搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可实现偏振无关单向传输的二维硅基环形孔光子晶体

刘丹 胡森

引用本文:
Citation:

可实现偏振无关单向传输的二维硅基环形孔光子晶体

刘丹, 胡森

Two-dimensional silicon annular photonic crystals for realizing polarization-independent unidirectional transmission

Liu Dan, Hu Sen
PDF
HTML
导出引用
  • 基于光子晶体来构筑偏振无关光二极管在光电集成领域具有重大的应用价值. 首先提出了一种环形孔光子晶体, 能带结构显示其对横电及横磁模式同时展现出显著的方向带隙. 以此构建了三角形状的环形孔光子晶体, 利用时域有限差分法计算其透过谱及场分布图, 发现该结构能实现偏振无关单向传输特性, 然而正向透过率太低(约20%). 进一步引入尺寸较小的三角形状的环形孔光子晶体构成光子晶体异质结结构, 有效地提高了偏振无关单向传输性能, 正向透过率增大了一倍. 通过界面结构的调整, 正向透过率进一步增大, 优化后的环形孔光子晶体异质结结构能同时对类横电及类横磁模式入射光实现单向传输, 且正向透过率达到了44%.
    Optical diode is a device that can realize unidirectional transmission of light. Its function is similar to that of an electronic diode. It has important applications in the field of optoelectronic integration and all-optical communications. Unidirectional wave transmission requires either time-reversal or spatial inversion symmetry breaking. The magneto-optical effect and optical nonlinearity are usually utilized to break the time-reversal symmetry and obtain the unidirectional transmission. However, these schemes all need high light intensity or magnetic field strength to be realized, and limit the usage. Therefore, spatial inversion symmetry breaking is highly desirable because of totally linear materials under low intensities. Quit a lot of researchers have designed optical diodes based on the photonic crystals and achieved unidirectional transmission for TE-like or TM-like light. The early design realized light unidirectional transmission by PC structures for only one polarization state (TE-like or TM-like incident light). It limits the application for the high integration and reconfigurable optical interconnection. The structure which can achieve unidirectional transmission for both TE and TM polarizations needs to be designed. The annular PCs have been verified to realize polarization-independent phenomena, such as beam splitting, self collimation and waveguide. In this paper, an annular PC is proposed. The plane wave expansion method is used to calculate band structures. The results show that it exhibits a significant directional band gap for both TE and TM mode. Then, the triangular annular PC is constructed, and its transmission spectra and field distributions are calculated by the finite-different time-domain method. It is found that the structure can realize the polarization-independent unidirectional transmission, but the forward transmissivity is too low (about 20%). Moreover, another smaller size annular PC is further introduced to form annular PC heterojunction, which effectively improves the polarization-independent unidirectional transmission performance and the forward transmissivity has doubled. Through the adjustment of the interface structure, the forward transmissivity is further increased. The optimized annular PC heterostructure can realize polarization-independent unidirectional transmission, and the forward transmissivity reaches 44%. The heterostructure can be used to fabricate polarization-independent optical diode, and may have potential applications in complex all-optical integrated circuits.
      通信作者: 刘丹, liudanhu725@126.com
    • 基金项目: 国家自然科学基金(批准号: 11504100)资助的课题.
      Corresponding author: Liu Dan, liudanhu725@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11504100).
    [1]

    John S 1987 Phys. Rev. Lett. 58 2486Google Scholar

    [2]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059Google Scholar

    [3]

    Ho K M, Chan C T, Soukoulis C M 1990 Phys. Rev. Lett. 65 3152Google Scholar

    [4]

    Wierer J J, Krames M R, Epler J E 2004 Appl. Phys. Lett. 84 3885Google Scholar

    [5]

    Kim D H, Cho C O, Roh Y G 2005 Appl. Phys. Lett. 87 203508Google Scholar

    [6]

    Wang C X, Xu X S, Li F, Du W, Xiong G G, Liu Y L, Chen H D 2006 Chin. Phys. Lett. 23 2472Google Scholar

