮, 崔玉亭. 退火温度对N+注入ZnO:Mn薄膜结构及室温铁磁性的影响. 物理学报, 2012, 61(16): 168101. doi: 10.7498/aps.61.168101
    [18] 郑玉龙, 甄聪棉, 马丽, 李秀玲, 潘成福, 侯登录. Si-Al2O3复合薄膜的室温铁磁性. 物理学报, 2011, 60(11): 117502. doi: 10.7498/aps.60.117502
    [19] 刘晓东, 王玮竹, 高瑞鑫, 赵建华, 文锦辉, 林位株, 赖天树. 室温下(Ga,Mn)As中载流子的自旋弛豫特性. 物理学报, 2008, 57(6): 3857-3861. doi: 10.7498/aps.57.3857
    [20] 王 漪, 孙 雷, 韩德栋, 刘力锋, 康晋锋, 刘晓彦, 张 兴, 韩汝琦. ZnCoO稀磁半导体的室温磁性. 物理学报, 2006, 55(12): 6651-6655. doi: 10.7498/aps.55.6651
计量
  • 文章访问数:  8612
  • PDF下载量:  672
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-27
  • 修回日期:  2018-05-14
  • 刊出日期:  2018-07-05

/

返回文章
返回