搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有倾斜极化层的自旋阀结构中磁翻转以及磁振荡模式的微磁模拟

吕刚 张红 侯志伟

引用本文:
Citation:

具有倾斜极化层的自旋阀结构中磁翻转以及磁振荡模式的微磁模拟

吕刚, 张红, 侯志伟

Micromagnetic modeling of magnetization switching and oscillation modes in spin valve with tilted spin polarizer

Lv Gang, Zhang Hong, Hou Zhi-Wei
PDF
导出引用
  • 基于自由层与钉扎层均为垂直磁各向异性的自旋阀结构,采用微磁学模拟与傅里叶分析相结合的技术,研究了极化层磁矩小角度倾斜情形下自由层磁矩的进动翻转特性.通过沿样品垂直膜面方向同时施加电流与磁场,观察到自由层磁矩垂直膜面方向分量的平均值随磁场的演化翻转曲线中出现了多个凹槽.模拟研究结果表明:在一定的电流范围内,凹槽出现的位置与电流大小无关;而在固定的应用电流下,凹槽出现的位置将会受到样品厚度的影响;在凹槽区域内,非一致进动模式、自旋驻波模式、局域自旋波模式等多种磁振荡模式被激发.通过傅里叶分析,得到了各种磁振荡模式的频谱,频谱中的频率分布体现出了倍频以及间谐波的频率特性.
    Materials with perpendicular magnetic anisotropy have been intensively investigated due to their potential applications in the nonvolatile magnetic memory and spin-torque oscillators. Hear in this paper, we report a special interesting spin-transfer-driven magnetic behavior in perpendicularly magnetized (Co/Ni) -based spin-valve nano-pillars due to the reduced symmetry of easy axis in the free layer. The micromagnetic simulations indicate that a dip in the average magnetization curve can take place due to the reduced symmetry such as tilt of the magnetic field as well as the easy axis of the free and polarizer layers. In order to further clarify the physics mechanism of the dip, we carry out a series of new simulation studies. In our simulations, we consider a spin-valve nano-pillar with perpendicular anisotropy free layer and a 3 tilted polarizer layer. A negative perpendicular magnetic field and a positive perpendicular current are both applied simultaneously. In the average magnetization curves mz as a function of the magnetic field with various currents, three dips are observed. Note that although the spin-transfer torque is essential to the appearance of the dips, the position of the dips is less affected by the current in a certain current range. For three dips, we notice that the mz values are almost identical at a special magnetic field for different currents. At this special magnetic field, the magnetization oscillation modes in the free layer are similar to each other for different currents. The corresponding frequency spectra show that the amplitude of the main frequency peak decreases with the increasing of current due to the enhanced spin-transfer torque. In addition, the frequency shows a blue-shift with the increasing of applied current. Our simulations show that the main frequency f1 corresponding to the highest peak is approximately equal to the precession frequency of the local magnetization in the free layer. Several high-order frequency peaks are also observed in the frequency spectrum with fn=nf1, where n is an integer. Therefore the periodic oscillation of mz is a harmonic oscillation. Further simulations indicate that the dip appearance is also affected by the thickness of free layer. The spin-transfer torque effect decreases with the thickness of the free layer increasing. As a consequence, the dips shift to a low magnetic field range with the increase of the thickness. And for larger thickness t=8.0 nm, no dip appears. This result suggests that the spin-transfer torque is necessary for the dip, rather than the unique effect factor, to occur. In the dip region, the magnetic oscillation modes of the free layer show interesting frequency spectrum characters:harmonic frequency or inter-harmonic frequency. As a consequence, the periodic oscillation of the free layer is accompanied by the harmonic waves.
      通信作者: 张红, zhanghong@sdau.edu.cn
    • 基金项目: 国家自然科学基金青年科学基金(批准号:51302157,51201059)、山东农业大学一流学科基金、国家自然科学基金、重点培育学科项目、河南省教育厅自然科学项目(批准号:14A140027)和河南工业大学校基金(批准号:2014CXRC10)资助的课题.
      Corresponding author: Zhang Hong, zhanghong@sdau.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 51302157, 51201059), the Funding for First-Class Discipline from Shandong Agricultural University, China, the Key Discipline of the National Natural Science Foundation of China, the Natural Science Foundation of Henan Education Department, China (Grant No. 14A140027), and the Fund from Henan University of Technology, China (Grant No. 2014CXRC10).
    [1]

