-
氮化铌(NbN)纳米线是超导纳米线单光子探测器(SNSPD)常用的光敏材料,其光学性质是影响SNSPD性能的关键因素.本文结合实验数据和仿真结果,系统研究了多种NbN超导纳米线探测器器件结构的光学特性,表征了以下四种器件结构下的反射光谱以及透射光谱:1)双面热氧化硅衬底背面对光结构;2)双面SiN硅衬底背面对光结构;3)硅衬底上以金层+SiN缓冲层为反射镜的正面对光结构;4)以分布式布拉格反射镜(DBR)为衬底的正面对光结构.并在上述四种器件结构基础上,生长了不同厚度的NbN薄膜,观察不同厚度NbN薄膜的吸收效率.经分析,发现在不同器件结构下的最佳NbN厚度与光吸收率的关系如下:双面热氧化硅衬底上的NbN层在1606 nm处最大吸收率为91.7%,其余结构在最佳NbN厚度条件下吸收率都能达到99%以上.其中双面SiN的硅衬底结构中最大吸收率为99.3%,mAu+SiN为99.8%,DBR为99.9%.最后,将DBR器件实测结果与仿真结果进行了差异性分析.这些结果对高效率SNSPD设计与研制具有指导意义.Niobium nitride (NbN) nanowires are commonly used as photosensitive materials for superconducting nanowire single-photon detectors (SNSPDs). Their optical properties are the key factors influencing the performance of SNSPD. According to the experimental data and simulation results, in this paper we systematically study the optical properties of various niobium nitride nanowire detector device structures, and characterize the reflection spectra and transmission spectra of the following four device structures:1) Backside optical devices with SiO2 as the antireflection layer, 2) backside optical devices with SiN as the antireflection layer, 3) front-facing optical devices with Au+SiN as a mirror, and 4) front-facing optical devices with distributed Bragg reflector (DBR) as a mirror. The NbN films with different thickness are grown on the basis of the four device structures, and the absorption efficiencies of the NbN films with different thickness are observed. The relationships between the optimal NbN thickness and the optical absorption rate for different device structures are found as follows:The maximum absorption rate of NbN on the SiO2 antireflection layer is 91.7% at 1606 nm, while the absorption rates of the remaining structures at the optimal thickness of NbN can reach 99% or more. The absorption rate of the SiN device, the Au+SiN device and the DBR device are 99.3%, 99.8% and 99.9%, respectively. The measured results and simulation structure of DBR device are analyzed. These results are of significance for guiding the design and development of high efficiency SNSPD.
-
Keywords:
- superconducting /
- absorption rate /
- silicon nitride /
- Bragg reflector
[1] Gol'tsman G N, Okunev O, Chulkova G, Lipatov A, Semenov A, Smirnov K, Voronov B, Dzardanov A, Williams C, Sobolewski R 2001 Appl. Phys. Lett. 79 705
[2] Marsili F, Verma V B, Stern J A, Harrington S, Lita A E, Gerrits T, Vayshenker I, Baek B, Shaw M D, Mirin R P, Nam S W 2013 Nat. Photon. 7 210
[3] Zhang L, Kang L, Chen J, Zhong Y, Zhao Q, Jia T, Cao C, Jin B, Xu W, Sun G, Wu P 2011 Appl. Phys. B 102 867
[4] Wu J, You L, Chen S, Li H, He Y, Lv C, Wang Z, Xie X 2017 Appl. Opt. 56 2195
[5] Korneeva Y, Florya I, Semenov A, Korneev A, Goltsman G 2011 IEEE Trans. Appl. Supercond. 21 323
[6] Hadfield R H, Habif J L, Schlafer J, Schwall R E, Nam S W 2006 Appl. Phys. Lett. 89 241129
[7] Takesue H, Nam S W, Zhang Q, Hadfield R H, Honjo T, Tamaki K, Yamamoto Y 2007 Nat. Photon. 1 343
[8] Li H, Chen S, You L, Meng W, Wu Z, Zhang Z, Tang K, Zhang L, Zhang W, Yang X, Liu X, Wang Z, Xie X 2016 Opt. Express 24 3535
[9] Xue L, Li Z, Zhang L, Zhai D, Li Y, Zhang S, Li M, Kang L, Chen J, Wu P, Xiong Y 2016 Opt. Lett. 41 3848
[10] Grein M E, Kerman A J, Dauler E A, Shatrovoy O, Molnar R J, Rosenberg D, Devoe C E, Murphy D V, Robinson B S, Boroson D M 2011 Design of a Ground-Based Optical Receiver for the Lunar Laser Communications Demonstration Santa Monica, CA, USA, May 11-13, 2011 p78
[11] Zhao Q, Xia L, Wan C, Hu J, Jia T, Gu M, Zhang L, Kang L, Chen J, Zhang X, Wu P 2015 Sci. Rep. 5 10441
[12] Zhu J, Chen Y, Zhang L, Jia X, Feng Z, Wu G, Yan X, Zhai J, Wu Y, Chen Q, Zhou X, Wang Z, Zhang C, Kang L, Chen J, Wu P 2017 Sci. Rep. 7 1