    [7]

    朱桂新, 于天宝, 陈淑文, 石哲, 胡淑娟, 赖珍荃, 廖清华, 黄永箴 2009 物理学报 58 1014Google Scholar

    Zhu X G, Yu T B, Chen S W, Shi Z, Hu S J, Lai Z Q, Liao Q H, Huang Y Z 2009 Acta Phys. Sin. 58 1014Google Scholar

    [8]

    杨倩倩, 侯蓝田 2009 物理学报 58 8345Google Scholar

    Yang Q Q, Hou L T 2009 Acta Phys. Sin. 58 8345Google Scholar

    [9]

    陈颖, 王文跃, 于娜 2014 物理学报 63 034205

    Chen Y, Wang W Y, Yu N 2014 Acta Phys. Sin. 63 034205

    [10]

    庄煜阳, 周雯, 季珂, 陈鹤鸣 2015 物理学报 64 224202Google Scholar

    Zhuang Y Y, Zhou W, Ji K, Chen H M 2015 Acta Phys. Sin. 64 224202Google Scholar

    [11]

    张学智, 冯鸣, 张心正 2013 物理学报 62 024201

    Zhang X Z, Feng M, Zhang X Z 2013 Acta Phys. Sin. 62 024201

    [12]

    Zaman T R, Guo X, Ram R 2007 J. Appl. Phys. Lett. 90 023514Google Scholar

    [13]

    Bi L, Hu J, Jiang P, et al. 2011 Nat. Photonics 5 758Google Scholar

    [14]

    Fan L, Wang J, Varghese L T 2012 Science 335 447Google Scholar

    [15]

    Kurt H, Yilmaz D, Akosman A E, et al. 2012 Opt. Express 20 20635Google Scholar

    [16]

    Zhang Y Y, Kan Q, Wang G P 2014 Opt. Lett. 39 4934Google Scholar

    [17]

    Lu C C, Hu X Y, Zhang Y B, et al. 2011 Appl. Phys. Lett. 99 051107Google Scholar

    [18]

    Wang C, Zhou C Z, Li Z Y 2011 Opt. Express 19 26948Google Scholar

    [19]

    Feng S, Wang Y Q 2013 Opt. Express 21 220Google Scholar

    [20]

    Feng S, Wang Y Q 2013 Opt. Mater. 36 546Google Scholar

    [21]

    程立锋, 任承, 王萍, 冯帅 2014 物理学报 63 154213Google Scholar

    Cheng L F, Ren C, Wang P, Feng S 2014 Acta Phys. Sin. 63 154213Google Scholar

    [22]

    刘丹, 胡森, 肖明 2017 物理学报 66 054209

    Liu D, Hu S, Xiao M 2017 Acta Phys. Sin. 66 054209

    [23]

    Yucel M B, Cicek A, Ulug B 2013 Photonics and Nanostructures-Fundamentals and Applications 11 270

    [24]

    Cicek A, Ulug B 2009 Opt. Express 17 18381Google Scholar

    [25]

    Hou J, Gao D S, Wu H 2009 Opt. Commun. 282 3172Google Scholar

    [26]

    Wu H, Citrin D S, Jiang L Y, et al. 2013 Appl. Phys. Lett. 102 141112Google Scholar

    [27]

    Jiang L Y, Wu H, Li X Y 2013 J. Opt. Soc. Am. B 30 1248

    [28]

    Feng J, Chen Y, Blair J, et al. 2009 J. Vac. Sci. Technol. B 27 568Google Scholar

  • 图 1  环形孔光子晶体的结构及参数

    Fig. 1.  Annular PC structure and parameters.

    图 2  环形孔光子晶体的能带结构

    Fig. 2.  Band structure of annular PC.

