搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Co,Zn共掺铌酸锂电子结构和吸收光谱的第一性原理研究

吴圣钰 张耘 柏红梅 梁金玲

引用本文:
Citation:

Co,Zn共掺铌酸锂电子结构和吸收光谱的第一性原理研究

吴圣钰, 张耘, 柏红梅, 梁金玲

First-principle calculation of electronic structures and absorption spectra of lithium niobate crystals doped with Co and Zn ions

Wu Sheng-Yu, Zhang Yun, Bai Hong-Mei, Liang Jin-Ling
PDF
导出引用
  • 利用基于密度泛函的第一性原理的计算方法,研究了Co单掺及Co和Zn共掺LiNbO3晶体的电子结构和吸收光谱.研究显示,各掺杂体系铌酸锂晶体的带隙均较纯铌酸锂晶体变窄.Co:LiNbO3晶体禁带宽度为3.32 eV;Co:Zn:LiNbO3晶体,Zn的浓度低于阈值或达到阈值时,禁带宽度分别为2.87或2.75 eV.Co:LiNbO3晶体在可见-近红外光波段2.40,1.58,1.10 eV处形成吸收峰,这些峰归结于Co 3d分裂轨道的跃迁;加入抗光折变离子Zn2+,在1.58,1.10 eV处的吸收峰增强,可以认为Zn2+与Co2+之间存在电荷转移,使eg轨道电子减少,但并不影响t2g轨道电子.结果表明,晶体中的Co离子在不同共掺离子下可充当深能级中心(2.40 eV),或可充当浅能级中心(1.58 eV),两种情况下,掺入近阈值的Zn离子均有助于实现优化存储.
    In this paper, the electronic structures and absorption spectra of Co doped and Co, Zn co-doped LiNbO3 crystals are studied by the first-principle using the density functional theory, to explore the characteristics of charge transfer in Co, Zn co-doped LiNbO3 crystals, and to build the relationship between these characteristics and the holographic storage quality. The basic model is built as a supercell structure of 211 of near-stoichiometric pure LiNbO3 crystal with 60 atoms, including 12 Li atoms, 12 Nb atoms and 36 O atoms. Four models are established as the near-stoichiometric pure LiNbO3 crystal (LiNbO3), the cobalt doped LiNbO3 crystal (Co:LiNbO3), the zinc and cobalt co-doped LiNbO3 crystal [Co:Zn(L):LiNbO3] with doping ions at Li sites, and the other zinc and cobalt co-doped LiNbO3 crystal [Co:Zn (E):LiNbO3)] with zinc ions at Li sites and Nb sites. The last two models would represent the concentration of Zn ions below the threshold (6 mol%) and near the threshold, respectively. The charge compensation forms are taken as CoLi+-VLi-, CoLi+-ZnLi+-2VLi- and CoLi+-ZnNb3--2ZnLi+ respectively in doped models. The results show that the conduction band and valence band of pure LiNbO3 crystal are mainly composed of O 2p orbit and Nb 4d orbit respectively, and energy gap is 3.48 eV. The band gap of the doped LiNbO3 crystal is narrower than that of pure LiNbO3 crystal, due to the Co 3d and Zn 3d orbit energy levels superposed with that of O 2p orbit energy levels, and thus forming the upside of covalent bond. The band gap of Co:LiNbO3 crystal is 3.32 eV, and that of Co:Zn:LiNbO3 crystals are 2.87 eV and 2.75 eV respectively for Co:Zn(L):LiNbO3 and Co:Zn(E):LiNbO3 model. The Co 3d orbit is split into eg orbit and t2g orbit with different energies. The absorption peak at 2.40 eV appears in the band gap of Co:LiNbO3 crystal, which is attributed to the transfer of the Co 3d splitting orbital t2g electrons to conduction band. The absorption peaks of 1.58 eV and 1.10 eV could be taken as the result of eg electron transfers of both Co2+ and Co3+ in crystal, especially the latter ion. These two absorption peaks are obviously enhanced in Co:Zn (E):LiNbO3 crystal compared with in other samples in this paper. Based on that, it could be proposed that a charge transfer between Zn2+ and Co2+ as Co2++Zn2+Co3++Zn+ exist in the crystal, which results in the decrease of eg orbital electron number, but hardly affect the t2g orbital electron. The Co ion in crystal could act as the deep-level center (2.40 eV) or the shallow-level center (1.58 eV) with the different accompanying doped photorefractive ions in the two-light holographic storage applications. In both cases, the choice of Zn ion concentration near threshold could be helpful for the photo damage resistance and recording light absorption in storage applications.
      通信作者: 张耘, yzhang@swu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11274257)资助的课题.
      Corresponding author: Zhang Yun, yzhang@swu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11274257).
    [1]