[13] Qiu J, Xia H, Shangguan M, Dou X, Li M, Wang C, Shang X, Lin S, Liu J 2017 Opt. Lett. 42 4454
[14] Shangguan M, Xia H, Wang C, Qiu J, Lin S, Dou X, Zhang Q, Pan J W 2017 Opt. Lett. 42 3541
[15] Li H, Zhang L, You L, Yang X, Zhang W, Liu X, Chen S, Wang Z, Xie X 2015 Opt. Express 23 17301
[16] Anant V, Kerman A J, Dauler E A, Yang J K W, Rosfjord K M, Berggren K K 2008 Opt. Express 16 10750
[17] Rosfjord K M, Yang J K W, Dauler E A, Kerman A J, Anant V, Voronov B M, Gol'tsman G N, Berggren K K 2006 Opt. Express 14 527
[18] Zhang L, Yan X, Jiang C, Zhang S, Chen Y, Chen J, Kang L, Wu P 2016 IEEE Photonics Technol. Lett. 28 2522
[19] Zhang W J, You L X, Li H, Huang J, Lü C L, Zhang L, Liu X Y, Wu J J, Wang Z, Xie X M 2017 Sci. China Phys. Mech. Astron. 60 120314
[20] Cristiano R, Parlato L, Nasti U, Ejrnaes M, Myoren H, Taino T, Sobolewski R, Pepe G P 2016 IEEE Trans. Appl. Supercond. 26 3
[21] Akhlaghi M K, Schelew E, Young J F 2015 Nat. Commun. 6 8233
[22] Wang Z, Kawakami A, Uzawa Y, Komiyama B, Wang Z, Kawakami A, Uzawa Y, Komiyama B 1996 J. Appl. Phys. 79 7837
-
[1] Gol'tsman G N, Okunev O, Chulkova G, Lipatov A, Semenov A, Smirnov K, Voronov B, Dzardanov A, Williams C, Sobolewski R 2001 Appl. Phys. Lett. 79 705
[2] Marsili F, Verma V B, Stern J A, Harrington S, Lita A E, Gerrits T, Vayshenker I, Baek B, Shaw M D, Mirin R P, Nam S W 2013 Nat. Photon. 7 210
[3] Zhang L, Kang L, Chen J, Zhong Y, Zhao Q, Jia T, Cao C, Jin B, Xu W, Sun G, Wu P 2011 Appl. Phys. B 102 867
[4] Wu J, You L, Chen S, Li H, He Y, Lv C, Wang Z, Xie X 2017 Appl. Opt. 56 2195
[5] Korneeva Y, Florya I, Semenov A, Korneev A, Goltsman G 2011 IEEE Trans. Appl. Supercond. 21 323
[6] Hadfield R H, Habif J L, Schlafer J, Schwall R E, Nam S W 2006 Appl. Phys. Lett. 89 241129
[7] Takesue H, Nam S W, Zhang Q, Hadfield R H, Honjo T, Tamaki K, Yamamoto Y 2007 Nat. Photon. 1 343
[8] Li H, Chen S, You L, Meng W, Wu Z, Zhang Z, Tang K, Zhang L, Zhang W, Yang X, Liu X, Wang Z, Xie X 2016 Opt. Express 24 3535
[9] Xue L, Li Z, Zhang L, Zhai D, Li Y, Zhang S, Li M, Kang L, Chen J, Wu P, Xiong Y 2016 Opt. Lett. 41 3848
[10] Grein M E, Kerman A J, Dauler E A, Shatrovoy O, Molnar R J, Rosenberg D, Devoe C E, Murphy D V, Robinson B S, Boroson D M 2011 Design of a Ground-Based Optical Receiver for the Lunar Laser Communications Demonstration Santa Monica, CA, USA, May 11-13, 2011 p78
[11] Zhao Q, Xia L, Wan C, Hu J, Jia T, Gu M, Zhang L, Kang L, Chen J, Zhang X, Wu P 2015 Sci. Rep. 5 10441
[12] Zhu J, Chen Y, Zhang L, Jia X, Feng Z, Wu G, Yan X, Zhai J, Wu Y, Chen Q, Zhou X, Wang Z, Zhang C, Kang L, Chen J, Wu P 2017 Sci. Rep. 7 1
[13] Qiu J, Xia H, Shangguan M, Dou X, Li M, Wang C, Shang X, Lin S, Liu J 2017 Opt. Lett. 42 4454
[14] Shangguan M, Xia H, Wang C, Qiu J, Lin S, Dou X, Zhang Q, Pan J W 2017 Opt. Lett. 42 3541
[15] Li H, Zhang L, You L, Yang X, Zhang W, Liu X, Chen S, Wang Z, Xie X 2015 Opt. Express 23 17301
[16] Anant V, Kerman A J, Dauler E A, Yang J K W, Rosfjord K M, Berggren K K 2008 Opt. Express 16 10750
[17] Rosfjord K M, Yang J K W, Dauler E A, Kerman A J, Anant V, Voronov B M, Gol'tsman G N, Berggren K K 2006 Opt. Express 14 527
[18] Zhang L, Yan X, Jiang C, Zhang S, Chen Y, Chen J, Kang L, Wu P 2016 IEEE Photonics Technol. Lett. 28 2522
[19] Zhang W J, You L X, Li H, Huang J, Lü C L, Zhang L, Liu X Y, Wu J J, Wang Z, Xie X M 2017 Sci. China Phys. Mech. Astron. 60 120314
[20] Cristiano R, Parlato L, Nasti U, Ejrnaes M, Myoren H, Taino T, Sobolewski R, Pepe G P 2016 IEEE Trans. Appl. Supercond. 26 3
[21] Akhlaghi M K, Schelew E, Young J F 2015 Nat. Commun. 6 8233
[22] Wang Z, Kawakami A, Uzawa Y, Komiyama B, Wang Z, Kawakami A, Uzawa Y, Komiyama B 1996 J. Appl. Phys. 79 7837
计量
- 文章访问数: 7270
- PDF下载量: 100
- 被引次数: 0