搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于拓展分离变量法的层合材料瞬态传热分析

李长玉 林水木 戴海燕 吕东霖

引用本文:
Citation:

基于拓展分离变量法的层合材料瞬态传热分析

李长玉, 林水木, 戴海燕, 吕东霖

Transient heat transfer analysis of laminated materials based on extended separation of variables

Li Chang-Yu, Lin Shui-Mu, Dai Hai-Yan, Lü Dong-Lin
PDF
导出引用
  • 层合材料各层热物理参数不同,难以用常规的分离变量法求解.针对此问题对常规分离变量法进行了拓展,将层合材料受热时的温度场在时间域上分成微小时间段,在每个微小时间段内层合材料交界处的温度可认为随时间正比变化,并假设比例系数,此时在微小时间段内对各层分别利用分离变量法单独求得解析解,根据交界处温度相等能量连续的关系可求出比例系数,进而求出该微小时间段内的温度场,通过循环求解可得整个时间段内的温度场.之后,利用拓展的分离变量法对常用层合隔热材料瞬态传热进行了分析,通过与有限元方法计算的结果比较,验证了本文方法的正确性,分析了隔热材料类型、厚度,材料表面对流换热系数,空气温度等参数对隔热效果的影响.拓展分离变量法利用解析的方式求解了层合材料瞬态传热问题,物理意义比常规的数值方法明确,计算效率也较高.
    In general, when the one-dimensional heat conduction equation is solved by the method of separation of variables, we need to know the governing equations, two boundary conditions and initial condition. Because the thermophysical parameters in different layers of laminated materials are different, the heat conduction model cannot be expressed by the same governing equation. For each layer of laminated material, the boundary condition is unknown. That equation can-not be solved directly by the general separation variable method. In this work the separation of variable method is extended. The temperature field of laminated material's heat transfer is divided into many minute time intervals on the time axis. Based on differential conception, in a minimum time interval, the temperature at the junction of laminated materials can be considered to be proportional to time. Assume that the slope coefficient makes the boundary condition known, then for each layer of laminated materials, the general separation of variables method will be used to solve the temperature field. According to the same temperature and the energy continuity at the junction of laminated materials, one can solve the slope coefficient. The temperature field in the whole time domain can be obtained through cycling. Then the three-layer insulation materials are analyzed by the extended separation variable method. The correctness of the method is verified by comparing the calculated results with those from the finite element method. The influences of the type and thickness of heat insulation layer, heat transfer coefficient, air temperature on the heat insulation are studied. It is found that the thermal conductivity of the thermal insulation layer has a great influence on the insulation. The material with low heat conduction coefficient can enhance the heat insulation effect. The thicker the thickness of the insulation layer, the more slowly the surface temperature of the heat insulation material rises, and the lower the final temperature, the better the insulation effect is. The thicker the thickness of the insulation layer, the smaller the heat flux density of the heat insulation material shell is, and the better the heat insulation effect when the heat transfer reaches a stable state. All calculation results are consistent with physical phenomena. In this work, the analytical method is used to solve the heat transfer problem of laminated materials. Compared with the general numerical methods, the analytical method presents clear physical meaning and high efficiency of operation as well.
      通信作者: 林水木, licy@gcu.edu.cn
    • 基金项目: 广东省青年创新人才基金(批准号:2016KQNCX226)资助的课题.
      Corresponding author: Lin Shui-Mu, licy@gcu.edu.cn
    • Funds: Project supported by the Guangdong Youth Innovation Fund, China (Grant No. 2016KQNCX226).
    [1]

    Wang M, Feng J Z, Jiang Y G, Zhang Z M, Feng J 2016 Mater. Rev. 30 461 (in Chinese)[王苗, 冯军宗, 姜勇刚, 张忠明, 冯坚 2016 材料导报 30 461]

    [2]

    Tang J J, Xu X M 2011 Pack. Eng. 32 34 (in Chinese)[唐静静, 徐雪萌 2011 包装工程 32 34]

    [3]

    Song H Y, Tian M M, Wu Y Y 2016 Pack. Eng. 37 56 (in Chinese)[宋海燕, 田萌萌, 伍亚云 2016 包装工程 37 56]

    [4]

    Daryabeigi K 2002 J. Thermophys. Heat Transfer 17 10

    [5]