    Hesselink L, Orlov S S, Liu A, Akella A, Lande D, Neurgaonkaret R R 1998 Science 282 1089

    [2]

    Zhao B Q, Zhang Y, Qiu X Y, Wang X W 2016 Acta Phys. Sin. 65 014212 (in Chinese) [赵百强, 张耘, 邱晓燕, 王学维 2016 物理学报 65 014212]

    [3]

    Lee H J, Shur J W, Shin T I, Yoon D H 2007 Opt. Mater. 30 85

    [4]

    Xia H P, Wang J H, Zhang J L, Zhang Y P, Nie Q H 2005 Chin. J. Lasers 32 965 (in Chinese) [夏海平, 王金浩, 章践立, 张约品, 聂秋华 2005 中国激光 32 965]

    [5]

    Choi Y N, Park I W, Kim S S, Park S S, Choh S H 1999 J. Phys.: Condens. Matter 11 4723

    [6]

    Zheng W, Zhou Y X, Liu C X 2003 Acta Photon. Sin. 32 1492 (in Chinese) [郑威, 周玉祥, 刘彩霞 2003 光子学报 32 1492]

    [7]

    Zeng X L, Wang J H, Xia H P, Zhang J L, Song H W, Zhang J H, Yao L Z 2004 Chin. J. Lumin. 25 435 (in Chinese) [曾宪林, 王金浩, 夏海平, 章践立, 宋宏伟, 张家骅, 姚连增 2004 发光学报 25 435]

    [8]

    Kong Y F, Li B, Chen Y L, Huang Z H, Chen S L, Zhang L, Liu S G, Xu J J, Yan W B, Liu H D, Wang Y, Xie X, Zhang W L, Zhang G Y 2003 J. Infrared Millim Waves 22 40 (in Chinese) [孔勇发, 李兵, 陈云琳, 黄自恒, 陈绍林, 张玲, 刘士国, 许京军, 阎文博, 刘宏德, 王岩, 谢翔, 张万林, 张光寅 2003 红外与毫米波学报 22 40]

    [9]

    Zhang Y, Xu Y H, Li M H, Zhao Y Q 2001 J. Cryst. Growth 233 537

    [10]

    Abrahams S C, Reddy J M, Bernstein J L 1966 J. Phys. Chem. Solid 26 997

    [11]

    Iyi N, Kitamura K, Izumi F, Yamamoto J K, Hayashi T, Asano H, Kimura S 1992 J. Solid State Chem. 101 340

    [12]

    Tsai P C, Sun M L, Chia C T, Lu H F, Lin S H, Hu M L, Lee J F 2008 Appl. Phys. Lett. 92 161901

    [13]

    Fujita H, Inoue M, Phillips W 1978 J. Phys. Soc. Jpn. 44 1909

    [14]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter 14 2717

    [15]

    Wang W, Wang R, Zhang W, Xing L, Xu Y, Wu X 2013 Phys. Chem. Chem. Phys. 15 14347

    [16]

    Zhang X C, Zhao L J, Fan C M, Liang Z H, Han P D 2012 Acta Phys. Sin. 61 077101 (in Chinese) [张小超, 赵丽军, 樊彩梅, 梁镇海, 韩培德 2012 物理学报 61 077101]

    [17]

    Zeng F, Sheng P, Tang G S, Pan F, Yan W S, Hu F C, Zou Y, Huang Y Y, Jiang Z, Guo D 2012 Mater. Chem. Phys. 136 783

    [18]

    Thierfelder C, Sanna S, Schindlmayr A, Schmidt W G 2010 Phys. Status Solidi C 7 362

