搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大气边界层模式中随机参数的反演与不确定性分析

颜冰 黄思训 冯径

引用本文:
Citation:

大气边界层模式中随机参数的反演与不确定性分析

颜冰, 黄思训, 冯径

Retrieval and uncertainty analysis of stochastic parameter in atmospheric boundary layer model

Yan Bing, Huang Si-Xun, Feng Jing
PDF
导出引用
  • 在大气边界层气象中湍流黏性系数是一个很重要的参数,通过直接观测往往无法得到其准确值,仅能通过间接观测获得大致范围.本文选用随机广义Ekman动力近似模式中的湍流黏性系数进行反演研究与不确定性分析.首先利用风速观测数据,并采用基于混沌多项式的集合Kalman滤波方法对系数进行反演,降低其不确定性,缩小可能取值的范围,该方法的核心思想是将集合Kalman滤波方法中求解模式不确定性传播的方法由蒙特卡罗法改为混沌多项式展开,从而避免大规模采样带来的计算资源耗费.然后进行数值实验,结果表明该方法能够有效且快速地求解出湍流黏性的后验概率分布,从而达到降低系数不确定性的目的.根据系数的先验分布计算出风速的先验分布,从而找到风速不确定性大的区域,且揭示了在不确定性大的区域内的观测数据进行系数反演可得到十分明显的效果,这对于观测点位置的选择提供了重要的指导.
    The eddy viscosity is an important parameter in the atmospheric boundary layer meteorology, and we usually cannot determine their exact values by direct measurements, but we can only obtain an approximate range by indirect approximate method. In this paper, the eddy viscosity in the stochastic general Ekman momentum approximation model is used for the retrieval research and uncertainty analysis. The main purpose of retrieval is to reduce the uncertainty and narrow the approximate range of eddy viscosity. First, the polynomial chaos-ensemble Kalman filter and the wind observations are used for eddy viscosity retrieval and uncertainty reduction. The main idea of this method is to replace the Monte-Carlo method with polynomial chaos in the uncertainty quantification of ensemble Kalman filter, and thusavoiding the consumption of computing resources brought by massive samples. The goal of uncertainty quantification is to investigate the effect of uncertainty in the eddy viscosity on the model and to subsequently provide a reliable distribution of simulation results. Then two numerical experiments are implemented, i.e. experiment I in which the eddy viscosity is assumed to be constant, and experiment Ⅱ in which the eddy viscosity is assumed to be a vertically varying random parameter. The uncertainty of eddy viscosity in experiment I is reduced quickly, at the same time the mean of eddy viscosity can converge to a reference value. The effect in experiment Ⅱ is also remarkable after 16 data assimilation steps. These results show that the polynomial chaos-ensemble Kalman filter is an effective and fast method of solving the posterior distribution of eddy viscosity and reducing the uncertainty of eddy viscosity. Finally, we calculate the prior distribution of wind speed according to the prior distribution of eddy viscosity and identify the heavy uncertainty area in wind speed. The results indicate that the posterior distribution of eddy viscosity solved with wind observations in the big uncertainty area is more accurate, which provides an important guidance for selecting the location of observation points.
      通信作者: 黄思训, huangsxp@163.com
    • 基金项目: 国家自然科学基金(批准号:91730304,41575026,61371119)资助的课题.
      Corresponding author: Huang Si-Xun, huangsxp@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 91730304, 41575026, 61371119).
    [1]

    Baklanov A, Grisogono B, Bornstein R, Mahrt L, Zilitinkevich S, Taylor P, Larsen S, Rotach M, Fernando H 2011 Bull. Am. Meteorol. Soc. 92 123

    [2]

    Tan Z M, Wang Y 2002 Adv. Atmos. Sci. 19 266

    [3]

    Han Y Q, Zhong Z, Wang Y F, Du H D 2013 Acta Phys. Sin. 62 049201 (in Chinese) [韩月琪, 钟中, 王云峰, 杜华栋 2013 物理学报 62 049201]

    [4]

    Xiu D 2010 Numerical Methods for Stochastic Computations:A Spectral Method Approach (Princeton:Princeton University Press) p126

    [5]

    Li W X, Lin G, Zhang D X 2014 J. Comput. Phys. 258 752

    [6]

    Yan B, Huang S X 2014 Chin. Phys. B 23 109402

    [7]

    Metropolis N, Rosenbluth A W, Rosenbluth M N, Teller A H, Teller E 1953 J. Chem. Phys. 21

    [8]

    Geman S, Geman D 1984 IEEE Trans. Pattern Anal. Mach. Intellig. 20 721

    [9]

    Leng H Z, Song J Q, Cao X Q, Yang J H 2012 Acta Phys. Sin. 61 070501 (in Chinese) [冷洪泽, 宋君强, 曹小群, 杨锦辉 2012 物理学报 61 070501]

