搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光聚焦扰动作用下高超声速边界层稳定性实验研究

刘小林 易仕和 牛海波 陆小革

引用本文:
Citation:

激光聚焦扰动作用下高超声速边界层稳定性实验研究

刘小林, 易仕和, 牛海波, 陆小革

Influence of laser-generated perturbations on hypersonic boundary-layer stability

Liu Xiao-Lin, Yi Shi-He, Niu Hai-Bo, Lu Xiao-Ge
PDF
导出引用
  • 在马赫数6、单位雷诺数3.1×106/m的条件下对半锥角7°直圆锥边界层稳定性开展了实验研究.以激光聚焦于流场中局部空间而产生的膨胀冲击波作为人工添加的小扰动,分析了该扰动对高超声速圆锥边界层流动稳定性的影响.实验中利用响应频率达到兆赫兹量级的高频压力传感器对圆锥壁面脉动压力进行测量,通过对压力数据进行短时傅里叶分析和功率谱分析发现,相比于不添加激光聚焦扰动的结果,添加激光聚焦扰动使边界层中第二模态波的出现位置提前,且扰动波的幅值大幅度地增加,在相同的流向范围内,激光聚焦扰动将边界层中的扰动波从线性发展阶段推进到非线性发展阶段,其对边界层中扰动波发展的促进效果明显.同时,激光聚焦位置的不同对边界层中扰动波的发展也具有不同的影响.当激光直接聚焦于圆锥壁面X=100 mm位置时,边界层中频率为90 kHz的扰动波幅值增长最快,在X=500 mm的位置处其幅值放大倍数为3.81,相比而言当激光聚焦位置位于圆锥前方自由来流中时,边界层幅值增长最快的扰动波频率大幅减小为73 kHz,相同范围内,其幅值放大倍数为4.51倍.由此可见,当激光聚焦位置位于圆锥上游的自由来流中时,其对边界层中扰动波的影响更为显著.
    In this paper, the boundary layer flow stability is investigated experimentally in a 7° half-angle straight cone under the condition of Mach number 6 and unit Reynolds number 3.1×106/m. Expanded shock wave generated by focusing laser in a limit space is used as the small artificial disturbance, and the influence of the laser-generated perturbation on the stability of the hypersonic boundary layer is analyzed. In the experiment, the wall fluctuation pressure is measured by the high-frequency pressure sensors whose response frequencies each reach a value on the order of megahertz. Through the short time Fourier transformation and power spectrum density analysis of the pressure data, the results show that when the laser-generated perturbation is added to the flow field, the position of the second mode wave advances and the amplitude of the disturbance wave greatly increases. Within the same flow range, the laser focusing on disturbance pushes the disturbance wave in the boundary layer from the linear development phase into the nonlinear development state. The laser-generated perturbation has a significant effect on the promotion of the development of disturbance waves in the boundary layer. At the same time, laser-generated perturbation that has different influences on the boundary layer when it focuses on different positions. When the laser focus disturbance focuses on the location X=100 mm, the amplitude of the disturbance wave with a frequency of 90 kHz in the boundary layer grows fastest, and the amplitude magnification at the position of X=500 mm is 3.81. When the laser perturbation is added to the free flow in front of the cone, the frequency of the disturbance wave with the fastest amplitude increase speed greatly decreases to 73 kHz. In the same range, the amplitude magnification is 4.51 times. It can be seen that when the laser focuses on the free stream upstream from the cone, its effect on the disturbance wave in the boundary layer is more significant.
      通信作者: 刘小林, liuxiaolin09@nudt.edu.cn
    • 基金项目: 国家重点研发计划(批准号:2016YFA0401200)、国家重大科研仪器研制项目(批准号:11527802)和国家自然科学基金重大研究计划(批准号:91752102)资助的课题.
      Corresponding author: Liu Xiao-Lin, liuxiaolin09@nudt.edu.cn
    • Funds: Project supported by the National Key Research and Development Plan of China (Grant No. 2016YFA0401200), the National Project for Research and Development of Major Scientific Instruments of China (Grant No.11527802), and the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91752102).
    [1]

