-
利用低频光通信波段真空压缩态光场可实现基于光纤的量子精密测量.本文利用简并光学参量振荡器实验制备出1550 nm低频真空压缩态光场.在分析频段10–500 kHz范围内压缩态光场的压缩度均达3 dB.用实验制备的1550 nm真空压缩态光场填补光纤马赫-曾德尔干涉仪的真空通道,实现了量子增强型光纤马赫-曾德尔干涉仪,完成了突破标准量子极限的相位调制频率为500 kHz的低频信号测量.与光纤马赫-曾德尔干涉仪相比,测量信噪比提高了2 dB.
-
关键词:
- 量子精密测量 /
- 低频真空压缩态光场 /
- 光纤马赫-曾德尔干涉仪 /
- 光通信波段
Generation of squeezed state at telecommunication wavelength has been recently a very interesting issue due to the lowest optical power attenuation of light at a wavelength of 1550 nm in a standard telecommunication fiber. The low-frequency vacuum squeezed state at 1550 nm in combination with fiber based interferometer offers the possibility to implement quantum precision measurement beyond standard quantum limit (SQL). In this paper, we experimentally realize a quantum-enhanced fiber Mach-Zehnder interferometer (FMZI) for measuring the low-frequency phase modulation signal by using low-frequency vacuum squeezing at 1550 nm. Firstly, the low-frequency vacuum squeezed state at the telecommunication wavelength of 1550 nm is generated by using a degenerate optical parametric oscillator (DOPO). The DOPO is a semi-monolithic construction based on a type I periodically poled KTiOPO4 (PPKTP) crystal and a concave mirror. The pump threshold of DOPO is 270 mW. When the pump power is 120 mW that is below the pump threshold of DOPO and the temperature of PPKTP is controlled at 34.8℃, a vacuum squeezing of 3 dB is generated at an analysis frequency range from 10 kHz to 500 kHz. The quadrature phase vacuum squeezing is obtained by locking the squeezed quadrature angle through using a coherent control scheme, in which two acousto-optic modulators are used to shift the frequency and produce the auxiliary beam acting as a coherent control field. Based on the constructed FMZI, a quantum-enhanced FMZI is realized by injecting the generated low-frequency vacuum squeezed state at 1550 nm into the vacuum channel of FMZI. The relative phase between two injected light fields is locked at π by using the Pound-Drever-Hall (PDH) locking technology, and the relative phase between light fields of its arms in FMZI is also locked at π/2 by using the PDH locking technology. When a phase modulation signal at the frequency of 500 kHz is loaded in the signal arm of FMZI, the noise power spectrum of the output from FMZI is measured by a balance homodyne detect system. A 2 dB quantum improvement beyond shot-noise-level at the frequency of 500 kHz is obtained experimentally by using the quantum-enhanced FMZI. The experimental results demonstrate a potential application in quantum precision measurement beyond the SQL based on fiber sensor technique.-
Keywords:
- quantum precision measurement /
- low-frequency vacuum squeezed light /
- fiber Mach-Zehnder interferometer /
- telecommunication wavelength
[1] Caves C M 1981 Phys. Rev. D 23 1693
[2] Xiao M, Wu L A, Kimble H J 1987 Phys. Rev. Lett. 59 278
[3] Grangier P, Slusher R, Yurke B, LaPorta A 1987 Phys. Rev. Lett. 59 2153
[4] Horrom T, Singh R, Dowling J P, Mikhailov E E 2012 Phys. Rev. A 86 023803
[5] Sun H X, Liu Z L, Liu K, Yang R G, Zhang J X, Gao J R 2014 Chin. Phys. Lett. 31 084202
[6] The L I G O Scientific Collaboration 2011 Nature Phys. 7 962
[7] The L I G O Scientific Collaboration 2013 Nat. Photon. 7 613
[8] Arditty H J, Lefevre H C 1981 Opt. Lett. 6 401
[9] Li L C, Li X, Yu J, Xie Z H 2012 Opt. Express 20 11109
[10] Sun H, Yang S, Zhang X L 2015 Opt. Commun. 340 39
[11] Mehmet M, Eberle T, Steinlechner S, Vahlbruch H, Schnabel R 2010 Opt. Lett. 35 1665
[12] Liu F, Zhou Y Y, Yu J, Guo J L, Wu Y, Xiao S X, Wei D, Zhang Y, Jia X J, Xiao M 2017 Appl. Phys. Lett. 110 021106
[13] Schonbeck A, Thies F, Schnabel R 2018 Opt. Lett. 43 110
[14] Paris M G A 1995 Phys. Lett. A 201 132
[15] Vahlbruch H, Chelkowski S, Hage B, Franzen A, Danzmann K, Schnabel R 2006 Phys. Rev. Lett. 97 011101
[16] Black E D 2001 Am. J. Phys. 69 79
[17] Liu J, Jing X X, Wang X G 2013 Phys. Rev. A 88 042316
[18] Yu X, Zhao X, Shen L Y, Shao Y Y, Liu J, Wang X G 2018 Opt. Express 26 16292
-
[1] Caves C M 1981 Phys. Rev. D 23 1693
[2] Xiao M, Wu L A, Kimble H J 1987 Phys. Rev. Lett. 59 278
[3] Grangier P, Slusher R, Yurke B, LaPorta A 1987 Phys. Rev. Lett. 59 2153
[4] Horrom T, Singh R, Dowling J P, Mikhailov E E 2012 Phys. Rev. A 86 023803
[5] Sun H X, Liu Z L, Liu K, Yang R G, Zhang J X, Gao J R 2014 Chin. Phys. Lett. 31 084202
[6] The L I G O Scientific Collaboration 2011 Nature Phys. 7 962
[7] The L I G O Scientific Collaboration 2013 Nat. Photon. 7 613
[8] Arditty H J, Lefevre H C 1981 Opt. Lett. 6 401
[9] Li L C, Li X, Yu J, Xie Z H 2012 Opt. Express 20 11109
[10] Sun H, Yang S, Zhang X L 2015 Opt. Commun. 340 39
[11] Mehmet M, Eberle T, Steinlechner S, Vahlbruch H, Schnabel R 2010 Opt. Lett. 35 1665
[12] Liu F, Zhou Y Y, Yu J, Guo J L, Wu Y, Xiao S X, Wei D, Zhang Y, Jia X J, Xiao M 2017 Appl. Phys. Lett. 110 021106
[13] Schonbeck A, Thies F, Schnabel R 2018 Opt. Lett. 43 110
[14] Paris M G A 1995 Phys. Lett. A 201 132
[15] Vahlbruch H, Chelkowski S, Hage B, Franzen A, Danzmann K, Schnabel R 2006 Phys. Rev. Lett. 97 011101
[16] Black E D 2001 Am. J. Phys. 69 79
[17] Liu J, Jing X X, Wang X G 2013 Phys. Rev. A 88 042316
[18] Yu X, Zhao X, Shen L Y, Shao Y Y, Liu J, Wang X G 2018 Opt. Express 26 16292
计量
- 文章访问数: 7587
- PDF下载量: 89
- 被引次数: 0