搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多波长发光二极管光源雷达系统与近地面低层大气气溶胶探测

钟文婷 刘君 华灯鑫 侯海彦 晏克俊

引用本文:
Citation:

多波长发光二极管光源雷达系统与近地面低层大气气溶胶探测

钟文婷, 刘君, 华灯鑫, 侯海彦, 晏克俊

Multi-wavelength light-emitting diode light source radar system and near-ground atmospheric aerosol detection

Zhong Wen-Ting, Liu Jun, Hua Deng-Xin, Hou Hai-Yan, Yan Ke-Jun
PDF
导出引用
  • 设计并研制了一台多波长发光二极管(LED)光源雷达系统,用于探测近地面低层大气气溶胶特性.介绍了LED光源雷达系统的组成及工作原理,计算分析了系统几何重叠因子,从而确定了LED光源雷达系统的最低探测高度为60 m.研究了LED光源雷达散射回波信号的数据反演方法,根据LED光源雷达适合近距离探测的特点,采用了Fernald前向积分反演算法,并以地面能见度仪数据为基础,确定了气溶胶消光系数的边界值.利用所设计的475,530和625 nm三个波长的LED光源雷达系统,分别在轻度污染、中度污染和重度污染天气情况下,对西安夜晚城区上空低层大气气溶胶进行了探测,获得了近300 m高度内三个波长的大气气溶胶消光系数高度分布曲线,并对近地面低层大气气溶胶的垂直分布与变化特征进行了探讨.
    Near-ground atmospheric aerosol has a direct effect on the living and production of human, and the research on its detection attracts substantial attention from engineers and scholars in the community of environment. Traditional monitoring instruments can accurately and continuously detect the aerosols above the ground, but it is difficult for them to obtain the information about vertical distribution of near-ground aerosols. As is well known, lidar can act as an efficient method to detect the aerosol's temporal and spatial distribution. However, this technique is restricted in the potential applications of the detection of aerosol at a certain wavelengths or near range. That is because it usually presents fixed wavelengths and a large blind area. In this work, a new multi-wavelength light-emitting diode (LED) light source radar system is designed and established for detecting the characteristics of atmospheric aerosol near ground. The paper is outlined as follows. Firstly, the composition and working principle of the LED light source radar system are introduced. Based on the structure of radar's transmitter and receiver, the geometric overlap factor is analyzed and calculated. The minimum detection height of the LED light source radar system is then determined to be 60 m. Secondly, the inversion method for the echo signal of LED light source radar is studied. In consideration of the suitability of near-range detection of LED light source radar, the Fernald forward integration method is used for inversing the aerosol extinction coefficient. The calibration value of aerosol extinction coefficient is further determined with the ground visibility data. Finally, by using the designed multi-wavelength LED light source radar system (475 nm, 530 nm, and 625 nm), near-ground aerosol observation at night in Xi'an city is carried out and three atmospheric conditions including light, moderate and severe pollution days are considered. The height distribution curves of atmospheric aerosol extinction coefficient of three wavelengths within a height of nearly 300 m are obtained. The characteristics of the distribution and change of near ground aerosols are accordingly discussed. The experimental results show that the multi-wavelength LED light source radar provides an efficient implementation for detecting the vertical distribution of atmospheric aerosol near the ground, and can make up for the inadequacy of lidar in near range detection.
      通信作者: 华灯鑫, xauthdx@163.com
    • 基金项目: 国家自然科学基金(批准号:41575035)资助的课题.
      Corresponding author: Hua Deng-Xin, xauthdx@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 41575035).
    [1]

    Han Y, Wang T J, Rao R Z, Wang Y J 2008 Acta Phys. Sin. 57 7396 (in Chinese) [韩永, 王体健, 饶瑞中, 王英俭 2008 物理学报 57 7396]

    [2]

    Li S W, Si F Q, Zhao X 2009 J. Electr. Measur. Instr. 23 69 (in Chinese) [李素文, 司福祺, 赵鑫 2009 电子测量与仪器学报 23 69]

    [3]

    Fan X H, Chen H B, Xia X A 2013 Chin. J. Atmos. Sci. 37 477 (in Chinese) [范学花, 陈洪滨, 夏祥鳌 2013 大气科学 37 477]

    [4]

    Tao J H, Zhang M G, Chen L F, Wang Z F, Su L, Ge C, Han X, Zou M M 2014 Acta Opt. Sin. 34 1201002 (in Chinese) [徐梦春, 徐青山, 边键, 王艺然, 李学彬 2014 光学学报 34 1201002]