    Morkovin M V, Reshotko E, Herbert T 1994 Bull. Am. Phys. Soc. 39 1882

    [2]

    Mack L M 1975 AIAA J. 13 278

    [3]

    Mack L M 1984 AGARD Rep. 709

    [4]

    Malik M 1989 AIAA J. 27 1487

    [5]

    Demetriades A 1974 7th Fluid and PlasmaDynamics Conference Palo Alto, CA, USA, June 17-19, 1974 p535

    [6]

    Kendall J M 1974 12th Aerospace Sciences Meeting Washington, DC, USA, January 30-February 1, 1974 p133

    [7]

    Stetson K, Kimmel R 1992 30th Aerospace Sciences Meeting and Exhibit Reno, NV, USA, January 6-9, 1992 p737

    [8]

    Haddad O M, Corke T C 1998 J. Fluids Mech. 368 1

    [9]

    Zhong X L, Ma Y B 2006 J. Fluids Mech. 556 55

    [10]

    Wang X W, Zhong X L 2009 Phys. Fluids 21 044101

    [11]

    Balakumar P, Kegerise M A 2015 AIAA J. 53 2097

    [12]

    Balakumar P, Chou A 2018 AIAA J. 56 193

    [13]

    Cao W, Zhou H 2004 Sci. China Ser. G 34 203 (in Chinese) [曹伟, 周恒 2008 中国科学 G 辑 34 203]

    [14]

    Lu C G, Shen L Y 2016 Acta Phys. Sin. 65 194701 (in Chinese) [陆昌根, 沈露予 2016 物理学报 65 194701]

    [15]

    Zhang Y D, Fu D X, Ma Y W 2008 Sci. China Ser. G 38 1246 (in Chinese) [张玉东, 傅德薰, 马延文, 李新亮 2008 中国科学 G 辑 38 1246]

    [16]

    Kendall J M 1987 19th AIAA, Fluid Dynamics, Plasma Dynamics, and Lasers Conference Honolulu, HI, USA, June 8-10, 1987 p1257

    [17]

    Kendall J M 1990 21st Fluid Dynamics, Plasma Dynamics and Lasers Conference Seattle, WA, USA, June 18-20, 1990 p504

    [18]

    Maslov A A, Shiplyuk A N, Sidorenko A A, Arnal D 2001 J. Fluids Mech. 426 73

    [19]

    Schmisseur J D, Schneider S P, Collicott S H 2002 Exp. Fluids 33 225

    [20]

    Chou A, Balakumar P, Schneider S P 2017 AIAA J. 55 799

    [21]

    Liu X L, Yi S H, Niu H B, Lu X G, Zhao X H 2018 Acta Phys. Sin. 67 174701 (in Chinese)[刘小林, 易仕和, 牛海波, 陆小革, 赵鑫海 2018 物理学报 67 174701]

    [22]

    Chen F J, Malik M R, Beckwith I E 1989 AIAA J. 27 687

    [23]

    Casper K M, Johnson H B, Schneider S P 2011 J. Spacecr. Rockets 48 406

    [24]

    Schneider S P, Haven C E 1995 AIAA J. 33 688

    [25]

    Bountin D, Shiplyuk A, Maslov A 2008 J. Fluids Mech. 611 427

    [26]

    Cebeci T, Shao J P, Chen H H, Chang K C 2004 The Preferred Approach for Calculating Transition by Stability Theory (Toulouse: International Conference on Boundary and Interior Layers)

    [27]

    Crouch J D, Kosorygin V S, Ng L L 2006 The Sixth IUTAM Symposium on Laminar-Turbulent Transition Bangalore India, December 13-17, 2004 p37

  • [1]

    Morkovin M V, Reshotko E, Herbert T 1994 Bull. Am. Phys. Soc. 39 1882

    [2]

    Mack L M 1975 AIAA J. 13 278

    [3]

    Mack L M 1984 AGARD Rep. 709

    [4]

    Malik M 1989 AIAA J. 27 1487

    [5]

    Demetriades A 1974 7th Fluid and PlasmaDynamics Conference Palo Alto, CA, USA, June 17-19, 1974 p535