    [19]

    Lei X W, Lin Z, Zhao H 2011 J. At. Mol. Phys. 28 944 (in Chinese) [雷晓蔚, 林竹, 赵辉 2011 原子与分子物理学报 28 944]

    [20]

    Gao P, Liu Q J, Zhang X J 2010 Acta Phys. Sin. 59 493 (in Chinese) [高攀, 柳清菊, 张学军 2010 物理学报 59 493]

    [21]

    Gray H B 1964 J. Chem. Educ. 41 1

    [22]

    Xia H P, Wang J H, Zhang J L, Zhang Y P 2005 J. Chin. Ceram. Soc. 33 1326 (in Chinese) [夏海平, 王金浩, 章践立, 张约品 2005 硅酸盐学报 33 1326]

    [23]

    Yan W B, Li Y X, Shi L H, Chen H J, Liu S G, Zhang L, Huang Z H, Chen S H, Kong Y F 2007 Opt. Express 15 17010

    [24]

    Wood D L, Remeika J P 1967 J. Chem. Phys. 46 3595

    [25]

    Arizmendi L, Cabrera J M, Agullolopez F 1984 J. Phys. C: Solid State Phys. 17 515

    [26]

    Mok F H, Burr G W, Psaltis D 1996 Opt. Lett. 21 896

    [27]

    Xu J J, Liu S M, Wu Y Q, Zhang G Y 1991 Acta Phys. Sin. 40 1443 (in Chinese) [许京军, 刘思敏, 武原庆, 张光寅 1991 物理学报 40 1443]

    [28]

    Psaltis D, Berben D, Buse K, Luennemann M, Berben Dirk, Hartwig Ulrich, Buse Karsten 2003 J. Opt. Soc. Am. B 20 1491

  • [1]

    Hesselink L, Orlov S S, Liu A, Akella A, Lande D, Neurgaonkaret R R 1998 Science 282 1089

    [2]

    Zhao B Q, Zhang Y, Qiu X Y, Wang X W 2016 Acta Phys. Sin. 65 014212 (in Chinese) [赵百强, 张耘, 邱晓燕, 王学维 2016 物理学报 65 014212]

    [3]

    Lee H J, Shur J W, Shin T I, Yoon D H 2007 Opt. Mater. 30 85

    [4]

    Xia H P, Wang J H, Zhang J L, Zhang Y P, Nie Q H 2005 Chin. J. Lasers 32 965 (in Chinese) [夏海平, 王金浩, 章践立, 张约品, 聂秋华 2005 中国激光 32 965]

    [5]

    Choi Y N, Park I W, Kim S S, Park S S, Choh S H 1999 J. Phys.: Condens. Matter 11 4723

    [6]

    Zheng W, Zhou Y X, Liu C X 2003 Acta Photon. Sin. 32 1492 (in Chinese) [郑威, 周玉祥, 刘彩霞 2003 光子学报 32 1492]

    [7]

    Zeng X L, Wang J H, Xia H P, Zhang J L, Song H W, Zhang J H, Yao L Z 2004 Chin. J. Lumin. 25 435 (in Chinese) [曾宪林, 王金浩, 夏海平, 章践立, 宋宏伟, 张家骅, 姚连增 2004 发光学报 25 435]

    [8]

    Kong Y F, Li B, Chen Y L, Huang Z H, Chen S L, Zhang L, Liu S G, Xu J J, Yan W B, Liu H D, Wang Y, Xie X, Zhang W L, Zhang G Y 2003 J. Infrared Millim Waves 22 40 (in Chinese) [孔勇发, 李兵, 陈云琳, 黄自恒, 陈绍林, 张玲, 刘士国, 许京军, 阎文博, 刘宏德, 王岩, 谢翔, 张万林, 张光寅 2003 红外与毫米波学报 22 40]

    [9]

    Zhang Y, Xu Y H, Li M H, Zhao Y Q 2001 J. Cryst. Growth 233 537

    [10]

    Abrahams S C, Reddy J M, Bernstein J L 1966 J. Phys. Chem. Solid 26 997

    [11]