    Mangin S, Ravelosona D, Katine J A, Carey M J, Terris B D, Fullerton E E 2006 Nature Mater. 5 210

    [2]

    Meng H, Wang J P 2006 Appl. Phys. Lett. 88 172506

    [3]

    Mangin S, Henry Y, Ravelosona D, Katine J A, Fullerton E E 2009 Appl. Phys. Lett. 94 012502

    [4]

    Ikeda S, Miura K, Yamamoto H, Mizunuma K, Gan H D, Endo M, Kanai S, Hayakawa J, Matsukura F, Ohno H 2010 Nat. Mater. 9 721

    [5]

    Su H C, Lei H Y, Hu J G 2015 Chin. Phys. B 24 097506

    [6]

    Katine J A, Fullerton Eric E 2008 J. Magn. Magn. Mater. 320 1217

    [7]

    Silva T J, Rippard W H 2008 J. Magn. Magn. Mater. 320 1260

    [8]

    Zhou Y, Zha C L, Bonetti S, Persson J,kerman J 2008 Appl. Phys. Lett. 92 262508

    [9]

    Sbiaa R, Law R, Tan Ei-L, Liew T 2009 J. Appl. Phys. 105 013910

    [10]

    He P B, Wang R X, Li Z D, Liu Q H, Pan A L, Wang Y G, Zou B S 2010 Eur. Phys. J. B 73 417

    [11]

    Lee O J, Pribiag V S, Braganca P M, Gowtham P G, Ralph D C, Buhrman R A 2009 Appl. Phys. Lett. 95 012506

    [12]

    Papusoi C, Delat B, Rodmacq B, Houssameddine D, Michel J P, Ebels U, Sousa R C, Buda-Prejbeanu L, Dieny B 2009 Appl. Phys. Lett. 95 072506

    [13]

    Liu H, Bedau D, Backes D, Katine J A, Langer J, Kent A D 2010 Appl. Phys. Lett. 97 242510

    [14]

    Rowlands G E, Rahman T, Katine J A, Langer J, Lyle A, Zhao H, Alzate J G, Kovalev A A, Tserkovnyak Y, Zeng Z M, Jiang H W, Galatsis K, Huai Y M, Khalili Amiri P, Wang K L, Krivorotov I N, Wang J P 2011 Appl. Phys. Lett. 98 102509

    [15]

    Hou Z W, Zhang Z Z, Zhang J W, Liu Y W 2011 Appl. Phys. Lett. 99 222509

    [16]

    Zhang H, Hou Z W, Zhang J W, Zhang Z Z, Liu Y W 2012 Appl. Phys. Lett. 100 142409

    [17]

    Lin W, Cucchiara J, Berthelot C, Hauet T, Henry Y, Katine J A, Fullerton Eric E, Mangin S 2010 Appl. Phys. Lett. 96 252503

    [18]

    Le Gall S, Cucchiara J, Gottwald M, Berthelot C, Lambert C H, Henry Y, Bedau D, Gopman D B, Liu H, Kent A D, Sun J Z, Lin W, Ravelosona D, Katine J A, Fullerton E E, Mangin S 2012 Phys. Rev. B 86 014419

    [19]

    Reckers N, Cucchiara J, Posth O, Hassel C, Rmer F M, Narkowicz R, Gallardo R A, Landeros P, Zhres H, Mangin S, Katine J A, Fullerton E E, Dumpich G, Meckenstock R, Lindner J, Farle M 2011 Phys. Rev. B 83 184427

    [20]

    Thiaville A, Rohart S, Ju E, Cros V, Fert A 2012 Europhys. Lett. 100 57002

    [21]

    Ryu K S, Thomas L, Yang S H, Parkin S 2013 Nat. Nanotechnol. 8 527

    [22]

