搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维应变作用下超导薄膜LiFeAs的磁性和电子性质

王鑫 李桦 董正超 仲崇贵

引用本文:
Citation:

二维应变作用下超导薄膜LiFeAs的磁性和电子性质

王鑫, 李桦, 董正超, 仲崇贵

Magnetism and electronic properties of LiFeAs superconducting thin filma under two-dimensional strains effect

Wang Xin, Li Hua, Dong Zheng-Chao, Zhong Chong-Gui
PDF
HTML
导出引用
  • 基于密度泛函理论的第一性原理计算, 研究了二维应变作用下LiFeAs超导薄膜的磁性结构、电子能带和态密度变化, 分析了应变对其超导电性的作用. 结果显示, 对体系施加1%—6%的二维平面张、压应变均不改变其基态条形反铁磁性结构, 费米面附近的电子态密度主要来自于Fe-3d轨道电子以及少量的As-4p电子. 研究发现, 与无应变情形相比, 当施加压应变时, 体系中Fe离子的反平行的电子自旋局域磁矩减小, 薄膜反铁磁性受到抑制, 费米面上电子态密度增加, 超导电性来自于以反铁磁超交换耦合作用为媒介的空穴型费米面和电子型费米面间嵌套的Cooper电子对. 而在张应变作用时, 局域反铁磁性增强, 费米面上电子态密度减小, 金属性减弱, 特别是张应变时费米面上空穴型能带消失, Cooper电子对出现概率显著降低, 将抑制超导相变.
    The magnetism, band properties and electronic density of states of LiFeAs superconducting thin film with two-dimensional strain are investigated by using the first principles calculations based on density functional theory, and the influences of different strains on the characteristics of superconducting films are analyzed in detail. The results show that the magnetic ground configuration is the striped antiferromagnetic state of nostrained LiFeAs thin film, and the ground structure of this system is unchanged in the range of applied 1%−6% compressive and tensile strain. The density of states near the Fermi level is mainly from the contribution of Fe-3d orbital and a few As-4p electrons. The electron spin exchange coupling between Fe ions is realized by As ions. Furthermore, unlike the case of the nostrain and the tensile strain, with increasing the compressive strain, the localized antiparallel electron spin magnetic moments of Fe ion decrease, the density of states at the Fermi surface improves, and the itinerant electron magnetism of Fe ions increases, which all greatly suppress the antiferromagnetic properties of thin film and enhance the superconducting phase transition temperature. The superconductivity of LiFeAs thin film originates from the Cooper pairs of electrons between the hole-type and electronic-type bands near the Fermi surface through the antiferromagnetic superexchange coupling effect. Instead, the LiFeAs thin film with the tensile strain presents completely opposite properties, that is to say, the decrease of the electronic density of states in the Fermi level brings about the weakening of the metal properties and the increasing of the antiferromagnetic exchange coupling. Particularly, the band structure of hole-type near the Fermi surface disappears, and the occurrence of Cooper pairs of electrons becomes significantly reduced, resulting in the suppressed superconducting phase transition when the LiFeAs thin film is subjected to tensile strain. In addition, the change of antiferromagnetic exchange coupling and magnetic moments of Fe ions are also explained according to the variation of electronic density of states of the Fe-3d energy levels during the distortion of FeAs tetrahedrons due to compressive strain. In brief, our researches provide an effective way to improve the superconducting properties of LiFeAs thin film and may promote the relevant practical applications of iron-based superconductors in the future.
      通信作者: 董正超, dzc@ntu.edu.cn ; 仲崇贵, chgzhong@ntu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11447229)、江苏省自然科学基金(批准号: BK2012655)和江苏省研究生科研与实践创新计划(批准号: KYCX18_2412)资助的课题.
      Corresponding author: Dong Zheng-Chao, dzc@ntu.edu.cn ; Zhong Chong-Gui, chgzhong@ntu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11447229), the National Natural Science Foundation of Jiangsu Province, China (Grant No. BK2012655), and the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (Grant No. KYCX18_2412).
    [1]

    Nomura T, Kim S W, Kamihara Y, Hirano M, Sushko P V, Kato K, Takata M, Shluger A L, Hosono H 2008 Supercond. Sci. Technol. 21 125028Google Scholar