    [5]

    Xu M C, Xu Q S, Bian J, Wang Y R, Li X B 2014 Acta Opt. Sin. 34 1201002 (in Chinese) [徐梦春, 徐青山, 边键, 王艺然, 李学彬 2014 光学学报 34 1201002]

    [6]

    Wang Y, Li A, Xie P H, Chen H, Xu J, Wu F C, Liu J G, Liu W Q 2013 Acta Phys. Sin. 62 180705 (in Chinese) [王杨, 李昂, 谢品华, 陈浩, 徐晋, 吴丰成, 刘建国, 刘文清 2013 物理学报 62 180705]

    [7]

    Shi B, Tao Z M, Ma X M, Shan H H, Zhao S G, Liu D, Xie C B 2015 Acta Opt. Sin. 35 0501006 (in Chinese) [史博, 陶宗明, 麻晓敏, 单会会, 赵素贵, 刘东, 谢晨波 2015 光学学报 35 0501006]

    [8]

    Di H G, Hua D X, Wang Y F, Yan Q 2013 Acta Phys. Sin. 62 094215 (in Chinese) [狄慧鸽, 华灯鑫, 王玉峰, 闫庆 2013 物理学报 62 094215]

    [9]

    Koyama M, Shiina T 2011 2011 International Quantum Electronics Conference Sydney, Australia, August 28-September 1, 2011 p544

    [10]

    Shiina T 2013 Proc. SPIE 8905 890533

    [11]

    Shiina T 2014 Proc. SPIE 9246 92460F

    [12]

    Shiina T 2011 Proc. SPIE 8311 83111I

    [13]

    Shiina T, Noguchi K, Tsuji K 2015 23rd International Conference on Nuclear Engineering Chiba, Japan, May 17-21, 2015 p1640

    [14]

    Mori Y, Shimada S, Shiina T, Baji H, Takemoto S 2016 Proc. SPIE 10006 100060G

    [15]

    Zhong W T, Hua D X, Liu J, Zhang C, Yan K J 2016 Acta Opt. Sin. 36 1028001 (in Chinese) [钟文婷, 华灯鑫, 刘君, 张宸, 晏克俊 2016 光学学报 36 1028001]

    [16]

    Zhong W T, Hua D X, Liu J, Zhang C, Yan K J 2018 J. Xi'an Univ. Technol. 34 6 (in Chinese) [钟文婷, 华灯鑫, 刘君, 张宸, 晏克俊 2018 西安理工大学学报 34 6]

    [17]

    Zhang G X, Zhang Y C, Tao Z M, Liu X Q, Shao S S, Tan K, L Y H, Zhou J, Hu H L 2005 Chin. J. Quantum Electron. 22 299 (in Chinese) [张改霞, 张寅超, 陶宗明, 刘小勤, 邵石生, 谭锟, 吕勇辉, 周军, 胡欢陵 2005 量子电子学报 22 299]

    [18]

    Wang S L, Cao K F, Hu S X, Wei H L 2008 Laser Technol. 32 147 (in Chinese) [汪少林, 曹开法, 胡顺星, 魏合理 2008 激光技术 32 147]

    [19]

    Fernald F G 1984 Appl. Opt. 23 652

    [20]

    Di H G, Hou X L, Zhao H, Yan L J, Wei X, Zhao H, Hua D X 2014 Acta Phys. Sin. 63 244206 (in Chinese) [狄慧鸽, 侯晓龙, 赵虎, 阎蕾洁, 卫鑫, 赵欢, 华灯鑫 2014 物理学报 63 244206]

    [21]

    Roberto N 2005 Appl. Opt. 44 3795

  • [1]

    Han Y, Wang T J, Rao R Z, Wang Y J 2008 Acta Phys. Sin. 57 7396 (in Chinese) [韩永, 王体健, 饶瑞中, 王英俭 2008 物理学报 57 7396]

    [2]

    Li S W, Si F Q, Zhao X 2009 J. Electr. Measur. Instr. 23 69 (in Chinese) [李素文, 司福祺, 赵鑫 2009 电子测量与仪器学报 23 69]

    [3]

    Fan X H, Chen H B, Xia X A 2013 Chin. J. Atmos. Sci. 37 477 (in Chinese) [范学花, 陈洪滨, 夏祥鳌 2013 大气科学 37 477]

    [4]

    Tao J H, Zhang M G, Chen L F, Wang Z F, Su L, Ge C, Han X, Zou M M 2014 Acta Opt. Sin. 34 1201002 (in Chinese) [徐梦春, 徐青山, 边键, 王艺然, 李学彬 2014 光学学报 34 1201002]

