搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

小型条纹管数值模拟及实验研究

田丽萍 李立立 温文龙 王兴 陈萍 卢裕 王俊锋 赵卫 田进寿

引用本文:
Citation:

小型条纹管数值模拟及实验研究

田丽萍, 李立立, 温文龙, 王兴, 陈萍, 卢裕, 王俊锋, 赵卫, 田进寿

Numerical calculation and experimental study on the small-size streak tube

Tian Li-Ping, Li Li-Li, Wen Wen-Long, Wang Xing, Chen Ping, Lu Yu, Wang Jun-Feng, Zhao Wei, Tian Jin-Shou
PDF
导出引用
  • 针对无人机载及星载激光成像雷达系统对条纹管的小型化、高空间分辨率与大探测面积的应用需求,研制了一台具有高边缘空间分辨能力、高亮度增益的小型条纹相机.采用球面光电阴极、球面荧光屏技术提高了条纹相机的边缘空间分辨率和探测面积,有利于增大激光成像雷达的探测视场;采用狭缝型加速电极代替传统栅网电极,有利于提高条纹相机的电耐性和可靠性;设计了加载高达-15 kV工作电压的像缩小型条纹管,增大了条纹管的亮度增益,有助于增大激光雷达系统的探测距离.测试结果显示:在有效工作面积16 mm2 mm内,条纹管静态空间分辨率高于29.3 lp/mm@MTF=5%(MTF表示调制传递函数),亮度增益高达39.4.条纹相机光电阴极处静态空间分辨率高于15 lp/mm@CTF=11.64%(CTF表示对比度传递函数);边缘动态空间分辨率高于9.8 lp/mm@CTF=5.51%;时间分辨率优于54.6 ps@Tscreen=4.3 ns(Tscreen为全屏时间)且在整个工作面积内具有较高的一致性;动态范围为345:1@54.6 ps.同时,为满足不同的景深及探测精度需求,相机设置六个扫描档位,可以实现不同扫速下的超快速目标诊断.该条纹相机在无人机载及星载激光成像雷达探测中具有潜在的实用价值.
    The streak tube imaging lidar (STIL) community requires the streak tube with characteristics of small-size, high edge spatial resolution, high luminance gain, and large working area. In this work, with the aid of the computer simulation technology software, a streak camera with high edge spatial resolution and high luminance gain is designed, in which there are adopted 1) a spherical photocathode and screen to increase the edge spatial resolution and detection area, further enlarging the field of view for the STIL; 2) a slit accelerating electrode instead of the mesh one favorable for improving the electrical resistance and reliability for streak camera; 3) a streak tube with lower magnification combining with -15 kV working voltage to be able to achieve high luminance gain, thus further increasing the detection distance for STIL. Some static and dynamic properties of the tube are analyzed by observing different electron trajectories emitted from a number of different points on the photocathode. As for the spatial resolution, spatial modulation transfer function method is used to evaluate the spatial resolution characteristics of the streak tube. The 36.9 lp/mm at MTF=5% in static mode and 23 lp/mm at MTF=5% in dynamic mode of the high resolution across the 16 mm long slit on the photocathode can be obtained. As for the temporal resolution, three electron pulses at intervals of 54.6 ps can be well resolved by the streak tube in the dynamic mode. Thus, the temporal resolution of the streak tube is better than 54.6 ps. Furthermore, the influence of shape of the photocathode and screen on spatial resolution are analyzed. Compared with the P-streak tube (streak tube with plane photocathode and plane screen), S-streak tube (steak tube with spherical photocathode and spherical screen) can greatly improve the spatial resolution. The slit image of the spherical and plane photocathode are simulated. The spatial dispersion of the off-axis 8 mm slit image along the scanning direction is analyzed. The experimental results demonstrate that the spatial resolution of the small-size streak tube is 29.3 lp/mm at MTF=5% over the whole working area 16 mm2 mm, and the luminance gain is higher than 39.4. The static spatial resolution of the small-size streak tube is much higher than 15 lp/mm at CTF = 11.64%; the dynamic spatial resolution is higher than 9.8 lp/mm at CTF=5.51%; the temporal resolution is higher than 54.6 ps at Tscreen=4.3 ns and has good consistency on the whole photocathode, and the dynamic range is 345:1 at 54.6 ps. The streak camera contains 6 scanning levels for different depth of field and detection accuracy to achieve ultrafast signal diagnosis at different scanning speeds. The streak tube has a smaller dimension of 40 mm140 mm. It is of great significance in unmanned aerial and spaceborne laser imaging lidar detection.
      通信作者: 赵卫, weiz@opt.ac.cn;tianjs@opt.ac.cn ; 田进寿, weiz@opt.ac.cn;tianjs@opt.ac.cn
    • 基金项目: 国家自然科学基金青年科学基金(批准号:11304374)和中国科学院创新基金(批准号:CXJJ-16S015)资助的课题.
      Corresponding author: Zhao Wei, weiz@opt.ac.cn;tianjs@opt.ac.cn ; Tian Jin-Shou, weiz@opt.ac.cn;tianjs@opt.ac.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11304374) and the Innovation Foundation of the Chinese Academy of Sciences (Grant No. CXJJ-16S015).
    [1]