    Emori S, Bauer U, Ahn S M, Martinez E, Beach G S D 2013 Nat. Mater. 12 611

    [23]

    Lin W W, Vernier N, Agnus G, Garcia K, Ocker B, Zhao W, Fullerton E E, Ravelosona D 2016 Nat. Commun. 7 13532

    [24]

    Rippard W H, Deac A M, Pufall M R, Shaw J M, Keller M W, Russek S E, Bauer G E W, Serpico C 2010 Phys. Rev. B 81 014426

    [25]

    Mohseni S M, Sani S R, Persson J, Nguyen T N A, Chung S, Pogoryelov Y, Akerman J 2011 Phys. Status Solidi RRL 5 432

    [26]

    Mohseni S M, Sani S R, Persson J, Nguyen T N A, Chung S, Pogoryelov Y, Muduli P K, Iacocca E, Eklund A, Dumas R K, Bonetti S, Deac A, Hoefer M A, Akerman J 2013 Science 339 1295

    [27]

    Xiao D, Tiberkevich V, Liu Y H, Liu Y W, Mohseni S M, Chung S, Ahlberg M, Slavin A N,kerman J, Zhou Y 2017 Phys. Rev. B 95 024106

    [28]

    Zhang H, Lin W W, Mangin S, Zhang Z Z, Liu Y W 2013 Appl. Phys. Lett. 102 012411

    [29]

    Vansteenkiste A, Leliaert J, Dvornik M, Helsen M, Garcia-Sanchez F, Waeyenberge B V 2014 AIP Adv. 4 107133

    [30]

    Slonczewski J C 1999 J. Magn. Magn. Mater. 195 L261

    [31]

    Li X, Zhang Z Z, Jin Q Y, Liu Y 2008 Appl. Phys. Lett. 92 122502

  • [1]

    Mangin S, Ravelosona D, Katine J A, Carey M J, Terris B D, Fullerton E E 2006 Nature Mater. 5 210

    [2]

    Meng H, Wang J P 2006 Appl. Phys. Lett. 88 172506

    [3]

    Mangin S, Henry Y, Ravelosona D, Katine J A, Fullerton E E 2009 Appl. Phys. Lett. 94 012502

    [4]

    Ikeda S, Miura K, Yamamoto H, Mizunuma K, Gan H D, Endo M, Kanai S, Hayakawa J, Matsukura F, Ohno H 2010 Nat. Mater. 9 721

    [5]

    Su H C, Lei H Y, Hu J G 2015 Chin. Phys. B 24 097506

    [6]

    Katine J A, Fullerton Eric E 2008 J. Magn. Magn. Mater. 320 1217

    [7]

    Silva T J, Rippard W H 2008 J. Magn. Magn. Mater. 320 1260

    [8]

    Zhou Y, Zha C L, Bonetti S, Persson J,kerman J 2008 Appl. Phys. Lett. 92 262508

    [9]

    Sbiaa R, Law R, Tan Ei-L, Liew T 2009 J. Appl. Phys. 105 013910

    [10]

    He P B, Wang R X, Li Z D, Liu Q H, Pan A L, Wang Y G, Zou B S 2010 Eur. Phys. J. B 73 417

    [11]

    Lee O J, Pribiag V S, Braganca P M, Gowtham P G, Ralph D C, Buhrman R A 2009 Appl. Phys. Lett. 95 012506

    [12]

    Papusoi C, Delat B, Rodmacq B, Houssameddine D, Michel J P, Ebels U, Sousa R C, Buda-Prejbeanu L, Dieny B 2009 Appl. Phys. Lett. 95 072506

    [13]

    Liu H, Bedau D, Backes D, Katine J A, Langer J, Kent A D 2010 Appl. Phys. Lett. 97 242510

    [14]

    Rowlands G E, Rahman T, Katine J A, Langer J, Lyle A, Zhao H, Alzate J G, Kovalev A A, Tserkovnyak Y, Zeng Z M, Jiang H W, Galatsis K, Huai Y M, Khalili Amiri P, Wang K L, Krivorotov I N, Wang J P 2011 Appl. Phys. Lett. 98 102509