    [2]

    Dai P C 2015 Rev. Mod. Phys. 87 855Google Scholar

    [3]

    杜增义, 方德龙, 王震宇, 杜冠, 杨雄, 杨欢, 顾根大, 闻海虎 2015 物理学报 64 097401Google Scholar

    Du Z Y, Fang D L, Wang Z Y, Du G, Yang X, Yang H, Gu G D, Wen H H 2015 Acta Phys. Sin. 64 097401Google Scholar

    [4]

    Dubroka A, Kim K W, Rossle M, Malik V K, Drew A J, Liu R H, Wu G, Chen X H, Bernhard C 2008 Phys. Rev. Lett. 101 097011Google Scholar

    [5]

    Ma L, Zhang J, Chen G F, Yu W Q 2010 Phys. Rev. B 82 180501Google Scholar

    [6]

    Qureshi N, Steffens P, Drees Y, Komarek A C, Lamago D, Sidis Y, Harnagea L, Grafe H J, Wurmehl S, Buchner B, Braden M 2012 Phys. Rev. Lett. 108 117001Google Scholar

    [7]

    Wang M, Wang M Y, Miao H, Carr S V, Abernathy D L, Stone M B, Wang X C, Xing L Y, Jin C Q, Zhang X T, Hu J P, Xiang T, Ding H, Dai P C 2012 Phys. Rev. B 86 144511Google Scholar

    [8]

    Umezawa K, Li Y, Miao H, Nakayama K, Liu Z H, Richard P, Sato T, He J B, Wang D M, Chen G F, Ding H, Takahashi T, Wang S C 2012 Phys. Rev. Lett. 108 037002Google Scholar

    [9]

    Qureshi N, Steffens P, Lamago D, Sidis Y, Sobolev O, Ewings R A, Harnagea L, Wurmehl S, Buchner B, Braden M 2014 Phys. Rev. B 90 144503Google Scholar

    [10]

    Zhang S J, Wang X C, Sammynaiken R, Tse J S,Yang L X, Li Z, Liu Q Q, Desgreniers S, Yao Y, Liu H Z, Jin C Q 2009 Phys. Rev. B 80 014506Google Scholar

    [11]

    Zeng B, Watanabe D, Zhang Q R, Li G, Besara T, Siegrist T, Xing L Y, Wang X C, Jin C Q, Goswami P, Johannes M D, Balicas L 2013 Phys. Rev. B 88 144518Google Scholar

    [12]

    靳常青, 刘青清, 邓正, 张思佳, 邢令义, 朱金龙, 孔盼盼, 望贤成 2013 高压物理学报 27 473Google Scholar

    Jin C Q, Liu Q Q, Deng Z, Zhang S J, Xing L Y, Zhu J L, Kong P P, Wang X C 2013 Chinese Journal of High Pressure Physics 27 473Google Scholar

    [13]

    Li Y, Yin Z P, Wang X C, Tam D W, Abernathy D L, Podlesnyak A, Zhang C L, Wang M, Xing L Y, Jin C Q, Haule K, Kotliar G, Maier T A, Dai P C 2016 Phys. Rev. Lett. 116 247001Google Scholar

    [14]

    Miao H, Qian T, Shi X, Richard P, Kim T K, Hoesch M, Xing L Y, Wang X C, Jin C Q, Hu J P, Ding H 2015 Nat. Commun. 6 6056Google Scholar

    [15]

    Pitcher M J, Parker D R, Adamson P, Herkelrath S J C, Boothroyd A T, Ibberson R M, Brunell M, Clarke S J 2008 Chem. Commun. 45 5918

    [16]

    李世超, 甘远, 王靖辉, 冉柯静, 温锦生 2015 物理学报 64 097503Google Scholar

    Li S C, Gan Y, Wang J H, Ran K J, Wen J S 2015 Acta Phys. Sin. 64 097503Google Scholar

    [17]

    Tapp J H, Tang Z J, Lv B, Sasmal K, Lorenz B, Chu P C W, Guloy A M 2008 Phys. Rev. B 78 060505Google Scholar

    [18]

    Kawasaki S, Mabuchi T, Maeda S, Adachi T, Mizukami T, Kudo K, Nohara M, Zheng G Q 2015 Phys. Rev. B 92 180508Google Scholar

