搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Xe-NH (X3∑-)体系的势能面和冷碰撞动力学研究

乔政 王雅丽 吴明伟 凤尔银 黄武英

引用本文:
Citation:

Xe-NH (X3∑-)体系的势能面和冷碰撞动力学研究

乔政, 王雅丽, 吴明伟, 凤尔银, 黄武英

Potential energy surface and cold collision dynamics of Xe-NH(X3∑-) system

Qiao Zheng1\2, Wang Ya-Li, Wu Ming-Wei, Feng Er-Yin, Huang Wu-Ying
PDF
导出引用
  • 以超冷Xe原子感应冷却NH(X3∑-)分子实验为背景,理论研究磁场中Xe和NH的冷碰撞动力学性质.通过从头算方法得到了解析表达的Xe-NH体系势能面,并在此基础上采用量子动力学计算方法,研究了磁场条件下NH低场追索态(n=0,mj=1)的冷碰撞塞曼弛豫截面.结果表明超冷Xe原子感应冷却NH分子可能在实验上难以实施.
    Sympathetic cooling is one of the most promising techniques for producing ultracold molecules from precooled molecules. Previous researches have shown that it is inadequate to use the ultracold alkali-metal atoms as coolant for sympathetic cooling. To explore the possibility of ultracold alkali-earth-metal atoms as coolant, in this paper a theoretical investigation is performed of the cold collision dynamics for Xe-NH(X3∑-) system in magnetic fields. The interaction potential energies of Xe-NH complex are calculated respectively by using the single and double excitation coupled-cluster theory with the noniterative treatment of triple excitations[CCSD(T)] method and complete basis set limit extrapolated method. An analytic express of potential energy surface (PES) is given for the first time. A single global minimum value occurs at R=7.14a0, θ=102.76° with an energy of-153.54 cm-1, and the PES has a weak anisotropy. Combine the ab initio PES with quantum scattering theory, then the cold collisional dynamics of Xe-NH system in a magnetic field will be studied. The elastic and inelastic transition cross sections and their ratios of NH molecules in the lowest low-field following state (n=0, mj=1) under different magnetic fields and collisional energies are calculated. The results show that the elastic cross section is independent of magnetic field, and the inelastic cross section changes with magnetic field, especially at an ultracold temperature. A common rule of thumb is that to successfully implement cooling, the ratio of elastic cross section to inelastic cross section needs to reach 100 at least. The results suggest that it is likely to be a challenging work to perform sympathetic cooling of NH molecule by ultracold Xe atom.
      通信作者: 凤尔银, fengbf@mail.ahnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:10874001,11374014)资助的课题.
      Corresponding author: Feng Er-Yin, fengbf@mail.ahnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 10874001, 11374014).
    [1]

    Zwierlein M W, Stan C A, Schunck C H, Raupach S M F, Gupta S, Hadzibabic Z, Ketterle W 2003 Phys. Rev. Lett. 91 250401

    [2]

    Sage J M, Sainis S, Bergeman T, Demille D 2005 Phys. Rev. Lett. 94 203001

    [3]

    Ni K K, Ospelkaus S, de Miranda M H G, Péer A, Neyenhuis B, Zirbel J J, Kotochigova S, Julienne P S, Jin D S, Ye J 2008 Science 322 231

    [4]

    Ospelkaus S, Ni K K, Wang D, de Miranda M H G, Neyenhuis B, Qúeméner G, Julienne P S, Bohn J L, Jin D S, Ye J 2010 Science 327 853

    [5]

    Park J W, Will S A, Zwierlein M W 2015 Phys. Rev. Lett. 114 205302

    [6]

    Weinstein J D, de Carvalho R, Guillet T, Friedrich B, Doyle J M 1998 Nature 395 148

    [7]

    Bethlem H L, Meijer G 2003 Int. Rev. Phys. Chem. 22 73

    [8]

    Fu M K, Ma H T, Cao J W, Bian W S 2016 J. Chem. Phys. 144 184302

    [9]

    Xia W S, Fu M K, Ma H T, Bian W S 2017 Chem. Phys. 485 29

    [10]

    Krems R V, Stwalley W C, Friedrich B 2009 Cold Molecules: Theory, Experiment, Applications (London: Taylor & Francis) p651

    [11]

    Modugno G, Ferrari G, Roati G, Brecha R J, Simoni A, Inguscio M 2001 Science 294 1320

    [12]

    SoldánP, Hutson J M 2004 Phys. Rev. Lett. 92 163202

    [13]

    Hummon M T, Yeo M, Stuhl B K, Collopy A L, Xia Y, Ye J 2013 Phys. Rev. Lett. 110 143001

    [14]

    de Carvalho R, Doyle J M, Friedrich B, Guillet T, Kim J, Patterson D, Weinstein J D 1999 Eur. Phys. J. D 7 289

    [15]

    Żuchowski P S, Hutson J M 2008 Phys. Rev. A 78 022701

    [16]