    Wei J S, Wang Q, Sun J F, Gao J 2010 J. Russ. Laser Res. 31 307

    [2]

    Tian J S, Hui D D, Luo D, Wang T, Zhang J, Chen S R, Jia H 2017 Proc. SPIE 103280 103280O

    [3]

    Xia W Z, Han S K, Ullah N, Cao J Y, Wang L, Cao J, Cheng Y, Yu H Y 2017 Appl. Opt. 56 487

    [4]

    Gelbart A, Redman B C, Light R S, Schwartzlow C A, Griffis A J 2002 Proc. SPIE 4723 9

    [5]

    Chen Z D, Fan R W, Ye G C, Luo T, Guan J Y, Zhou Z G, Chen D Y 2018 Chin. Opt. Lett. 16 041101

    [6]

    Hui D D, Tian J S, Wang J F, Lu Y, Wen W L, Xu X Y 2016 Acta Phys. Sin. 65 018502 (in Chinese) [惠丹丹, 田进寿, 王俊锋, 卢裕, 温文龙, 徐向晏 2016 物理学报 65 018502]

    [7]

    Hui D D, Luo D, Tian L P, Lu Y, Chen P, Wang J F, Sai X F, Wen W L, Wang X, Xin L W, Zhao W, Tian J S 2018 Rev. Sci. Instrum. 89 045113

    [8]

    Ageeva N V, Andreev S V, Belolipetski V S, Bryukhnevich G I, Greenfield D E, Ivanova S R, Kaverin A M, Khohlova A N, Kuz'menko E A, Levina G P, Makushina V A, Monastyrskiy M A, Schelev M Ya, Semichastonva Z M, Serdyuchenko Y N, Skaballanovich T A, Sokolov V E 2009 Proc. SPIE 7126 71260A

    [9]

    Howorth J R, Milnes J S, Fisher Y, Jadwin A, Boni R, Jaanimagi P A 2016 Rev. Sci. Instrum. 87 11D447

    [10]

    Yuan Q Y, Niu L H, Hu C C, Wu L, Yang H R, Yu B 2018 Proc. SPIE 10697 106970R

    [11]

    Gao J, Sun J F, Wang Q, Cong M Y Liu R, Tian J S, Li H, Wang Q Q, Wang C, Wen W L, Lu Y, Liu H L, Cao X B, Wang J F, Xu X Y, Wang X 2014 Acta Phys. Sin. 63 058501 (in Chinese) [刘蓉, 田进寿, 李昊, 王强强, 王超, 温文龙, 卢裕, 刘虎林, 曹希斌, 王俊锋, 徐向晏, 王兴 2014 物理学报 63 058501]

    [12]