    图 3  (a) 三角形状的环形孔光子晶体; (b)入射光源为类TE模式时的正、反向透过谱; (c) 入射光源为类TM模式时的正、反向透过谱

    Fig. 3.  (a) Triangular annular PC structure; (b) the forward and backward transmission spectra of the TE-like incident light; (c) the forward and backward transmission spectra of the TM-like incident light.

    图 4  频率为0.43$(a/\lambda )$时, 类TE或类TM模式光入射到三角形状环形孔光子晶体时的正向(a)和(c)、反向(b)和(d)场分布图

    Fig. 4.  Forward (a), (c) and backward (b), (d) field distribution of the TE-like or TM-like light at 0.43$(a/\lambda )$ propagating in triangular annular PC.

    图 5  (a)环形孔光子晶体异质结结构;(b) PC1的能带结构;(c)入射光源为类TE模式时的正、反向透过谱; (d)入射光源为类TM模式时的正、反向透过谱

    Fig. 5.  (a) Annular PC heterostructure; (b) band structure of PC1; (c) forward and backward transmission spectra of the TE-like incident light; (d) forward and backward transmission spectra of the TM-like incident light.

    图 6  频率为0.43$(a/\lambda )$时, 类TE或类TM模式光入射到环形孔光子晶体异质结时的正向(a)和(c)、反向(b和d)场分布图

    Fig. 6.  Forward (a), (c) and backward (b), (d) field distribution of the TE-like or TM-like light at 0.43$(a/\lambda )$ propagating in the annular PC heterostructure.

    图 7  (a)优化后的环形孔光子晶体异质结结构;(b)入射光源为类TE模式时的正、反向透过谱;(c)入射光源为类TM模式时的正、反向透过谱

    Fig. 7.  (a) Optimized annular PC heterostructure; (b) forward and backward transmission spectra of the TE-like incident light; (c) forward and backward transmission spectra of the TM-like incident light.

    图 8  频率为0.43$(a/\lambda )$时, 类TE及类TM模式光入射到优化后的环形孔光子晶体异质结时的正向(a)和(c)、反向(b和d)场分布图

    Fig. 8.  Forward (a), (c) and backward (b), (d) field distribution of the TE-like and TM-like light at 0.43$(a/\lambda )$ propagating in the optimized annular PC heterostructure.

  • [1]

    John S 1987 Phys. Rev. Lett. 58 2486Google Scholar

    [2]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059Google Scholar

    [3]

    Ho K M, Chan C T, Soukoulis C M 1990 Phys. Rev. Lett. 65 3152Google Scholar

    [4]

    Wierer J J, Krames M R, Epler J E 2004 Appl. Phys. Lett. 84 3885Google Scholar

    [5]

    Kim D H, Cho C O, Roh Y G 2005 Appl. Phys. Lett. 87 203508Google Scholar

    [6]

    Wang C X, Xu X S, Li F, Du W, Xiong G G, Liu Y L, Chen H D 2006 Chin. Phys. Lett. 23 2472Google Scholar

    [7]

    朱桂新, 于天宝, 陈淑文, 石哲, 胡淑娟, 赖珍荃, 廖清华, 黄永箴 2009 物理学报 58 1014Google Scholar

    Zhu X G, Yu T B, Chen S W, Shi Z, Hu S J, Lai Z Q, Liao Q H, Huang Y Z 2009 Acta Phys. Sin. 58 1014Google Scholar

    [8]

    杨倩倩, 侯蓝田 2009 物理学报 58 8345Google Scholar

    Yang Q Q, Hou L T 2009 Acta Phys. Sin. 58 8345Google Scholar

    [9]

    陈颖, 王文跃, 于娜 2014 物理学报 63 034205

    Chen Y, Wang W Y, Yu N 2014 Acta Phys. Sin. 63 034205

    [10]

    庄煜阳, 周雯, 季珂, 陈鹤鸣 2015 物理学报 64 224202Google Scholar

    Zhuang Y Y, Zhou W, Ji K, Chen H M 2015 Acta Phys. Sin. 64 224202Google Scholar

    [11]