    [10]

    Kalman R E 1960 J. Basic Engin. Trans. 82 35

    [11]

    Gelb A 1974 Applied Optimal Estimation (Cambridge:MIT Press)

    [12]

    Evensen G 2006 Data Assimilation:The Ensemble Kalman Filter (New York:Springer) p38

    [13]

    Evensen G 1994 J. Geophys. Res.:Oceans 99 10143

    [14]

    Ghanem R G, Spanos P D 1992 Stochastic Finite Element:A Spectral Spproach (New York:Springer) p214

    [15]

    Xiu D, Karniadakis G S 2003 J. Comput. Phys. 187 137

    [16]

    Schoutens W 2000 The Askey Scheme of Orthogonal Polynomials. In:Stochastic Processes and Orthogonal Polynomials (New York:Springer) pp1-13

    [17]

    Sun N Z, Sun A 2015 Model Uncertainty Quantification. In:Model Calibration and Parameter Estimation:ForEnvironmental and Water Resource Systems (New York:Springer) pp407-458

    [18]

    Isukapalli S S, Roy A, Georgopoulos P G 1998 Risk Anal. 18 351

    [19]

    Tatang M A, Pan W, Prinn R G, McRae G J 1997 J. Geophys. Res. -Atmos. 102 21925 doi:101029/97jd01654

    [20]

    Wang Y P, Cheng Y, Zhang Z Y, Lin G 2018 Math. Model. Nat. Phenom. 13 doi:101051/mmnp/2018023

    [21]

    Whitaker J S, Hamill M 2003 Mon. Weather. Rev. 130 1913

    [22]

    Matre O P L, Knio O M 2010 Spectral Methods for Uncertainty Quantification (Netherlands:Springer) p536

  • [1]

    Baklanov A, Grisogono B, Bornstein R, Mahrt L, Zilitinkevich S, Taylor P, Larsen S, Rotach M, Fernando H 2011 Bull. Am. Meteorol. Soc. 92 123

    [2]

    Tan Z M, Wang Y 2002 Adv. Atmos. Sci. 19 266

    [3]

    Han Y Q, Zhong Z, Wang Y F, Du H D 2013 Acta Phys. Sin. 62 049201 (in Chinese) [韩月琪, 钟中, 王云峰, 杜华栋 2013 物理学报 62 049201]

    [4]

    Xiu D 2010 Numerical Methods for Stochastic Computations:A Spectral Method Approach (Princeton:Princeton University Press) p126

    [5]

    Li W X, Lin G, Zhang D X 2014 J. Comput. Phys. 258 752

    [6]

    Yan B, Huang S X 2014 Chin. Phys. B 23 109402

    [7]

    Metropolis N, Rosenbluth A W, Rosenbluth M N, Teller A H, Teller E 1953 J. Chem. Phys. 21

    [8]

    Geman S, Geman D 1984 IEEE Trans. Pattern Anal. Mach. Intellig. 20 721

    [9]

    Leng H Z, Song J Q, Cao X Q, Yang J H 2012 Acta Phys. Sin. 61 070501 (in Chinese) [冷洪泽, 宋君强, 曹小群, 杨锦辉 2012 物理学报 61 070501]

    [10]

    Kalman R E 1960 J. Basic Engin. Trans. 82 35

    [11]

    Gelb A 1974 Applied Optimal Estimation (Cambridge:MIT Press)

    [12]

    Evensen G 2006 Data Assimilation:The Ensemble Kalman Filter (New York:Springer) p38

    [13]

    Evensen G 1994 J. Geophys. Res.:Oceans 99 10143

    [14]

    Ghanem R G, Spanos P D 1992 Stochastic Finite Element:A Spectral Spproach (New York:Springer) p214

    [15]

    Xiu D, Karniadakis G S 2003 J. Comput. Phys. 187 137

    [16]

    Schoutens W 2000 The Askey Scheme of Orthogonal Polynomials. In:Stochastic Processes and Orthogonal Polynomials (New York:Springer) pp1-13

    [17]

    Sun N Z, Sun A 2015 Model Uncertainty Quantification. In:Model Calibration and Parameter Estimation:ForEnvironmental and Water Resource Systems (New York:Springer) pp407-458

    [18]

    Isukapalli S S, Roy A, Georgopoulos P G 1998 Risk Anal. 18 351

    [19]

    Tatang M A, Pan W, Prinn R G, McRae G J 1997 J. Geophys. Res. -Atmos. 102 21925 doi:101029/97jd01654

    [20]

    Wang Y P, Cheng Y, Zhang Z Y, Lin G 2018 Math. Model. Nat. Phenom. 13 doi:101051/mmnp/2018023

    [21]

    Whitaker J S, Hamill M 2003 Mon. Weather. Rev. 130 1913

    [22]