    Liu R, Tian J S, Li H, Wang Q Q, Wang C, Wen W L, Lu Y, Liu H L, Cao X B, Wang J F, Xu X Y, Wang X 2014 Acta Phys. Sin. 63 058501 (in Chinese) [刘蓉, 田进寿, 李昊, 王强强, 王超, 温文龙, 卢裕, 刘虎林, 曹希斌, 王俊锋, 徐向晏, 王兴 2014 物理学报 63 058501]

    [13]

    Hua Z Y, Gu C X 1993 Electron Optics (Shanghai: Fudan University Press) p241 (in Chinese) [华中一, 顾昌鑫 1993 电子光学 (上海: 复旦大学出版社) 第241页]

    [14]

    Liu H B 2004 M. S. Thesis (Xi'an: Xi'an Institute of Optics and Precision Mechanics of Chinese Academy of Sciences) (in Chinese) [刘宏波 2004 硕士学位论文 (西安: 中国科学院西安光学精密机械研究所)]

    [15]

    Tian L P, Tian J S, Wen W L, Chen P, Wang X, Hui D D, Wang J F 2017 Proc. SPIE 10605 106050O

    [16]

    Wang Q Q 2014 M. S. Thesis (Xi'an: Xi'an Institute of Optics and Precision Mechanics of Chinese Academy of Sciences) (in Chinese) [王强强 2014 硕士学位论文 (西安: 中国科学院西安光学精密机械研究所)]

    [17]

    Zong F K 2015 Ph. D. Dissertation (Shenzhen: Shenzhen University) (in Chinese) [宗方轲 2015博士学位论文 (深圳: 深圳大学)]

    [18]

    Hui D D, Tian J S, Lu Y, Wang J F, Wen W L, Liang L L, Chen L 2016 Acta Phys. Sin. 65 158502 (in Chinese) [惠丹丹, 田进寿, 卢裕, 王俊锋, 温文龙, 梁玲亮, 陈琳 2016 物理学报 65 158502]

    [19]

    Niu H 1983 Proc. SPIE 0348 p231

  • [1]

    Wei J S, Wang Q, Sun J F, Gao J 2010 J. Russ. Laser Res. 31 307

    [2]

    Tian J S, Hui D D, Luo D, Wang T, Zhang J, Chen S R, Jia H 2017 Proc. SPIE 103280 103280O

    [3]

    Xia W Z, Han S K, Ullah N, Cao J Y, Wang L, Cao J, Cheng Y, Yu H Y 2017 Appl. Opt. 56 487

    [4]

    Gelbart A, Redman B C, Light R S, Schwartzlow C A, Griffis A J 2002 Proc. SPIE 4723 9

    [5]

    Chen Z D, Fan R W, Ye G C, Luo T, Guan J Y, Zhou Z G, Chen D Y 2018 Chin. Opt. Lett. 16 041101

    [6]

    Hui D D, Tian J S, Wang J F, Lu Y, Wen W L, Xu X Y 2016 Acta Phys. Sin. 65 018502 (in Chinese) [惠丹丹, 田进寿, 王俊锋, 卢裕, 温文龙, 徐向晏 2016 物理学报 65 018502]

    [7]

    Hui D D, Luo D, Tian L P, Lu Y, Chen P, Wang J F, Sai X F, Wen W L, Wang X, Xin L W, Zhao W, Tian J S 2018 Rev. Sci. Instrum. 89 045113

    [8]

    Ageeva N V, Andreev S V, Belolipetski V S, Bryukhnevich G I, Greenfield D E, Ivanova S R, Kaverin A M, Khohlova A N, Kuz'menko E A, Levina G P, Makushina V A, Monastyrskiy M A, Schelev M Ya, Semichastonva Z M, Serdyuchenko Y N, Skaballanovich T A, Sokolov V E 2009 Proc. SPIE 7126 71260A

    [9]

    Howorth J R, Milnes J S, Fisher Y, Jadwin A, Boni R, Jaanimagi P A 2016 Rev. Sci. Instrum. 87 11D447

    [10]

    Yuan Q Y, Niu L H, Hu C C, Wu L, Yang H R, Yu B 2018 Proc. SPIE 10697 106970R

    [11]