    [19]

    Wang H D, Dong C H, Li Z J, Mao Q H, Zhu S S, Feng C M, Yuan H Q, Fang M H 2011 Europhys. Lett. 93 47004Google Scholar

    [20]

    Tafti F F, Ouellet A, Juneau-Fecteau A, Faucher S, Lapointe-Major M, Doiron-Leyraud N, Wang A F, Luo X G, Chen X H, Taillefer L 2015 Phys. Rev. B 91 054511Google Scholar

    [21]

    Krüger E, Strunk H P 2014 J. Supercond. Nov. Magn. 27 601Google Scholar

    [22]

    Mollah S 2004 J. Phys.: Condens. Matter 16 R1237Google Scholar

    [23]

    张加宏, 马荣, 刘甦, 刘楣 2006 物理学报 55 4816Google Scholar

    Zhang J H, Ma R, Liu S, Liu M 2006 Acta Phys. Sin. 55 4816Google Scholar

    [24]

    俞榕 2015 物理学报 64 217102Google Scholar

    Yu R 2015 Acta Phys. Sin. 64 217102Google Scholar

    [25]

    Chen Z J, Xu G B, Yan J G, Kuang Z, Chen T H, Li D H 2016 J. Appl. Phys. 120 235103Google Scholar

    [26]

    Yu R, Zhu J X, Si Q M 2011 Phys. Rev. Lett. 106 186401Google Scholar

    [27]

    衣玮, 吴奇, 孙力玲 2017 物理学报 66 037402Google Scholar

    Yi W, Wu Q, Sun L L 2017 Acta Phys. Sin. 66 037402Google Scholar

    [28]

    Lankau A, Koepernik K, Borisenko S, Zabolotnyy V, Büchner B, Brink J V D, Eschrig H 2010 Phys. Rev. B 82 184518Google Scholar

    [29]

    李斌, 邢钟文, 刘楣 2011 物理学报 60 077402

    Li B, Xing Z W, Liu M 2011 Acta Phys. Sin. 60 077402 (in Chinese)

  • 图 1  LFA的晶体结构

    Fig. 1.  Crystal structure of LFA film.

    图 2  LFA薄膜中Fe离子可能的四种磁性结构 (a) 条形铁磁; (b)条形反铁磁; (c) 棋盘形铁磁; (d) 棋盘形反铁磁; 箭头表示自旋方向

    Fig. 2.  Four possible kinds of magnetic structures of Fe ion in LFA thin films: (a) Striped-type ferromagnetic order; (b) striped-type antiferromagnetic order; (c) checkerboard-type ferromagnetic order; (d) checkerboard-type antiferromagnetic order. The arrows represent the directions of electronic spins.

    图 3  LiFeAs薄膜中四种磁性结构的相对能量随晶格常数的变化

    Fig. 3.  Relative energies of different magnetic states varying with lattice constant of LFA thin film.

    图 4  LFA超导薄膜AFM-2a磁性结构在不同应变条件下的能带结构 (a)无应变; (b) 压应变(−3%); (c) 张应变(3%)

    Fig. 4.  The band structure of LFA superconductor thin film (AFM-2a magnetic states) under different strains: (a) Nostrained effect; (b) compressive strain (−3%); (c) tensile strain (3%).

    图 5  LFA超导薄膜在不同应变条件时各离子的电子态密度 (a) 无应变; (b) 压应变(−3%); (c) 张应变(3%)

    Fig. 5.  The density of electronic states of different ions in LFA superconductor thin film under different strains: (a) Nostrained effect; (b) compressive strain (−3%); (c) tensile strain (3%).

    图 6  以Fe离子为中心的As四面体结构畸变与3d轨道能级分裂 (a) 无应变时扁平的四面体; (b) 压应变作用下畸变后的正四面体

    Fig. 6.  The tetrahedral structure distortion of As centered on Fe ions and 3d orbital energy splitting of Fe ions: (a) Tabular tetrahedron without strain effect; (b) the distorted regular tetrahedron under compressive strain effect.

    表 1  无应变时铁基超导薄膜LFA不同磁性结构下的单胞能量

    Table 1.  Energy of unit cell of the iron-based superconductor thin film LFA in different magnetic structures.