    [6]

    Kendall J M 1974 12th Aerospace Sciences Meeting Washington, DC, USA, January 30-February 1, 1974 p133

    [7]

    Stetson K, Kimmel R 1992 30th Aerospace Sciences Meeting and Exhibit Reno, NV, USA, January 6-9, 1992 p737

    [8]

    Haddad O M, Corke T C 1998 J. Fluids Mech. 368 1

    [9]

    Zhong X L, Ma Y B 2006 J. Fluids Mech. 556 55

    [10]

    Wang X W, Zhong X L 2009 Phys. Fluids 21 044101

    [11]

    Balakumar P, Kegerise M A 2015 AIAA J. 53 2097

    [12]

    Balakumar P, Chou A 2018 AIAA J. 56 193

    [13]

    Cao W, Zhou H 2004 Sci. China Ser. G 34 203 (in Chinese) [曹伟, 周恒 2008 中国科学 G 辑 34 203]

    [14]

    Lu C G, Shen L Y 2016 Acta Phys. Sin. 65 194701 (in Chinese) [陆昌根, 沈露予 2016 物理学报 65 194701]

    [15]

    Zhang Y D, Fu D X, Ma Y W 2008 Sci. China Ser. G 38 1246 (in Chinese) [张玉东, 傅德薰, 马延文, 李新亮 2008 中国科学 G 辑 38 1246]

    [16]

    Kendall J M 1987 19th AIAA, Fluid Dynamics, Plasma Dynamics, and Lasers Conference Honolulu, HI, USA, June 8-10, 1987 p1257

    [17]

    Kendall J M 1990 21st Fluid Dynamics, Plasma Dynamics and Lasers Conference Seattle, WA, USA, June 18-20, 1990 p504

    [18]

    Maslov A A, Shiplyuk A N, Sidorenko A A, Arnal D 2001 J. Fluids Mech. 426 73

    [19]

    Schmisseur J D, Schneider S P, Collicott S H 2002 Exp. Fluids 33 225

    [20]

    Chou A, Balakumar P, Schneider S P 2017 AIAA J. 55 799

    [21]

    Liu X L, Yi S H, Niu H B, Lu X G, Zhao X H 2018 Acta Phys. Sin. 67 174701 (in Chinese)[刘小林, 易仕和, 牛海波, 陆小革, 赵鑫海 2018 物理学报 67 174701]

    [22]

    Chen F J, Malik M R, Beckwith I E 1989 AIAA J. 27 687

    [23]

    Casper K M, Johnson H B, Schneider S P 2011 J. Spacecr. Rockets 48 406

    [24]

    Schneider S P, Haven C E 1995 AIAA J. 33 688

    [25]

    Bountin D, Shiplyuk A, Maslov A 2008 J. Fluids Mech. 611 427

    [26]

    Cebeci T, Shao J P, Chen H H, Chang K C 2004 The Preferred Approach for Calculating Transition by Stability Theory (Toulouse: International Conference on Boundary and Interior Layers)

    [27]

    Crouch J D, Kosorygin V S, Ng L L 2006 The Sixth IUTAM Symposium on Laminar-Turbulent Transition Bangalore India, December 13-17, 2004 p37