    Daryabeigi K, Cunnington G R, Knutson J R 2013 J. Thermophys. Heat Transfer 27 414

    [6]

    Al-sanea S A, Zedan M F 2011 Appl. Energy 88 3113

    [7]

    Xu F, Lu T J, Seffen K A 2008 J. Mech. Phys. Solids 56 1852

    [8]

    Li J E, Wang B L, Chang D M 2011 Acta Mech. Solida. Sin. 32 248 (in Chinese)[李金娥, 王保林, 常冬梅 2011 固体力学学报 32 248]

    [9]

    Rahideh H, Malekzadeh P, Haghighi M G 2012 Energ. Convers. Manage. 55 14

    [10]

    He K L, Chen Q, Dong E F, Ge W C, Hao J H, Xu F 2018 Appl. Therm. Eng. 129 1551

    [11]

    Wang B L, Cui Y J 2017 Appl. Therm. Eng. 119 207

    [12]

    Liu K C, Wang Y N, Chen Y S 2012 Int. J. Thermal Sci. 58 29

    [13]

    Li L, Zhou L, Yang M 2016 Int. J. Heat Mass Transfer 93 834

    [14]

    Wu Z K, Li F L, Kwak D Y 2016 Chin. J. Comput. Phys. 33 49 (in Chinese)[吴自库, 李福乐, Kwak D Y 2016 计算物理 33 49]

    [15]

    Liu F, Shi W P 2015 Appl. Math. Mech. 36 1158 (in Chinese)[刘芳, 施卫平 2015 应用数学和力学 36 1158]

    [16]

    Hu J X, Gao X W 2016 Acta Phys. Sin. 65 014701 (in Chinese)[胡金秀, 高效伟 2016 物理学报 65 014701]

    [17]

    Wang H G, Wu D, Rao Z H 2015 Acta Phys. Sin. 64 244401 (in Chinese)[王焕光, 吴迪, 饶中浩 2015 物理学报 64 244401]

    [18]

    Wang G, Xie Z H, Fan X D, Chen L G, Sun F R 2017 Acta Phys. Sin. 66 204401 (in Chinese)[王刚, 谢志辉, 范旭东, 陈林根, 孙丰瑞 2017 物理学报 66 204401]

    [19]

    Ma J, Sun Y, Yang J 2017 Int. J. Heat Mass Transfer 115 606

    [20]

    Lin S M, Li C Y 2016 Int. J. Thermal Sci. 110 146

    [21]

    Wang W, Ding H L, Zhang Z K, Shen L 2013 Acta Mater. Compos. Sin. 30 14 (in Chinese)[汪文, 丁宏亮, 张子宽, 沈烈 2013 复合材料学报 30 14]

    [22]

    Zhao Y P, Yan G J, Chen D M, Chen L, Dong Z Z, Fu W G 2013 J. Funct. Mater. 16 697 (in Chinese)[赵义平, 阎家建, 陈丁猛, 陈莉, 董知之, 付维贵 2013 功能材料 16 697]

    [23]

    Liu C N, Zhang S X, Zhou H Q, Xu D M, Li M Q 2011 J. Jilin Inst. Chem. Tech. 28 29 (in Chinese)[刘翠娜, 张双喜, 周恒勤, 许冬梅, 李美芹 2011 吉林化工学院学报 28 29]

    [24]

    Liu B Z, Wang D W 2011 J. Northeast Univ. 32 302 (in Chinese)[刘保政, 汪定伟 2011 东北大学学报 32 302]

    [25]

    He C H, Feng X 2001 Chemical Principle (Beijing: Science Press) pp190-193 (in Chinese)[何潮洪, 冯霄 2001 化工原理 (北京: 科学出版社)第190–193页]

  • [1]

    Wang M, Feng J Z, Jiang Y G, Zhang Z M, Feng J 2016 Mater. Rev. 30 461 (in Chinese)[王苗, 冯军宗, 姜勇刚, 张忠明, 冯坚 2016 材料导报 30 461]

    [2]

    Tang J J, Xu X M 2011 Pack. Eng. 32 34 (in Chinese)[唐静静, 徐雪萌 2011 包装工程 32 34]

    [3]

    Song H Y, Tian M M, Wu Y Y 2016 Pack. Eng. 37 56 (in Chinese)[宋海燕, 田萌萌, 伍亚云 2016 包装工程 37 56]