    Barker P F, Purcell S M, Douglas P, Barletta P, Coppendale N, Maher-McWilliams C, Tennyson J 2009 Faraday Discuss. 142 175

    [17]

    Barletta P, Tennyson J, Barker P F 2009 New J. Phys. 11 055029

    [18]

    González-Martínez M L, Huston J M 2013 Phys. Rev. Lett. 111 203004

    [19]

    Bytautas L, Ruedenberg K 2008 J. Chem. Phys. 128 214308

    [20]

    Bukowski R, Sadlej J, Jeziorski B, Jankowski P, Szalewicz K, Kucharski S A, Williams H L, Rice B M 1999 J. Chem. Phys. 110 3785

    [21]

    Guillon G, Stoecklin T, Voronin A 2008 Phys. Rev. A. 77 042718

    [22]

    Manolopoulos D E 1986 J. Chem. Phys. 85 6425

    [23]

    Volpi A, Bohn J L 2002 Phys. Rev. A 65 052712

    [24]

    Wallis A O G, Huston J M 2009 Phys. Rev. Lett. 103 183201

    [25]

    Tiesinga E, Verhaar B J, Stoof H T C 1993 Phys. Rev. A 47 4114

  • [1]

    Zwierlein M W, Stan C A, Schunck C H, Raupach S M F, Gupta S, Hadzibabic Z, Ketterle W 2003 Phys. Rev. Lett. 91 250401

    [2]

    Sage J M, Sainis S, Bergeman T, Demille D 2005 Phys. Rev. Lett. 94 203001

    [3]

    Ni K K, Ospelkaus S, de Miranda M H G, Péer A, Neyenhuis B, Zirbel J J, Kotochigova S, Julienne P S, Jin D S, Ye J 2008 Science 322 231

    [4]

    Ospelkaus S, Ni K K, Wang D, de Miranda M H G, Neyenhuis B, Qúeméner G, Julienne P S, Bohn J L, Jin D S, Ye J 2010 Science 327 853

    [5]

    Park J W, Will S A, Zwierlein M W 2015 Phys. Rev. Lett. 114 205302

    [6]

    Weinstein J D, de Carvalho R, Guillet T, Friedrich B, Doyle J M 1998 Nature 395 148

    [7]

    Bethlem H L, Meijer G 2003 Int. Rev. Phys. Chem. 22 73

    [8]

    Fu M K, Ma H T, Cao J W, Bian W S 2016 J. Chem. Phys. 144 184302

    [9]

    Xia W S, Fu M K, Ma H T, Bian W S 2017 Chem. Phys. 485 29

    [10]

    Krems R V, Stwalley W C, Friedrich B 2009 Cold Molecules: Theory, Experiment, Applications (London: Taylor & Francis) p651

    [11]

    Modugno G, Ferrari G, Roati G, Brecha R J, Simoni A, Inguscio M 2001 Science 294 1320

    [12]

    SoldánP, Hutson J M 2004 Phys. Rev. Lett. 92 163202

    [13]

    Hummon M T, Yeo M, Stuhl B K, Collopy A L, Xia Y, Ye J 2013 Phys. Rev. Lett. 110 143001

    [14]

    de Carvalho R, Doyle J M, Friedrich B, Guillet T, Kim J, Patterson D, Weinstein J D 1999 Eur. Phys. J. D 7 289

    [15]

    Żuchowski P S, Hutson J M 2008 Phys. Rev. A 78 022701

    [16]

    Barker P F, Purcell S M, Douglas P, Barletta P, Coppendale N, Maher-McWilliams C, Tennyson J 2009 Faraday Discuss. 142 175

    [17]

    Barletta P, Tennyson J, Barker P F 2009 New J. Phys. 11 055029

    [18]

    González-Martínez M L, Huston J M 2013 Phys. Rev. Lett. 111 203004

    [19]

    Bytautas L, Ruedenberg K 2008 J. Chem. Phys. 128 214308

    [20]

    Bukowski R, Sadlej J, Jeziorski B, Jankowski P, Szalewicz K, Kucharski S A, Williams H L, Rice B M 1999 J. Chem. Phys. 110 3785

    [21]

    Guillon G, Stoecklin T, Voronin A 2008 Phys. Rev. A. 77 042718

    [22]

    Manolopoulos D E 1986 J. Chem. Phys. 85 6425

    [23]

    Volpi A, Bohn J L 2002 Phys. Rev. A 65 052712

    [24]

    Wallis A O G, Huston J M 2009 Phys. Rev. Lett. 103 183201

    [25]