  • [1] 曾瑞童, 易仕和, 陆小革, 赵玉新, 张博, 冈敦殿. 内流可视超声速喷管边界层实验研究. 物理学报, 2024, 73(16): 164702. doi: 10.7498/aps.73.20240713
    [2] 张震, 易仕和, 刘小林, 陈世康, 张臻. 高超声速条件下凸曲率壁面混合层的流动演化. 物理学报, 2024, 73(10): 104701. doi: 10.7498/aps.73.20240128
    [3] 胡玉发, 易仕和, 刘小林, 徐席旺, 张震, 张臻. 壁面渗透气膜工质对圆锥高超声速边界层稳定性的影响. 物理学报, 2024, 73(12): 124701. doi: 10.7498/aps.73.20240369
    [4] 吴明兴, 田得阳, 唐璞, 田径, 何子远, 马平. 高超声速模型尾迹电子密度二维分布反演方法研究. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212345
    [5] 吴明兴, 田得阳, 唐璞, 田径, 何子远, 马平. 高超声速模型尾迹电子密度二维分布反演方法. 物理学报, 2022, 71(11): 115202. doi: 10.7498/aps.70.20212345
    [6] 罗仕超, 吴里银, 常雨. 高超声速湍流流动磁流体动力学控制机理. 物理学报, 2022, 71(21): 214702. doi: 10.7498/aps.71.20220941
    [7] 刘勇, 涂国华, 向星皓, 李晓虎, 郭启龙, 万兵兵. 横向矩形微槽抑制高超声速第二模态扰动波的参数化研究. 物理学报, 2022, 71(19): 194701. doi: 10.7498/aps.71.20220851
    [8] 黄亚冬, 王智河, 周本谋. 圆柱绕流尾迹转捩电磁力控制研究. 物理学报, 2022, 71(22): 224702. doi: 10.7498/aps.71.20221357
    [9] 郑文鹏, 易仕和, 牛海波, 霍俊杰. 高超声速4∶1椭圆锥横流不稳定性实验研究. 物理学报, 2021, 70(24): 244702. doi: 10.7498/aps.70.20210807
    [10] 牛海波, 易仕和, 刘小林, 霍俊杰, 冈敦殿. 高超声速三角翼上横流不稳定性的实验研究. 物理学报, 2021, 70(13): 134701. doi: 10.7498/aps.70.20201777
    [11] 唐冰亮, 郭善广, 宋国正, 罗彦浩. 脉冲电弧等离子体激励控制超声速平板边界层转捩实验. 物理学报, 2020, 69(15): 155201. doi: 10.7498/aps.69.20200216
    [12] 张博, 何霖, 易仕和. 超声速湍流边界层密度脉动小波分析. 物理学报, 2020, 69(21): 214702. doi: 10.7498/aps.69.20200748
    [13] 李强, 赵磊, 陈苏宇, 江涛, 庄宇, 张扣立. 展向凹槽及泄流孔对高超声速平板边界层转捩影响的试验研究. 物理学报, 2020, 69(2): 024703. doi: 10.7498/aps.69.20191155
    [14] 刘小林, 易仕和, 牛海波, 陆小革, 赵鑫海. 高超声速条件下7°直圆锥边界层转捩实验研究. 物理学报, 2018, 67(17): 174701. doi: 10.7498/aps.67.20180531
    [15] 丁浩林, 易仕和, 朱杨柱, 赵鑫海, 何霖. 不同光线入射角度下超声速湍流边界层气动光学效应的实验研究. 物理学报, 2017, 66(24): 244201. doi: 10.7498/aps.66.244201
    [16] 何霖, 易仕和, 陆小革. 超声速湍流边界层密度场特性. 物理学报, 2017, 66(2): 024701. doi: 10.7498/aps.66.024701
    [17] 刘强, 罗振兵, 邓雄, 杨升科, 蒋浩. 合成冷/热射流控制超声速边界层流动稳定性. 物理学报, 2017, 66(23): 234701. doi: 10.7498/aps.66.234701
    [18] 王小虎, 易仕和, 付佳, 陆小革, 何霖. 二维高超声速后台阶表面传热特性实验研究. 物理学报, 2015, 64(5): 054706. doi: 10.7498/aps.64.054706
    [19] 付佳, 易仕和, 王小虎, 张庆虎, 何霖. 高超声速平板边界层流动显示的试验研究. 物理学报, 2015, 64(1): 014704. doi: 10.7498/aps.64.014704
    [20] 王立锋, 滕爱萍, 叶文华, 范征锋, 陶烨晟, 林传栋, 李英骏. 超声速流体Kelvin-Helmholtz不稳定性速度梯度效应研究. 物理学报, 2009, 58(12): 8426-8431. doi: 10.7498/aps.58.8426
计量
  • 文章访问数:  6355
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-19
  • 修回日期:  2018-07-09
  • 刊出日期:  2018-11-05

/

返回文章
返回