    张学智, 冯鸣, 张心正 2013 物理学报 62 024201

    Zhang X Z, Feng M, Zhang X Z 2013 Acta Phys. Sin. 62 024201

    [12]

    Zaman T R, Guo X, Ram R 2007 J. Appl. Phys. Lett. 90 023514Google Scholar

    [13]

    Bi L, Hu J, Jiang P, et al. 2011 Nat. Photonics 5 758Google Scholar

    [14]

    Fan L, Wang J, Varghese L T 2012 Science 335 447Google Scholar

    [15]

    Kurt H, Yilmaz D, Akosman A E, et al. 2012 Opt. Express 20 20635Google Scholar

    [16]

    Zhang Y Y, Kan Q, Wang G P 2014 Opt. Lett. 39 4934Google Scholar

    [17]

    Lu C C, Hu X Y, Zhang Y B, et al. 2011 Appl. Phys. Lett. 99 051107Google Scholar

    [18]

    Wang C, Zhou C Z, Li Z Y 2011 Opt. Express 19 26948Google Scholar

    [19]

    Feng S, Wang Y Q 2013 Opt. Express 21 220Google Scholar

    [20]

    Feng S, Wang Y Q 2013 Opt. Mater. 36 546Google Scholar

    [21]

    程立锋, 任承, 王萍, 冯帅 2014 物理学报 63 154213Google Scholar

    Cheng L F, Ren C, Wang P, Feng S 2014 Acta Phys. Sin. 63 154213Google Scholar

    [22]

    刘丹, 胡森, 肖明 2017 物理学报 66 054209

    Liu D, Hu S, Xiao M 2017 Acta Phys. Sin. 66 054209

    [23]

    Yucel M B, Cicek A, Ulug B 2013 Photonics and Nanostructures-Fundamentals and Applications 11 270

    [24]

    Cicek A, Ulug B 2009 Opt. Express 17 18381Google Scholar

    [25]

    Hou J, Gao D S, Wu H 2009 Opt. Commun. 282 3172Google Scholar

    [26]

    Wu H, Citrin D S, Jiang L Y, et al. 2013 Appl. Phys. Lett. 102 141112Google Scholar

    [27]

    Jiang L Y, Wu H, Li X Y 2013 J. Opt. Soc. Am. B 30 1248

    [28]

    Feng J, Chen Y, Blair J, et al. 2009 J. Vac. Sci. Technol. B 27 568Google Scholar