    磁性结构条形铁磁条形反铁磁棋盘形铁磁棋盘形反铁磁
    单胞能量/eV−131.2446−131.2508−130.8171−130.8156
    下载: 导出CSV

    表 2  不同应变作用下LFA薄膜中Fe离子的自旋磁矩

    Table 2.  Magnetic moments of Fe ions of LFA thin films under different strains.

    应变Fe 离子总磁矩
    ${m_{\rm{t}}}$/${\mu _{\rm{B}}}$
    巡游磁矩
    ${m_{\rm{i}}}$/${\mu _{\rm{B}}}$
    局域磁矩
    ${m_{\rm{l}}}$/${\mu _{\rm{B}}}$
    −3%1.6150.2911.324
    0%1.5320.1871.345
    3%1.4140.0261.388
    下载: 导出CSV
  • [1]

    Nomura T, Kim S W, Kamihara Y, Hirano M, Sushko P V, Kato K, Takata M, Shluger A L, Hosono H 2008 Supercond. Sci. Technol. 21 125028Google Scholar

    [2]

    Dai P C 2015 Rev. Mod. Phys. 87 855Google Scholar

    [3]

    杜增义, 方德龙, 王震宇, 杜冠, 杨雄, 杨欢, 顾根大, 闻海虎 2015 物理学报 64 097401Google Scholar

    Du Z Y, Fang D L, Wang Z Y, Du G, Yang X, Yang H, Gu G D, Wen H H 2015 Acta Phys. Sin. 64 097401Google Scholar

    [4]

    Dubroka A, Kim K W, Rossle M, Malik V K, Drew A J, Liu R H, Wu G, Chen X H, Bernhard C 2008 Phys. Rev. Lett. 101 097011Google Scholar

    [5]

    Ma L, Zhang J, Chen G F, Yu W Q 2010 Phys. Rev. B 82 180501Google Scholar

    [6]

    Qureshi N, Steffens P, Drees Y, Komarek A C, Lamago D, Sidis Y, Harnagea L, Grafe H J, Wurmehl S, Buchner B, Braden M 2012 Phys. Rev. Lett. 108 117001Google Scholar

    [7]

    Wang M, Wang M Y, Miao H, Carr S V, Abernathy D L, Stone M B, Wang X C, Xing L Y, Jin C Q, Zhang X T, Hu J P, Xiang T, Ding H, Dai P C 2012 Phys. Rev. B 86 144511Google Scholar

    [8]

    Umezawa K, Li Y, Miao H, Nakayama K, Liu Z H, Richard P, Sato T, He J B, Wang D M, Chen G F, Ding H, Takahashi T, Wang S C 2012 Phys. Rev. Lett. 108 037002Google Scholar

    [9]

    Qureshi N, Steffens P, Lamago D, Sidis Y, Sobolev O, Ewings R A, Harnagea L, Wurmehl S, Buchner B, Braden M 2014 Phys. Rev. B 90 144503Google Scholar

    [10]

    Zhang S J, Wang X C, Sammynaiken R, Tse J S,Yang L X, Li Z, Liu Q Q, Desgreniers S, Yao Y, Liu H Z, Jin C Q 2009 Phys. Rev. B 80 014506Google Scholar

    [11]

    Zeng B, Watanabe D, Zhang Q R, Li G, Besara T, Siegrist T, Xing L Y, Wang X C, Jin C Q, Goswami P, Johannes M D, Balicas L 2013 Phys. Rev. B 88 144518Google Scholar

    [12]

    靳常青, 刘青清, 邓正, 张思佳, 邢令义, 朱金龙, 孔盼盼, 望贤成 2013 高压物理学报 27 473Google Scholar

    Jin C Q, Liu Q Q, Deng Z, Zhang S J, Xing L Y, Zhu J L, Kong P P, Wang X C 2013 Chinese Journal of High Pressure Physics 27 473Google Scholar

    [13]

    Li Y, Yin Z P, Wang X C, Tam D W, Abernathy D L, Podlesnyak A, Zhang C L, Wang M, Xing L Y, Jin C Q, Haule K, Kotliar G, Maier T A, Dai P C 2016 Phys. Rev. Lett. 116 247001Google Scholar

    [14]