    Gao J, Sun J F, Wang Q, Cong M Y Liu R, Tian J S, Li H, Wang Q Q, Wang C, Wen W L, Lu Y, Liu H L, Cao X B, Wang J F, Xu X Y, Wang X 2014 Acta Phys. Sin. 63 058501 (in Chinese) [刘蓉, 田进寿, 李昊, 王强强, 王超, 温文龙, 卢裕, 刘虎林, 曹希斌, 王俊锋, 徐向晏, 王兴 2014 物理学报 63 058501]

    [12]

    Liu R, Tian J S, Li H, Wang Q Q, Wang C, Wen W L, Lu Y, Liu H L, Cao X B, Wang J F, Xu X Y, Wang X 2014 Acta Phys. Sin. 63 058501 (in Chinese) [刘蓉, 田进寿, 李昊, 王强强, 王超, 温文龙, 卢裕, 刘虎林, 曹希斌, 王俊锋, 徐向晏, 王兴 2014 物理学报 63 058501]

    [13]

    Hua Z Y, Gu C X 1993 Electron Optics (Shanghai: Fudan University Press) p241 (in Chinese) [华中一, 顾昌鑫 1993 电子光学 (上海: 复旦大学出版社) 第241页]

    [14]

    Liu H B 2004 M. S. Thesis (Xi'an: Xi'an Institute of Optics and Precision Mechanics of Chinese Academy of Sciences) (in Chinese) [刘宏波 2004 硕士学位论文 (西安: 中国科学院西安光学精密机械研究所)]

    [15]

    Tian L P, Tian J S, Wen W L, Chen P, Wang X, Hui D D, Wang J F 2017 Proc. SPIE 10605 106050O

    [16]

    Wang Q Q 2014 M. S. Thesis (Xi'an: Xi'an Institute of Optics and Precision Mechanics of Chinese Academy of Sciences) (in Chinese) [王强强 2014 硕士学位论文 (西安: 中国科学院西安光学精密机械研究所)]

    [17]

    Zong F K 2015 Ph. D. Dissertation (Shenzhen: Shenzhen University) (in Chinese) [宗方轲 2015博士学位论文 (深圳: 深圳大学)]

    [18]

    Hui D D, Tian J S, Lu Y, Wang J F, Wen W L, Liang L L, Chen L 2016 Acta Phys. Sin. 65 158502 (in Chinese) [惠丹丹, 田进寿, 卢裕, 王俊锋, 温文龙, 梁玲亮, 陈琳 2016 物理学报 65 158502]

    [19]