  • [1] 隋文杰, 张玉, 张紫瑞, 王小龙, 张洪方, 史强, 杨冰. 拓扑自旋光子晶体中螺旋边界态单向传输调控研究. 物理学报, 2022, 71(19): 194101. doi: 10.7498/aps.71.20220353
    [2] 智文强, 费宏明, 韩雨辉, 武敏, 张明达, 刘欣, 曹斌照, 杨毅彪. 漏斗型完全光子带隙光波导单向传输. 物理学报, 2022, 71(3): 038501. doi: 10.7498/aps.71.20211299
    [3] 汪静丽, 张见哲, 陈鹤鸣. 基于亚波长光栅和三明治结构的偏振无关微环谐振器的设计与仿真. 物理学报, 2021, 70(12): 124201. doi: 10.7498/aps.70.20201965
    [4] 汪静丽, 陈子玉, 陈鹤鸣. 基于夹层结构的偏振无关1×2定向耦合型解复用器的设计. 物理学报, 2021, 70(1): 014202. doi: 10.7498/aps.70.20200721
    [5] 智文强, 费宏明, 韩雨辉, 武敏, 张明达, 刘欣, 曹斌照, 杨毅彪. 漏斗型完全光子带隙光波导单向传输研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211299
    [6] 汪静丽, 陈子玉, 陈鹤鸣. 基于Si3N4/SiNx/Si3N4三明治结构的偏振无关1 × 2多模干涉型解复用器的设计. 物理学报, 2020, 69(5): 054206. doi: 10.7498/aps.69.20191449
    [7] 刘幸, 郭红梅, 付饶, 范浩然, 冯帅, 陈笑, 李传波, 王义全. 基于环形微腔的多频段三角晶格光子晶体耦合腔波导光学传输特性. 物理学报, 2018, 67(23): 234201. doi: 10.7498/aps.67.20181579
    [8] 张羚翔, 魏薇, 张志明, 廖文英, 杨振国, 范万德, 李乙钢. 环形光子晶体光纤中涡旋光的传输特性研究. 物理学报, 2017, 66(1): 014205. doi: 10.7498/aps.66.014205
    [9] 费宏明, 徐婷, 刘欣, 林瀚, 陈智辉, 杨毅彪, 张明达, 曹斌照, 梁九卿. 可用于拓宽光波单向传输带宽的光子晶体异质结构界面. 物理学报, 2017, 66(20): 204103. doi: 10.7498/aps.66.204103
    [10] 刘丹, 胡森, 肖明. 硅基光子晶体异质结的单向传输特性. 物理学报, 2017, 66(5): 054209. doi: 10.7498/aps.66.054209
    [11] 东晨, 赵尚弘, 赵卫虎, 石 磊, 赵顾颢. 非对称信道传输效率的测量设备无关量子密钥分配研究. 物理学报, 2014, 63(3): 030302. doi: 10.7498/aps.63.030302
    [12] 东晨, 赵尚弘, 董毅, 赵卫虎, 赵静. 基于旋转不变态的测量设备无关量子密钥分配协议研究. 物理学报, 2014, 63(17): 170303. doi: 10.7498/aps.63.170303
    [13] 程立锋, 任承, 王萍, 冯帅. 基于异质结界面优化的光子晶体二极管单向传输特性研究. 物理学报, 2014, 63(15): 154213. doi: 10.7498/aps.63.154213
    [14] 赵顾颢, 赵尚弘, 幺周石, 郝晨露, 蒙文, 王翔, 朱子行, 刘丰. 偏振无关的旋光双反射结构的实验研究. 物理学报, 2013, 62(13): 134201. doi: 10.7498/aps.62.134201
    [15] 王立文, 娄淑琴, 陈卫国, 鹿文亮, 王鑫. 一种覆盖全通信波段的新型宽带偏振无关双芯光纤定向耦合器的研究. 物理学报, 2012, 61(15): 154207. doi: 10.7498/aps.61.154207
    [16] 权东晓, 裴昌幸, 刘丹, 赵楠. 基于单光子的单向量子安全通信协议. 物理学报, 2010, 59(4): 2493-2497. doi: 10.7498/aps.59.2493
    [17] 钟琪, 韩奎, 沈晓鹏, 童星, 吴琼华, 李明雪, 吴玉喜. Archimedes 32,4,3,4结构光子晶体中与偏振无关的自准直分束器. 物理学报, 2010, 59(10): 7060-7065. doi: 10.7498/aps.59.7060
    [18] 沈晓鹏, 韩 奎, 沈义峰, 李海鹏, 肖正伟, 郑 健. 二维光子晶体中与电磁波偏振态无关的自准直. 物理学报, 2006, 55(6): 2760-2764. doi: 10.7498/aps.55.2760
    [19] 马 宏, 朱光喜, 陈四海, 易新建. 金属有机化学气相外延生长1310nm偏振无关混合应变量子阱半导体光放大器研究. 物理学报, 2004, 53(12): 4257-4261. doi: 10.7498/aps.53.4257
    [20] 马 宏, 陈四海, 金锦炎, 易新建, 朱光喜. 1.55μm AlGaInAs-InP偏振无关半导体光放大器及其温度特性研究. 物理学报, 2004, 53(6): 1868-1872. doi: 10.7498/aps.53.1868
计量
  • 文章访问数:  7419
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-21
  • 修回日期:  2018-09-28
  • 上网日期:  2019-01-01
  • 刊出日期:  2019-01-20

/

返回文章
返回