    [4]

    Daryabeigi K 2002 J. Thermophys. Heat Transfer 17 10

    [5]

    Daryabeigi K, Cunnington G R, Knutson J R 2013 J. Thermophys. Heat Transfer 27 414

    [6]

    Al-sanea S A, Zedan M F 2011 Appl. Energy 88 3113

    [7]

    Xu F, Lu T J, Seffen K A 2008 J. Mech. Phys. Solids 56 1852

    [8]

    Li J E, Wang B L, Chang D M 2011 Acta Mech. Solida. Sin. 32 248 (in Chinese)[李金娥, 王保林, 常冬梅 2011 固体力学学报 32 248]

    [9]

    Rahideh H, Malekzadeh P, Haghighi M G 2012 Energ. Convers. Manage. 55 14

    [10]

    He K L, Chen Q, Dong E F, Ge W C, Hao J H, Xu F 2018 Appl. Therm. Eng. 129 1551

    [11]

    Wang B L, Cui Y J 2017 Appl. Therm. Eng. 119 207

    [12]

    Liu K C, Wang Y N, Chen Y S 2012 Int. J. Thermal Sci. 58 29

    [13]

    Li L, Zhou L, Yang M 2016 Int. J. Heat Mass Transfer 93 834

    [14]

    Wu Z K, Li F L, Kwak D Y 2016 Chin. J. Comput. Phys. 33 49 (in Chinese)[吴自库, 李福乐, Kwak D Y 2016 计算物理 33 49]

    [15]

    Liu F, Shi W P 2015 Appl. Math. Mech. 36 1158 (in Chinese)[刘芳, 施卫平 2015 应用数学和力学 36 1158]

    [16]

    Hu J X, Gao X W 2016 Acta Phys. Sin. 65 014701 (in Chinese)[胡金秀, 高效伟 2016 物理学报 65 014701]

    [17]

    Wang H G, Wu D, Rao Z H 2015 Acta Phys. Sin. 64 244401 (in Chinese)[王焕光, 吴迪, 饶中浩 2015 物理学报 64 244401]

    [18]

    Wang G, Xie Z H, Fan X D, Chen L G, Sun F R 2017 Acta Phys. Sin. 66 204401 (in Chinese)[王刚, 谢志辉, 范旭东, 陈林根, 孙丰瑞 2017 物理学报 66 204401]

    [19]

    Ma J, Sun Y, Yang J 2017 Int. J. Heat Mass Transfer 115 606

    [20]

    Lin S M, Li C Y 2016 Int. J. Thermal Sci. 110 146

    [21]

    Wang W, Ding H L, Zhang Z K, Shen L 2013 Acta Mater. Compos. Sin. 30 14 (in Chinese)[汪文, 丁宏亮, 张子宽, 沈烈 2013 复合材料学报 30 14]

    [22]

    Zhao Y P, Yan G J, Chen D M, Chen L, Dong Z Z, Fu W G 2013 J. Funct. Mater. 16 697 (in Chinese)[赵义平, 阎家建, 陈丁猛, 陈莉, 董知之, 付维贵 2013 功能材料 16 697]

    [23]

    Liu C N, Zhang S X, Zhou H Q, Xu D M, Li M Q 2011 J. Jilin Inst. Chem. Tech. 28 29 (in Chinese)[刘翠娜, 张双喜, 周恒勤, 许冬梅, 李美芹 2011 吉林化工学院学报 28 29]

    [24]

    Liu B Z, Wang D W 2011 J. Northeast Univ. 32 302 (in Chinese)[刘保政, 汪定伟 2011 东北大学学报 32 302]

    [25]

    He C H, Feng X 2001 Chemical Principle (Beijing: Science Press) pp190-193 (in Chinese)[何潮洪, 冯霄 2001 化工原理 (北京: 科学出版社)第190–193页]