    Miao H, Qian T, Shi X, Richard P, Kim T K, Hoesch M, Xing L Y, Wang X C, Jin C Q, Hu J P, Ding H 2015 Nat. Commun. 6 6056Google Scholar

    [15]

    Pitcher M J, Parker D R, Adamson P, Herkelrath S J C, Boothroyd A T, Ibberson R M, Brunell M, Clarke S J 2008 Chem. Commun. 45 5918

    [16]

    李世超, 甘远, 王靖辉, 冉柯静, 温锦生 2015 物理学报 64 097503Google Scholar

    Li S C, Gan Y, Wang J H, Ran K J, Wen J S 2015 Acta Phys. Sin. 64 097503Google Scholar

    [17]

    Tapp J H, Tang Z J, Lv B, Sasmal K, Lorenz B, Chu P C W, Guloy A M 2008 Phys. Rev. B 78 060505Google Scholar

    [18]

    Kawasaki S, Mabuchi T, Maeda S, Adachi T, Mizukami T, Kudo K, Nohara M, Zheng G Q 2015 Phys. Rev. B 92 180508Google Scholar

    [19]

    Wang H D, Dong C H, Li Z J, Mao Q H, Zhu S S, Feng C M, Yuan H Q, Fang M H 2011 Europhys. Lett. 93 47004Google Scholar

    [20]

    Tafti F F, Ouellet A, Juneau-Fecteau A, Faucher S, Lapointe-Major M, Doiron-Leyraud N, Wang A F, Luo X G, Chen X H, Taillefer L 2015 Phys. Rev. B 91 054511Google Scholar

    [21]

    Krüger E, Strunk H P 2014 J. Supercond. Nov. Magn. 27 601Google Scholar

    [22]

    Mollah S 2004 J. Phys.: Condens. Matter 16 R1237Google Scholar

    [23]

    张加宏, 马荣, 刘甦, 刘楣 2006 物理学报 55 4816Google Scholar

    Zhang J H, Ma R, Liu S, Liu M 2006 Acta Phys. Sin. 55 4816Google Scholar

    [24]

    俞榕 2015 物理学报 64 217102Google Scholar

    Yu R 2015 Acta Phys. Sin. 64 217102Google Scholar

    [25]

    Chen Z J, Xu G B, Yan J G, Kuang Z, Chen T H, Li D H 2016 J. Appl. Phys. 120 235103Google Scholar

    [26]

    Yu R, Zhu J X, Si Q M 2011 Phys. Rev. Lett. 106 186401Google Scholar

    [27]

    衣玮, 吴奇, 孙力玲 2017 物理学报 66 037402Google Scholar

    Yi W, Wu Q, Sun L L 2017 Acta Phys. Sin. 66 037402Google Scholar

    [28]

    Lankau A, Koepernik K, Borisenko S, Zabolotnyy V, Büchner B, Brink J V D, Eschrig H 2010 Phys. Rev. B 82 184518Google Scholar

    [29]

    李斌, 邢钟文, 刘楣 2011 物理学报 60 077402

    Li B, Xing Z W, Liu M 2011 Acta Phys. Sin. 60 077402 (in Chinese)