    [15]

    Hou Z W, Zhang Z Z, Zhang J W, Liu Y W 2011 Appl. Phys. Lett. 99 222509

    [16]

    Zhang H, Hou Z W, Zhang J W, Zhang Z Z, Liu Y W 2012 Appl. Phys. Lett. 100 142409

    [17]

    Lin W, Cucchiara J, Berthelot C, Hauet T, Henry Y, Katine J A, Fullerton Eric E, Mangin S 2010 Appl. Phys. Lett. 96 252503

    [18]

    Le Gall S, Cucchiara J, Gottwald M, Berthelot C, Lambert C H, Henry Y, Bedau D, Gopman D B, Liu H, Kent A D, Sun J Z, Lin W, Ravelosona D, Katine J A, Fullerton E E, Mangin S 2012 Phys. Rev. B 86 014419

    [19]

    Reckers N, Cucchiara J, Posth O, Hassel C, Rmer F M, Narkowicz R, Gallardo R A, Landeros P, Zhres H, Mangin S, Katine J A, Fullerton E E, Dumpich G, Meckenstock R, Lindner J, Farle M 2011 Phys. Rev. B 83 184427

    [20]

    Thiaville A, Rohart S, Ju E, Cros V, Fert A 2012 Europhys. Lett. 100 57002

    [21]

    Ryu K S, Thomas L, Yang S H, Parkin S 2013 Nat. Nanotechnol. 8 527

    [22]

    Emori S, Bauer U, Ahn S M, Martinez E, Beach G S D 2013 Nat. Mater. 12 611

    [23]

    Lin W W, Vernier N, Agnus G, Garcia K, Ocker B, Zhao W, Fullerton E E, Ravelosona D 2016 Nat. Commun. 7 13532

    [24]

    Rippard W H, Deac A M, Pufall M R, Shaw J M, Keller M W, Russek S E, Bauer G E W, Serpico C 2010 Phys. Rev. B 81 014426

    [25]

    Mohseni S M, Sani S R, Persson J, Nguyen T N A, Chung S, Pogoryelov Y, Akerman J 2011 Phys. Status Solidi RRL 5 432

    [26]

    Mohseni S M, Sani S R, Persson J, Nguyen T N A, Chung S, Pogoryelov Y, Muduli P K, Iacocca E, Eklund A, Dumas R K, Bonetti S, Deac A, Hoefer M A, Akerman J 2013 Science 339 1295

    [27]

    Xiao D, Tiberkevich V, Liu Y H, Liu Y W, Mohseni S M, Chung S, Ahlberg M, Slavin A N,kerman J, Zhou Y 2017 Phys. Rev. B 95 024106

    [28]

    Zhang H, Lin W W, Mangin S, Zhang Z Z, Liu Y W 2013 Appl. Phys. Lett. 102 012411

    [29]

    Vansteenkiste A, Leliaert J, Dvornik M, Helsen M, Garcia-Sanchez F, Waeyenberge B V 2014 AIP Adv. 4 107133

    [30]

    Slonczewski J C 1999 J. Magn. Magn. Mater. 195 L261

    [31]