  • [1] 张小丽, 殷秋鹏, 李果, 姚曦, 丁礼磊. 非线性磁电层合材料的对称等效电路理论及数值仿真分析. 物理学报, 2024, 73(23): 237501. doi: 10.7498/aps.73.20240934
    [2] 陈树权, 王剑, 杨振, 朱璨, 罗丰, 祝鑫强, 徐峰, 王嘉赋, 张艳, 刘虹霞, 孙志刚. Peltier系数的稳态法和瞬态法测量. 物理学报, 2023, 72(6): 068401. doi: 10.7498/aps.72.20222255
    [3] 高效伟, 丁金兴, 刘华雩. 有限线法及其在流固域间耦合传热中的应用. 物理学报, 2022, 71(19): 190201. doi: 10.7498/aps.71.20220833
    [4] 方芳, 鲍麟, 童秉纲. 基于斜驻点模型的剪切层撞击壁面流动及传热特性. 物理学报, 2020, 69(21): 214401. doi: 10.7498/aps.69.20201000
    [5] 吴红琳, 宋云飞, 王阳, 于国洋, 杨延强. 凝聚相材料分子解离动力学的飞秒瞬态光栅光谱研究. 物理学报, 2017, 66(3): 033301. doi: 10.7498/aps.66.033301
    [6] 李柱松, 朱泰山. 超晶格和层状结构传热特性的连续模型及其在能源材料设计中的应用. 物理学报, 2016, 65(11): 116802. doi: 10.7498/aps.65.116802
    [7] 孙良奎, 于哲峰, 黄洁. 基于超材料的平板二维定向传热结构设计. 物理学报, 2015, 64(22): 224401. doi: 10.7498/aps.64.224401
    [8] 孙良奎, 于哲峰, 黄洁. 基于超材料的定向传热结构研究与设计. 物理学报, 2015, 64(8): 084401. doi: 10.7498/aps.64.084401
    [9] 代显智. 基于能量转换原理的磁电层合材料低频磁电响应分析. 物理学报, 2014, 63(20): 207501. doi: 10.7498/aps.63.207501
    [10] 管仁国, 赵占勇, 黄红乾, 连超, 钞润泽, 刘春明. 冷却倾斜板熔体处理过程边界层分布及流动传热的理论研究. 物理学报, 2012, 61(20): 206602. doi: 10.7498/aps.61.206602
    [11] 陈蕾, 李平, 文玉梅, 王东. 高磁导率材料FeCuNbSiB对超磁致伸缩/压电层合材料磁电性能的影响. 物理学报, 2011, 60(6): 067501. doi: 10.7498/aps.60.067501
    [12] 阳昌海, 文玉梅, 李 平, 卞雷祥. 偏置磁场对磁致伸缩/弹性/压电层合材料磁电效应的影响. 物理学报, 2008, 57(11): 7292-7297. doi: 10.7498/aps.57.7292
    [13] 陈 丽, 程玉民. 瞬态热传导问题的复变量重构核粒子法. 物理学报, 2008, 57(10): 6047-6055. doi: 10.7498/aps.57.6047
    [14] 杨 帆, 文玉梅, 李 平, 郑 敏, 卞雷祥. 考虑损耗的磁致/压电层合材料谐振磁电响应分析. 物理学报, 2007, 56(6): 3539-3545. doi: 10.7498/aps.56.3539
    [15] 郭少锋, 陆启生, 程湘爱, 黎全, 曾学文, 银燕. 光学透明材料中瞬态SBS过程的数值研究. 物理学报, 2004, 53(1): 99-104. doi: 10.7498/aps.53.99
    [16] 张解放, 徐昌智, 何宝钢. 变量分离法与变系数非线性薛定谔方程的求解探索. 物理学报, 2004, 53(11): 3652-3656. doi: 10.7498/aps.53.3652
    [17] 李德生, 张鸿庆. 关于分离变量法的一个注记. 物理学报, 2004, 53(6): 1639-1642. doi: 10.7498/aps.53.1639
    [18] 刘红侠, 郝跃. 应力导致的薄栅氧化层漏电流瞬态特性研究. 物理学报, 2001, 50(9): 1769-1773. doi: 10.7498/aps.50.1769
    [19] 林子扬, 项 颖, 徐则达, 李宇新. 相位延迟法液晶沿面排列瞬态热效应. 物理学报, 1999, 48(7): 1297-1301. doi: 10.7498/aps.48.1297
    [20] 陈黎丽. 形式变量分离法及一般Hirota-Satsuma方程新的精确解. 物理学报, 1999, 48(12): 2149-2153. doi: 10.7498/aps.48.2149
计量
  • 文章访问数:  5399
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-19
  • 修回日期:  2018-07-19
  • 刊出日期:  2018-11-05

/

返回文章
返回