  • [1] 刘俊岭, 柏于杰, 徐宁, 张勤芳. GaS/Mg(OH)2异质结电子结构的第一性原理研究. 物理学报, 2024, 73(13): 137103. doi: 10.7498/aps.73.20231979
    [2] 白刚, 韩宇航, 高存法. (111)取向无铅K0.5Na0.5NbO3外延薄膜的相变和电卡效应: 外应力与错配应变效应. 物理学报, 2022, 71(9): 097701. doi: 10.7498/aps.71.20220234
    [3] 姜楠, 李奥林, 蘧水仙, 勾思, 欧阳方平. 应变诱导单层NbSi2N4材料磁转变的第一性原理研究. 物理学报, 2022, 71(20): 206303. doi: 10.7498/aps.71.20220939
    [4] 王少霞, 赵旭才, 潘多桥, 庞国旺, 刘晨曦, 史蕾倩, 刘桂安, 雷博程, 黄以能, 张丽丽. 过渡金属(Cr, Mn, Fe, Co)掺杂对TiO2磁性影响的第一性原理研究. 物理学报, 2020, 69(19): 197101. doi: 10.7498/aps.69.20200644
    [5] 肖美霞, 梁尤平, 陈玉琴, 刘萌. 应变对两层半氢化氮化镓薄膜电磁学性质的调控机理研究. 物理学报, 2016, 65(2): 023101. doi: 10.7498/aps.65.023101
    [6] 姚仲瑜, 孙丽, 潘孟美, 孙书娟. 第一性原理研究semi-Heusler合金CoCrTe和CoCrSb的半金属性和磁性. 物理学报, 2016, 65(12): 127501. doi: 10.7498/aps.65.127501
    [7] 王疆靖, 邵瑞文, 邓青松, 郑坤. 应变加载下Si纳米线电输运性能的原位电子显微学研究. 物理学报, 2014, 63(11): 117303. doi: 10.7498/aps.63.117303
    [8] 谢剑锋, 曹觉先. 六角氮化硼片能带结构的应变调控. 物理学报, 2013, 62(1): 017302. doi: 10.7498/aps.62.017302
    [9] 魏哲, 袁健美, 李顺辉, 廖建, 毛宇亮. 含空位二维六角氮化硼电子和磁性质的密度泛函研究. 物理学报, 2013, 62(20): 203101. doi: 10.7498/aps.62.203101
    [10] 张鲁山, 于洪飞, 郭永权. FeTe合金结构分析及其薄膜制备. 物理学报, 2012, 61(1): 016101. doi: 10.7498/aps.61.016101
    [11] 罗礼进, 仲崇贵, 方靖淮, 赵永林, 周朋霞, 江学范. Heusler合金Mn2 NiAl的电子结构和磁性对四方畸变的响应及其压力响应. 物理学报, 2011, 60(12): 127502. doi: 10.7498/aps.60.127502
    [12] 文黎巍, 王玉梅, 裴慧霞, 丁俊. Sb系half-Heusler合金磁性及电子结构的第一性原理研究. 物理学报, 2011, 60(4): 047110. doi: 10.7498/aps.60.047110
    [13] 姚仲瑜, 傅军, 龚少华, 张月胜, 姚凯伦. 晶格各向同性应变对闪锌矿结构CrS和CrSe的半金属性和磁性的影响. 物理学报, 2011, 60(12): 127103. doi: 10.7498/aps.60.127103
    [14] 潘洪哲, 徐明, 陈丽, 孙媛媛, 王永龙. 单层正三角锯齿型石墨烯量子点的电子结构和磁性. 物理学报, 2010, 59(9): 6443-6449. doi: 10.7498/aps.59.6443
    [15] 张瑜, 刘拥军, 刘先锋, 江学范. 双钙钛矿SrKFeWO6的电子结构与磁性. 物理学报, 2010, 59(5): 3432-3437. doi: 10.7498/aps.59.3432
    [16] 史力斌, 郑 岩, 任骏原, 李明标, 张国华. YBa2Cu3O7-δ/LaAlO3和Tl2Ba2CaCu2O8/LaAlO3高温超导薄膜内的应变对其微波表面电阻影响的研究. 物理学报, 2008, 57(2): 1183-1189. doi: 10.7498/aps.57.1183
    [17] 姚 飞, 薛春来, 成步文, 王启明. 重掺B对应变SiGe材料能带结构的影响. 物理学报, 2007, 56(11): 6654-6659. doi: 10.7498/aps.56.6654
    [18] 张加宏, 马 荣, 刘 甦, 刘 楣. 掺杂MgCNi3超导电性和磁性的第一性原理研究. 物理学报, 2006, 55(9): 4816-4821. doi: 10.7498/aps.55.4816
    [19] 施一生. Fe1-xPdx合金电子结构和磁性的理论研究. 物理学报, 2003, 52(4): 993-998. doi: 10.7498/aps.52.993
    [20] 谭明秋, 陶向明, 何军辉. SrRuO3的电子结构与磁性研究. 物理学报, 2001, 50(11): 2203-2207. doi: 10.7498/aps.50.2203
计量
  • 文章访问数:  7919
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-14
  • 修回日期:  2018-11-13
  • 上网日期:  2019-01-01
  • 刊出日期:  2019-01-20

/

返回文章
返回