    Li X, Zhang Z Z, Jin Q Y, Liu Y 2008 Appl. Phys. Lett. 92 122502

  • [1] 黄铭贤, 胡文彬, 白飞明. 声表面波-自旋波耦合及磁声非互易性器件. 物理学报, 2024, 73(15): 158501. doi: 10.7498/aps.73.20240462
    [2] 刘想, 王希光, 李志雄, 郭光华. 铁磁畴壁中自旋极化电流诱导的左旋极化自旋波. 物理学报, 2024, 73(14): 147501. doi: 10.7498/aps.73.20240651
    [3] 王可欣, 粟傈, 童良乐. 基于反铁磁的无外场辅助自旋轨道矩磁隧道结模型分析. 物理学报, 2023, 72(19): 198504. doi: 10.7498/aps.72.20230901
    [4] 郭晓庆, 王强, 薛海斌. 类场矩诱导的可调零场自旋转移力矩纳米振荡器. 物理学报, 2023, 72(16): 167501. doi: 10.7498/aps.72.20230628
    [5] 王日兴, 曾逸涵, 赵婧莉, 李连, 肖运昌. 自旋轨道矩协助自旋转移矩驱动磁化强度翻转. 物理学报, 2023, 72(8): 087202. doi: 10.7498/aps.72.20222433
    [6] 金冬月, 曹路明, 王佑, 贾晓雪, 潘永安, 周钰鑫, 雷鑫, 刘圆圆, 杨滢齐, 张万荣. 基于工艺偏差的自旋转移矩辅助压控磁各向异性磁隧道结电学模型及其应用研究. 物理学报, 2022, 71(10): 107501. doi: 10.7498/aps.71.20211700
    [7] 闫健, 任志伟, 钟智勇. Y3Fe5O12-CoFeB自旋波定向耦合器中的自旋波. 物理学报, 2021, 70(18): 187501. doi: 10.7498/aps.70.20210507
    [8] 李再东, 郭奇奇. 铁磁纳米线中磁化强度的磁怪波. 物理学报, 2020, 69(1): 017501. doi: 10.7498/aps.69.20191352
    [9] 王日兴, 李雪, 李连, 肖运昌, 许思维. 三端磁隧道结的稳定性分析. 物理学报, 2019, 68(20): 207201. doi: 10.7498/aps.68.20190927
    [10] 张楠, 张保, 杨美音, 蔡凯明, 盛宇, 李予才, 邓永城, 王开友. 电学方法调控磁化翻转和磁畴壁运动的研究进展. 物理学报, 2017, 66(2): 027501. doi: 10.7498/aps.66.027501
    [11] 王日兴, 叶华, 王丽娟, 敖章洪. 垂直自由层倾斜极化层自旋阀结构中的磁矩翻转和进动. 物理学报, 2017, 66(12): 127201. doi: 10.7498/aps.66.127201
    [12] 吕刚, 曹学成, 秦羽丰, 王林辉, 厉桂华, 高峰, 孙丰伟, 张红. 椭圆纳米盘中磁涡旋结构的方位角自旋波模式. 物理学报, 2015, 64(21): 217501. doi: 10.7498/aps.64.217501
    [13] 王日兴, 肖运昌, 赵婧莉. 垂直磁各向异性自旋阀结构中的铁磁共振. 物理学报, 2014, 63(21): 217601. doi: 10.7498/aps.63.217601
    [14] 侯小娟, 云国宏, 白宇浩, 白那日苏, 周文平. 量子自旋波本征值及易轴型各向异性对其的影响. 物理学报, 2011, 60(5): 056805. doi: 10.7498/aps.60.056805
    [15] 金伟, 万振茂, 刘要稳. 自旋转移矩效应激发的非线性磁化动力学. 物理学报, 2011, 60(1): 017502. doi: 10.7498/aps.60.017502
    [16] 赵兴东, 谢征微, 张卫平. 玻色凝聚的原子自旋链中的非线性自旋波. 物理学报, 2007, 56(11): 6358-6366. doi: 10.7498/aps.56.6358
    [17] 戴松涛, 李振亚. 横场伊辛铁磁薄膜的自旋波. 物理学报, 1990, 39(4): 639-648. doi: 10.7498/aps.39.639
    [18] 钟健. Heisenberg反铁磁超晶格的自旋波. 物理学报, 1990, 39(3): 486-490. doi: 10.7498/aps.39.486
    [19] 邝宇平, 翁世浚. 立方晶体铁磁各向异性的自旋波理论. 物理学报, 1964, 20(9): 890-908. doi: 10.7498/aps.20.890
    [20] 于渌. 铁磁金属的表面阻抗与自旋波共振. 物理学报, 1964, 20(7): 607-623. doi: 10.7498/aps.20.607
计量
  • 文章访问数:  5751
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-13
  • 修回日期:  2018-06-05
  • 刊出日期:  2018-09-05

/

返回文章
返回