    Niu H 1983 Proc. SPIE 0348 p231

  • [1] 田丽萍, 沈令斌, 陈萍, 刘玉柱, 陈琳, 惠丹丹, 陈希儒, 赵卫, 薛彦华, 田进寿. 基于各向异性及后加速技术的百飞秒时间分辨条纹管设计. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231382
    [2] 田丽萍, 沈令斌, 陈萍, 刘玉柱, 陈琳, 惠丹丹, 陈希儒, 赵卫, 薛彦华, 田进寿. 基于各向异性及后加速技术的百飞秒时间分辨条纹管设计. 物理学报, 2023, 72(24): 248502. doi: 10.7498/aps.72.20231382
    [3] 王翀, 党文斌, 朱炳利, 杨凯, 杨嘉皓, 韩江浩. 光电倍增管时间测量误差补偿方法研究. 物理学报, 2022, 71(22): 222901. doi: 10.7498/aps.71.20221193
    [4] 汤永辉, 郑铸, 谢实梦, 黄林, 蒋华北. 基于多路放大器加法电路噪声抑制的热声成像技术. 物理学报, 2020, 69(24): 240701. doi: 10.7498/aps.69.20201036
    [5] 狄慧鸽, 华杭波, 张佳琪, 张战飞, 华灯鑫, 高飞, 汪丽, 辛文辉, 赵恒. 高光谱分辨率激光雷达鉴频器的设计与分析. 物理学报, 2017, 66(18): 184202. doi: 10.7498/aps.66.184202
    [6] 梁帅西, 秦敏, 段俊, 方武, 李昂, 徐晋, 卢雪, 唐科, 谢品华, 刘建国, 刘文清. 机载腔增强吸收光谱系统应用于大气NO2空间高时间分辨率测量. 物理学报, 2017, 66(9): 090704. doi: 10.7498/aps.66.090704
    [7] 袁铮, 董建军, 李晋, 陈韬, 张文海, 曹柱荣, 杨志文, 王静, 赵阳, 刘慎业, 杨家敏, 江少恩. 分幅变像管动态空间分辨率的标定. 物理学报, 2016, 65(9): 095202. doi: 10.7498/aps.65.095202
    [8] 朱敏, 田进寿, 温文龙, 王俊锋, 曹希斌, 卢裕, 徐向晏, 赛小锋, 刘虎林, 王兴, 李伟华. 基于电子轰击式CCD的大动态条纹相机研究. 物理学报, 2015, 64(9): 098501. doi: 10.7498/aps.64.098501
    [9] 刘蓉, 田进寿, 李昊, 王强强, 王超, 温文龙, 卢裕, 刘虎林, 曹希斌, 王俊锋, 徐向晏, 王兴. 行波偏转器前置短磁聚焦条纹变像管理论设计与实验研究. 物理学报, 2014, 63(5): 058501. doi: 10.7498/aps.63.058501
    [10] 梁玲亮, 田进寿, 汪韬, 李福利, 高贵龙, 王俊锋, 王超, 卢裕, 徐向晏, 曹希斌, 温文龙, 辛丽伟, 刘虎林, 王兴. 全光固体条纹相机的理论及其静态实验研究. 物理学报, 2014, 63(6): 060702. doi: 10.7498/aps.63.060702
    [11] 张文喜, 相里斌, 孔新新, 李杨, 伍洲, 周志盛. 相干场成像技术分辨率研究. 物理学报, 2013, 62(16): 164203. doi: 10.7498/aps.62.164203
    [12] 陈英明, 王秉中, 葛广顶. 微波时间反演系统的空间超分辨率机理. 物理学报, 2012, 61(2): 024101. doi: 10.7498/aps.61.024101
    [13] 胡慧君, 赵宝升, 盛立志, 赛小锋, 鄢秋荣, 陈宝梅, 王朋. 用于脉冲星导航的X射线光子计数探测器研究. 物理学报, 2012, 61(1): 019701. doi: 10.7498/aps.61.019701
    [14] 孙增国, 韩崇昭. 基于拖尾分布的高分辨率合成孔径雷达图像建模. 物理学报, 2010, 59(2): 998-1008. doi: 10.7498/aps.59.998
    [15] 任韧, 徐进, 任大男. 半导体核磁共振显微压力的质子全自旋量子门的实现. 物理学报, 2010, 59(11): 8155-8159. doi: 10.7498/aps.59.8155
    [16] 张小正, 毕传兴, 徐亮, 陈心昭. 基于波叠加法的近场声全息空间分辨率增强方法. 物理学报, 2010, 59(8): 5564-5571. doi: 10.7498/aps.59.5564
    [17] 代秋声, 漆玉金. 针孔单光子发射计算机断层成像的空间分辨率研究. 物理学报, 2010, 59(2): 1357-1365. doi: 10.7498/aps.59.1357
    [18] 葛广顶, 王秉中, 黄海燕, 郑罡. 时间反演电磁波超分辨率特性. 物理学报, 2009, 58(12): 8249-8253. doi: 10.7498/aps.58.8249
    [19] 刘华锋. 利用作用深度信息提高正电子断层成像仪分辨率一致性. 物理学报, 2006, 55(10): 5186-5190. doi: 10.7498/aps.55.5186
    [20] 周晓军, 杜 东, 龚俊杰. 偏振模耦合分布式光纤传感器空间分辨率研究. 物理学报, 2005, 54(5): 2106-2110. doi: 10.7498/aps.54.2106
计量
  • 文章访问数:  6831
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-10
  • 修回日期:  2018-06-28
  • 刊出日期:  2019-09-20

/

返回文章
返回