    Iyi N, Kitamura K, Izumi F, Yamamoto J K, Hayashi T, Asano H, Kimura S 1992 J. Solid State Chem. 101 340

    [12]

    Tsai P C, Sun M L, Chia C T, Lu H F, Lin S H, Hu M L, Lee J F 2008 Appl. Phys. Lett. 92 161901

    [13]

    Fujita H, Inoue M, Phillips W 1978 J. Phys. Soc. Jpn. 44 1909

    [14]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter 14 2717

    [15]

    Wang W, Wang R, Zhang W, Xing L, Xu Y, Wu X 2013 Phys. Chem. Chem. Phys. 15 14347

    [16]

    Zhang X C, Zhao L J, Fan C M, Liang Z H, Han P D 2012 Acta Phys. Sin. 61 077101 (in Chinese) [张小超, 赵丽军, 樊彩梅, 梁镇海, 韩培德 2012 物理学报 61 077101]

    [17]

    Zeng F, Sheng P, Tang G S, Pan F, Yan W S, Hu F C, Zou Y, Huang Y Y, Jiang Z, Guo D 2012 Mater. Chem. Phys. 136 783

    [18]

    Thierfelder C, Sanna S, Schindlmayr A, Schmidt W G 2010 Phys. Status Solidi C 7 362

    [19]

    Lei X W, Lin Z, Zhao H 2011 J. At. Mol. Phys. 28 944 (in Chinese) [雷晓蔚, 林竹, 赵辉 2011 原子与分子物理学报 28 944]

    [20]

    Gao P, Liu Q J, Zhang X J 2010 Acta Phys. Sin. 59 493 (in Chinese) [高攀, 柳清菊, 张学军 2010 物理学报 59 493]

    [21]

    Gray H B 1964 J. Chem. Educ. 41 1

    [22]

    Xia H P, Wang J H, Zhang J L, Zhang Y P 2005 J. Chin. Ceram. Soc. 33 1326 (in Chinese) [夏海平, 王金浩, 章践立, 张约品 2005 硅酸盐学报 33 1326]

    [23]

    Yan W B, Li Y X, Shi L H, Chen H J, Liu S G, Zhang L, Huang Z H, Chen S H, Kong Y F 2007 Opt. Express 15 17010

    [24]

    Wood D L, Remeika J P 1967 J. Chem. Phys. 46 3595

    [25]

    Arizmendi L, Cabrera J M, Agullolopez F 1984 J. Phys. C: Solid State Phys. 17 515

    [26]

    Mok F H, Burr G W, Psaltis D 1996 Opt. Lett. 21 896

    [27]

    Xu J J, Liu S M, Wu Y Q, Zhang G Y 1991 Acta Phys. Sin. 40 1443 (in Chinese) [许京军, 刘思敏, 武原庆, 张光寅 1991 物理学报 40 1443]

    [28]

    Psaltis D, Berben D, Buse K, Luennemann M, Berben Dirk, Hartwig Ulrich, Buse Karsten 2003 J. Opt. Soc. Am. B 20 1491