    [5]

    Xu M C, Xu Q S, Bian J, Wang Y R, Li X B 2014 Acta Opt. Sin. 34 1201002 (in Chinese) [徐梦春, 徐青山, 边键, 王艺然, 李学彬 2014 光学学报 34 1201002]

    [6]

    Wang Y, Li A, Xie P H, Chen H, Xu J, Wu F C, Liu J G, Liu W Q 2013 Acta Phys. Sin. 62 180705 (in Chinese) [王杨, 李昂, 谢品华, 陈浩, 徐晋, 吴丰成, 刘建国, 刘文清 2013 物理学报 62 180705]

    [7]

    Shi B, Tao Z M, Ma X M, Shan H H, Zhao S G, Liu D, Xie C B 2015 Acta Opt. Sin. 35 0501006 (in Chinese) [史博, 陶宗明, 麻晓敏, 单会会, 赵素贵, 刘东, 谢晨波 2015 光学学报 35 0501006]

    [8]

    Di H G, Hua D X, Wang Y F, Yan Q 2013 Acta Phys. Sin. 62 094215 (in Chinese) [狄慧鸽, 华灯鑫, 王玉峰, 闫庆 2013 物理学报 62 094215]

    [9]

    Koyama M, Shiina T 2011 2011 International Quantum Electronics Conference Sydney, Australia, August 28-September 1, 2011 p544

    [10]

    Shiina T 2013 Proc. SPIE 8905 890533

    [11]

    Shiina T 2014 Proc. SPIE 9246 92460F

    [12]

    Shiina T 2011 Proc. SPIE 8311 83111I

    [13]

    Shiina T, Noguchi K, Tsuji K 2015 23rd International Conference on Nuclear Engineering Chiba, Japan, May 17-21, 2015 p1640

    [14]

    Mori Y, Shimada S, Shiina T, Baji H, Takemoto S 2016 Proc. SPIE 10006 100060G

    [15]

    Zhong W T, Hua D X, Liu J, Zhang C, Yan K J 2016 Acta Opt. Sin. 36 1028001 (in Chinese) [钟文婷, 华灯鑫, 刘君, 张宸, 晏克俊 2016 光学学报 36 1028001]

    [16]

    Zhong W T, Hua D X, Liu J, Zhang C, Yan K J 2018 J. Xi'an Univ. Technol. 34 6 (in Chinese) [钟文婷, 华灯鑫, 刘君, 张宸, 晏克俊 2018 西安理工大学学报 34 6]

    [17]

    Zhang G X, Zhang Y C, Tao Z M, Liu X Q, Shao S S, Tan K, L Y H, Zhou J, Hu H L 2005 Chin. J. Quantum Electron. 22 299 (in Chinese) [张改霞, 张寅超, 陶宗明, 刘小勤, 邵石生, 谭锟, 吕勇辉, 周军, 胡欢陵 2005 量子电子学报 22 299]

    [18]

    Wang S L, Cao K F, Hu S X, Wei H L 2008 Laser Technol. 32 147 (in Chinese) [汪少林, 曹开法, 胡顺星, 魏合理 2008 激光技术 32 147]

    [19]

    Fernald F G 1984 Appl. Opt. 23 652

    [20]

    Di H G, Hou X L, Zhao H, Yan L J, Wei X, Zhao H, Hua D X 2014 Acta Phys. Sin. 63 244206 (in Chinese) [狄慧鸽, 侯晓龙, 赵虎, 阎蕾洁, 卫鑫, 赵欢, 华灯鑫 2014 物理学报 63 244206]

    [21]