    Matre O P L, Knio O M 2010 Spectral Methods for Uncertainty Quantification (Netherlands:Springer) p536

  • [1] 庄杰, 韩瑞, 季振宇, 石富坤. 量化电导率模型参数多样性导致的脉冲电场消融预测的不确定性. 物理学报, 2023, 72(14): 147701. doi: 10.7498/aps.72.20230203
    [2] 郭唯琛, 艾保全, 贺亮. 机器学习回归不确定性揭示自驱动活性粒子的群集相变. 物理学报, 2023, 72(20): 200701. doi: 10.7498/aps.72.20230896
    [3] 张诗琪, 杨化通. 不确定性的定量描述和熵不确定关系. 物理学报, 2023, 72(11): 110303. doi: 10.7498/aps.72.20222443
    [4] 王兴平, 赵刚, 焦康, 陈兵, 阚瑞峰, 刘建国, 马维光. 光学反馈线性腔衰荡光谱技术不确定性. 物理学报, 2022, 71(12): 124201. doi: 10.7498/aps.70.20220186
    [5] 王兴平, 赵刚, 焦康, 陈兵, 阚瑞峰, 刘建国, 马维光. 光学反馈线性腔衰荡光谱技术不确定性研究. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220186
    [6] 张少东, 孙超, 谢磊, 刘雄厚, 王宣. 浅海波导环境不确定性对声源功率估计的影响. 物理学报, 2021, 70(24): 244301. doi: 10.7498/aps.70.20210852
    [7] 李风华, 王翰卓. 利用随机多项式展开的海底声学参数反演方法. 物理学报, 2021, 70(17): 174305. doi: 10.7498/aps.70.20210119
    [8] 肖培, 李佳维, 贺佳港, 李锦新, 刘柱, 李高升. 一种不确定性捆扎线束电磁耦合效应的广义等效建模方法. 物理学报, 2021, 70(10): 100702. doi: 10.7498/aps.70.20201723
    [9] 张伟, 张合, 陈勇, 张祥金, 徐孝彬. 脉冲激光四象限探测器测角不确定性统计分布. 物理学报, 2017, 66(1): 012901. doi: 10.7498/aps.66.012901
    [10] 李鹤龄, 王娟娟, 杨斌, 王亚妮, 沈宏君. 广义不确定性原理下费米气体低温热力学性质. 物理学报, 2015, 64(8): 080502. doi: 10.7498/aps.64.080502
    [11] 徐庭栋, 刘珍君, 于鸿垚, 王凯. 拉伸试验测试金属韧性的不确定性:中温脆性和应变速率脆性. 物理学报, 2014, 63(22): 228101. doi: 10.7498/aps.63.228101
    [12] 吴学礼, 刘杰, 张建华, 王英. 基于不确定性变时滞分数阶超混沌系统的滑模自适应鲁棒的同步控制. 物理学报, 2014, 63(16): 160507. doi: 10.7498/aps.63.160507
    [13] 吴涛, 金义富, 侯睿, 杨俊杰. 不确定性边缘表示与提取的认知物理学方法. 物理学报, 2013, 62(6): 064201. doi: 10.7498/aps.62.064201
    [14] 曾喆昭, 雷妮, 盛立锃. 不确定混沌系统的多项式函数模型补偿控制. 物理学报, 2013, 62(15): 150506. doi: 10.7498/aps.62.150506
    [15] 吴 楚. 多项式角动量代数的代数表示及实现. 物理学报, 2006, 55(6): 2676-2681. doi: 10.7498/aps.55.2676
    [16] 马少娟, 徐 伟, 李 伟. 基于Laguerre多项式逼近法的随机双势阱Duffing系统的分岔和混沌研究. 物理学报, 2006, 55(8): 4013-4019. doi: 10.7498/aps.55.4013
    [17] 马少娟, 徐 伟, 李 伟, 靳艳飞. 基于Chebyshev多项式逼近的随机 van der Pol系统的倍周期分岔分析. 物理学报, 2005, 54(8): 3508-3515. doi: 10.7498/aps.54.3508
    [18] 王兴元, 刘 明. 用滑模控制方法实现具有扇区非线性输入的主从混沌系统同步. 物理学报, 2005, 54(6): 2584-2589. doi: 10.7498/aps.54.2584
    [19] 岳 东, Jun Yoneyama. 含不确定性混沌系统的模糊自适应同步. 物理学报, 2003, 52(2): 292-297. doi: 10.7498/aps.52.292
    [20] 李智, 韩崇昭. 一类含参数不确定性混沌系统的自适应控制. 物理学报, 2001, 50(5): 847-850. doi: 10.7498/aps.50.847
计量
  • 文章访问数:  5635
  • PDF下载量:  110
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-24
  • 修回日期:  2018-07-10
  • 刊出日期:  2018-10-05

/

返回文章
返回