  • [1] 罗强, 杨恒, 郭平, 赵建飞. N型甲烷水合物结构和电子性质的密度泛函理论计算. 物理学报, 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [2] 房玉真, 孔祥晋, 王东亭, 崔守鑫, 刘军海. BixBa1-xTiO3电子及能带结构的第一性原理研究. 物理学报, 2018, 67(11): 117101. doi: 10.7498/aps.67.20172644
    [3] 张耘, 王学维, 柏红梅. 第一性原理下铟锰共掺铌酸锂晶体的电子结构和吸收光谱. 物理学报, 2017, 66(2): 024208. doi: 10.7498/aps.66.024208
    [4] 鲁桃, 王瑾, 付旭, 徐彪, 叶飞宏, 冒进斌, 陆云清, 许吉. 采用密度泛函理论与分子动力学对聚甲基丙烯酸甲酯双折射性的理论计算. 物理学报, 2016, 65(21): 210301. doi: 10.7498/aps.65.210301
    [5] 杨振清, 白晓慧, 邵长金. (TiO2)12量子环及过渡金属化合物掺杂对其电子性质影响的密度泛函理论研究. 物理学报, 2015, 64(7): 077102. doi: 10.7498/aps.64.077102
    [6] 代广珍, 蒋先伟, 徐太龙, 刘琦, 陈军宁, 代月花. 密度泛函理论研究氧空位对HfO2晶格结构和电学特性影响. 物理学报, 2015, 64(3): 033101. doi: 10.7498/aps.64.033101
    [7] 吕瑾, 杨丽君, 王艳芳, 马文瑾. Al2Sn(n=210)团簇结构特征和稳定性的密度泛函理论研究. 物理学报, 2014, 63(16): 163601. doi: 10.7498/aps.63.163601
    [8] 余本海, 陈东. 用密度泛函理论研究氮化硅新相的电子结构、光学性质和相变. 物理学报, 2014, 63(4): 047101. doi: 10.7498/aps.63.047101
    [9] 徐莹莹, 阚玉和, 武洁, 陶委, 苏忠民. 并苯纳米环[6]CA及其衍生物的电子结构和光物理性质的密度泛函理论研究. 物理学报, 2013, 62(8): 083101. doi: 10.7498/aps.62.083101
    [10] 解晓东, 郝玉英, 章日光, 王宝俊. Li掺杂8-羟基喹啉铝的密度泛函理论研究. 物理学报, 2012, 61(12): 127201. doi: 10.7498/aps.61.127201
    [11] 范冰冰, 王利娜, 温合静, 关莉, 王海龙, 张锐. 水分子链受限于单壁碳纳米管结构的密度泛函理论研究. 物理学报, 2011, 60(1): 012101. doi: 10.7498/aps.60.012101
    [12] 张致龙, 陈玉红, 任宝兴, 张材荣, 杜瑞, 王伟超. (HMgN3)n(n=15)团簇结构与性质的密度泛函理论研究. 物理学报, 2011, 60(12): 123601. doi: 10.7498/aps.60.123601
    [13] 周晶晶, 陈云贵, 吴朝玲, 肖艳, 高涛. NaAlH4 表面Ti催化空间构型和X射线吸收光谱: Car-Parrinello分子动力学和密度泛函理论研究. 物理学报, 2010, 59(10): 7452-7457. doi: 10.7498/aps.59.7452
    [14] 金蓉, 谌晓洪. 密度泛函理论对ZrnPd团簇结构和性质的研究. 物理学报, 2010, 59(10): 6955-6962. doi: 10.7498/aps.59.6955
    [15] 陈亮, 徐灿, 张小芳. 氧化镁纳米管团簇电子结构的密度泛函研究. 物理学报, 2009, 58(3): 1603-1607. doi: 10.7498/aps.58.1603
    [16] 李喜波, 王红艳, 罗江山, 吴卫东, 唐永建. 密度泛函理论研究ScnO(n=1—9)团簇的结构、稳定性与电子性质. 物理学报, 2009, 58(9): 6134-6140. doi: 10.7498/aps.58.6134
    [17] 陈玉红, 康 龙, 张材荣, 罗永春, 元丽华, 李延龙. (Ca3N2)n(n=1—4)团簇结构与性质的密度泛函理论研究. 物理学报, 2008, 57(10): 6265-6270. doi: 10.7498/aps.57.6265
    [18] 于 威, 李亚超, 丁文革, 张江勇, 杨彦斌, 傅广生. 氮化硅薄膜中纳米非晶硅颗粒的键合结构及光致发光. 物理学报, 2008, 57(6): 3661-3665. doi: 10.7498/aps.57.3661
    [19] 张艳萍, 张丰收, 蒙克来, 肖国青. Na5, Na6和Na7团簇光学吸收谱的理论研究. 物理学报, 2007, 56(4): 2092-2097. doi: 10.7498/aps.56.2092
    [20] 陈玉红, 张材荣, 马 军. MgmBn(m=1,2;n=1—4)团簇结构与性质的密度泛函理论研究. 物理学报, 2006, 55(1): 171-178. doi: 10.7498/aps.55.171
计量
  • 文章访问数:  6445
  • PDF下载量:  114
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-19
  • 修回日期:  2018-05-08
  • 刊出日期:  2019-09-20

/

返回文章
返回