    Roberto N 2005 Appl. Opt. 44 3795

  • [1] 任兴, 于宏宇, 张勇. 基于BCPO发光材料近紫外有机发光二极管的电致发光效率与稳定性. 物理学报, 2024, 73(4): 047801. doi: 10.7498/aps.73.20231301
    [2] 王明军, 魏亚飞, 柯熙政. 复杂大气背景下机载通信终端与无人机目标之间的激光传输特性研究. 物理学报, 2019, 68(9): 094203. doi: 10.7498/aps.68.20182052
    [3] 高飞, 南恒帅, 黄波, 汪丽, 李仕春, 王玉峰, 刘晶晶, 闫庆, 宋跃辉, 华灯鑫. 紫外域多纵模高光谱分辨率激光雷达探测气溶胶的技术实现和系统仿真. 物理学报, 2018, 67(3): 030701. doi: 10.7498/aps.67.20172036
    [4] 王倩, 毕研盟, 杨忠东. 气溶胶对大气CO2短波红外遥感探测影响的模拟分析. 物理学报, 2018, 67(3): 039202. doi: 10.7498/aps.67.20171993
    [5] 狄慧鸽, 华杭波, 张佳琪, 张战飞, 华灯鑫, 高飞, 汪丽, 辛文辉, 赵恒. 高光谱分辨率激光雷达鉴频器的设计与分析. 物理学报, 2017, 66(18): 184202. doi: 10.7498/aps.66.184202
    [6] 郑利娟, 程天海, 吴俣. 黑碳团簇气溶胶混合生长的红外吸收特性及长波辐射效应. 物理学报, 2017, 66(16): 169201. doi: 10.7498/aps.66.169201
    [7] 齐月, 房世波, 周文佐. 近50年来中国东、西部地面太阳辐射变化及其与大气环境变化的关系. 物理学报, 2015, 64(8): 089201. doi: 10.7498/aps.64.089201
    [8] 赵虎, 华灯鑫, 毛建东, 周春艳. 基于粒子谱的多波长激光雷达近场大气光学参数校正方法. 物理学报, 2015, 64(12): 124208. doi: 10.7498/aps.64.124208
    [9] 狄慧鸽, 侯晓龙, 赵虎, 阎蕾洁, 卫鑫, 赵欢, 华灯鑫. 多波长激光雷达探测多种天气气溶胶光学特性与分析. 物理学报, 2014, 63(24): 244206. doi: 10.7498/aps.63.244206
    [10] 王红霞, 竹有章, 田涛, 李爱君. 激光在不同类型气溶胶中传输特性研究. 物理学报, 2013, 62(2): 024214. doi: 10.7498/aps.62.024214
    [11] 陈峻, 范广涵, 张运炎. 选择性p型量子阱垒层掺杂在双波长发光二极管光谱调控中的作用. 物理学报, 2012, 61(8): 088502. doi: 10.7498/aps.61.088502
    [12] 严启荣, 章勇, 闫其昂, 石培培, 郑树文, 牛巧利, 李述体, 范广涵. 反对称n-AlGaN层对GaN基双蓝光波长发光二极管性能的影响. 物理学报, 2012, 61(3): 036103. doi: 10.7498/aps.61.036103
    [13] 陈峻, 范广涵, 张运炎. 渐变型量子阱垒层厚度对GaN基双波长发光二极管发光特性调控的研究. 物理学报, 2012, 61(17): 178504. doi: 10.7498/aps.61.178504
    [14] 张运炎, 范广涵, 章勇, 郑树文. 掺杂GaN间隔层对双波长发光二极管光谱调控作用的研究. 物理学报, 2011, 60(2): 028503. doi: 10.7498/aps.60.028503
    [15] 朱化春, 张淳民. 偏振风成像干涉仪多波长探测理论研究. 物理学报, 2011, 60(7): 074211. doi: 10.7498/aps.60.074211
    [16] 白璐, 汤双庆, 吴振森, 谢品华, 汪世美. 紫外波段多分散系气溶胶散射相函数随机抽样方法研究. 物理学报, 2010, 59(3): 1749-1755. doi: 10.7498/aps.59.1749
    [17] 张改霞, 赵曰峰, 张寅超, 赵培涛. 激光雷达白天探测大气边界层气溶胶. 物理学报, 2008, 57(11): 7390-7395. doi: 10.7498/aps.57.7390
    [18] 顾晓玲, 郭 霞, 梁 庭, 林巧明, 郭 晶, 吴 迪, 徐丽华, 沈光地. GaN基双波长发光二极管电致发光谱特性研究. 物理学报, 2007, 56(9): 5531-5535. doi: 10.7498/aps.56.5531
    [19] 司福祺, 刘建国, 谢品华, 张玉钧, 窦 科, 刘文清. 差分吸收光谱技术监测大气气溶胶粒谱分布. 物理学报, 2006, 55(6): 3165-3169. doi: 10.7498/aps.55.3165
    [20] 罗 毅, 郭文平, 邵嘉平, 胡 卉, 韩彦军, 薛 松, 汪 莱, 孙长征, 郝智彪. GaN基蓝光发光二极管的波长稳定性研究. 物理学报, 2004, 53(8): 2720-2723. doi: 10.7498/aps.53.2720
计量
  • 文章访问数:  5720
  • PDF下载量:  96
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-18
  • 修回日期:  2018-05-09
  • 刊出日期:  2019-09-20

/

返回文章
返回