    Tiesinga E, Verhaar B J, Stoof H T C 1993 Phys. Rev. A 47 4114

  • [1] 周飞, 贾凤东, 刘修彬, 张剑, 谢锋, 钟志萍. 基于冷里德堡原子电磁感应透明的微波电场测量. 物理学报, 2023, 72(4): 045204. doi: 10.7498/aps.72.20222059
    [2] 陈涛, 颜波. 极性分子的激光冷却及囚禁技术. 物理学报, 2019, 68(4): 043701. doi: 10.7498/aps.68.20181655
    [3] 秦燕, 栗生长. 基于方波脉冲外场的超冷原子-分子绝热转化. 物理学报, 2018, 67(20): 203701. doi: 10.7498/aps.67.20180908
    [4] 张云光, 张华, 窦戈, 徐建刚. 激光冷却OH分子的理论研究. 物理学报, 2017, 66(23): 233101. doi: 10.7498/aps.66.233101
    [5] 梁腾, 马堃, 武中文, 张登红, 董晨钟, 师应龙. Xe53+离子与Xe原子碰撞过程中的辐射电子俘获和辐射退激发光谱的理论研究. 物理学报, 2016, 65(14): 143401. doi: 10.7498/aps.65.143401
    [6] 高鹏飞, 刘铁, 柴少伟, 董蒙, 王强. 磁感应强度和冷却速率对Tb0.27Dy0.73Fe1.95合金凝固过程中取向行为的影响. 物理学报, 2016, 65(3): 038104. doi: 10.7498/aps.65.038104
    [7] 梁腾, 马堃, 陈曦, 颉录有, 董晨钟, 邵曹杰, 于得洋, 蔡晓红. Xe54+离子与Xe原子碰撞过程中的辐射电子俘获及退激发辐射的理论研究. 物理学报, 2015, 64(15): 153401. doi: 10.7498/aps.64.153401
    [8] 白金海, 芦小刚, 缪兴绪, 裴丽娅, 王梦, 高艳磊, 王如泉, 吴令安, 傅盘铭, 左战春. Rb87冷原子电磁感应透明吸收曲线不对称性的分析. 物理学报, 2015, 64(3): 034206. doi: 10.7498/aps.64.034206
    [9] 韩玉龙, 张侃, 凤尔银, 黄武英. Mg-CO(X1Σ+)体系的冷碰撞动力学. 物理学报, 2015, 64(10): 103402. doi: 10.7498/aps.64.103402
    [10] 臧华平, 李文峰, 令狐荣锋, 程新路, 杨向东. 20 Ne(34 Ne)原子与18 Na2(23 Na2,37 Na2)分子低温下冷碰撞的同位素效应研究. 物理学报, 2011, 60(5): 050303. doi: 10.7498/aps.60.050303
    [11] 臧华平, 李文峰, 令狐荣锋, 程新路, 杨向东. 钠分子同位素替代对低温下的He-Na2冷碰撞体系转动激发积分散射截面的影响. 物理学报, 2011, 60(2): 020304. doi: 10.7498/aps.60.020304
    [12] 宫明艳. He原子和BH分子碰撞体系的转动激发能量转移. 物理学报, 2011, 60(7): 073401. doi: 10.7498/aps.60.073401
    [13] 马红玉, 成华东, 张文卓, 刘亮, 王育竹. 积分球内的铷原子激光冷却. 物理学报, 2009, 58(3): 1569-1573. doi: 10.7498/aps.58.1569
    [14] 王悦, 董德智, 李伟艳, 凤尔银, 崔执凤. He-Na2体系低温下的冷碰撞研究. 物理学报, 2009, 58(10): 6913-6919. doi: 10.7498/aps.58.6913
    [15] 陆俊发, 纪宪明, 印建平. 实现冷原子或冷分子囚禁的可控制光学四阱. 物理学报, 2006, 55(4): 1740-1750. doi: 10.7498/aps.55.1740
    [16] 沐仁旺, 李雅丽, 纪宪明, 印建平. 实现冷原子(冷分子)囚禁的可控制光学双阱的产生及其实验研究. 物理学报, 2006, 55(12): 6333-6341. doi: 10.7498/aps.55.6333
    [17] 印建平, 高伟建. 局域中空光束中原子的强度梯度冷却. 物理学报, 2004, 53(12): 4157-4162. doi: 10.7498/aps.53.4157
    [18] 曹柱荣, 蔡晓红, 于得洋, 杨 威, 卢荣春, 邵曹杰, 陈熙萌. 高电荷态Xe离子与He原子碰撞中的电子转移过程研究. 物理学报, 2004, 53(9): 2943-2946. doi: 10.7498/aps.53.2943
    [19] 刘亮, 陈洪新, 王育竹. 高效率激光冷却原子束. 物理学报, 1993, 42(11): 1762-1765. doi: 10.7498/aps.42.1762
    [20] 侯氢, 李家明. 自旋极化电子与Xe原子的弹性碰撞. 物理学报, 1992, 41(9): 1424-1430. doi: 10.7498/aps.41.1424
计量
  • 文章访问数:  5199
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-09
  • 修回日期:  2018-09-03
  • 刊出日期:  2018-11-05

/

返回文章
返回