搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

浅海小掠射角的海底界面声反向散射模型的简化

侯倩男 吴金荣

引用本文:
Citation:

浅海小掠射角的海底界面声反向散射模型的简化

侯倩男, 吴金荣

Simplification of roughness bottom backscattering model at small grazing angle in shallow-water

Hou Qian-Nan, Wu Jin-Rong
PDF
HTML
导出引用
  • 在浅海, 尤其是负梯度声速剖面和海面较为平静的浅海波导, 海底界面反向散射是浅海混响的主要来源. 经验散射模型只适用于分析浅海混响平均强度衰减特性, 而基于物理机理建立的反向散射模型克服了这一缺陷, 但同时也引入了其受地声模型约束的问题. 本文结合了海底反射系数的三参数模型, 对浅海远场海底反向散射模型进行了简化, 以减少地声模型的输入参数. 理论分析了海底反射系数的相移参数可以描述海底对声场的散射作用, 无需任何海底地声参数的先验知识. 通过对海底反向散射模型近似简化, 结果表明在临界角附近和甚小掠射角范围内的海底粗糙界面反向散射模型的角度特性和强度特性受海底沉积层的影响不同: 在临界角附近, 海底反向散射的角度特性受海底反射系数的相移参数加权,而其散射系数则近似与相移参数无关; 对于甚小掠射角, 海底反向散射的角度特性近似与海底反射系数的相移参数无关, 其散射系数则近似与相移参数的4次方成正比.
    Bottom backscattering due to roughness seafloor is the main source of shallow water reverberation, especially in the waveguide with downward reflection profile or a calm sea-surface. Empirical backscattering models with a simple form has an important limitation to analyzing other characteristics of reverberation except for the intensity characteristics, which originates from optics and describes the relationship between the bottom backscattering strength and scattering grazing angle of plane-wave in half-infinite space. In the shallow water, such a plane-wave backscattering model cannot be used due to frequency dispersion. The model of bottom backscattering based on physical scattering principle is made to relieve such a limitation, but thereby bringing about another restraint by a geoacoustics model. The bottom backscattering model, which is formulated during modeling the full-wave reverberation theory at small grazing angle in range-independent shallow water waveguide, is simplified by combining with bottom reflection coefficient model which is independent of the geoacoustics model. The bottom reflection coefficient model as referred to the proposed phase parameter P in this paper is equivalent to velocity and density of sediment to describe sound field interacted with sea-bottom. Therefore simplification of bottom backscattering model can be handled by the phase parameter without any knowledge of bottom geoacoustic parameters. The angular dependency and intensity dependency of bottom backscattering due to roughness seafloor at small grazing angle are studied more in depth through such a simplified model. Marking 2/P as the cut-off point, the grazing angle is divided into two stages. Near the critical angle, as grazing angle is greater than 2/P and less than critical grazing angle, the angular dependency of bottom backscattering due to roughness seafloor is weighted by phase parameter of bottom reflection coefficient, while the intensity dependency is independent of phase parameter. At each small grazing angle, as grazing angle is less than 2/P, the angular dependency of bottom backscattering due to roughness seafloor is proportional to incident and scattering grazing angle squared and irrespective of phase parameter of bottom reflection coefficient which is like the empirical bottom backscattering model, while the intensity dependency is proportional to the fourth power of phase parameter. So the bottom has different influences on the angular dependency and intensity dependency of bottom backscattering in different stages of grazing angle.
      通信作者: 吴金荣, wujinrong@mail.ioa.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11374323, 11774375)资助的课题.
      Corresponding author: Wu Jin-Rong, wujinrong@mail.ioa.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11374323, 11774375).
    [1]

    张仁和, 李文华, 裘辛方, 金国亮 1995 声学学报 20 417

    Zhang R H, Li W H, Qiu X F, Jin G L 1995 Acta Acoust. 20 417

    [2]

    刘建军, 李风华, 张仁和 2006 声学学报 31 173Google Scholar

    Liu J J, Li F H, Zhang R H 2006 Acta Acoust. 31 173Google Scholar

    [3]

    姚万军, 蔡志明, 卫红凯 2009 声学学报 34 223Google Scholar

    Yao W J, Cai Z M, Wei H K 2009 Acta Acoust. 34 223Google Scholar

    [4]

    Zhou J X, Zhang X Z 2012 J. Acoust. Soc. Am. 131 2611Google Scholar

    [5]

    Isakson M J, Chotiros N P 2011 J. Acoust. Soc. Am. 129 1237

    [6]

    彭朝晖, 周纪浔, 张仁和 2004 中国科学G辑 物理学 力学 天文学 34 378

    Peng Z H, Zhou J X, Zhang R H 2004 Sci. China (Series G) 34 378

    [7]

    Ivakin A N 1998 J. Acoust. Soc. Am. 103 827Google Scholar

    [8]

    Ivakin A N 2016 J. Acoust. Soc. Am. 140 657Google Scholar

    [9]

    Moe J E, Jackson D R 1994 J. Acoust. Soc. Am. 96 1748Google Scholar

    [10]

    Tang D J, Jackson D R 2017 J. Acoust. Soc. Am. 142 2968Google Scholar

    [11]

    Shang E C, Gao T F, Wu J R 2008 IEEE J. Ocean Eng. 33 451Google Scholar

    [12]

    高天赋 1989 声学学报 14 126

    Gao T F 1989 Acta Acoust. 14 126

    [13]

    Tang D J 1997 Internal Conference on Shallow-Water Acoustics Beijing, China, April 21-25, 1997 p323

    [14]

    Gao T F, Shang E C, Tang D J 2001 Theoretical and Computational Acoustics Beijing, China, May 21-25, 2001 p67

    [15]

    Wu J R, Shang E C, Gao T F 2010 AIP Conf. Proc. 1272 314

    [16]

    Wu J R, Shang E C, Gao T F 2010 J. Comput. Acous. 18 209Google Scholar

    [17]

    尚尔昌 1979 海洋学报 1 58

    Shang E C 1979 Acta Ocean. Sin. 1 58

    [18]

    Zhao Z D, Ma L, Shang E C 2014 J. Comput. Acoust. 22 1440005Google Scholar

    [19]

    赵振东 2014 博士学位论文 (北京: 中国科学院大学)

    Zhao Z D 2007 Ph. D. Dissertation (Beijing: The University of Chinese Academy of Sciences) (in Chinese)

    [20]

    Goff J A, Jordan T H 1988 J. Geophys. Res. 93 13589Google Scholar

  • 图 1  浅海波导环境

    Fig. 1.  Shallow water waveguide environment.

    图 2  $\zeta $P参数的变化

    Fig. 2.  $\zeta $ varied with P parameters near critical angle.

    图 3  海底甚小掠射角反向散射系数对P参数的依赖

    Fig. 3.  Relationship between P and bottom backscattering coefficient at very low grazing angle.

    图 4  海底反向散射模型的比较

    Fig. 4.  Compare with bottom backscattering model with different approximate.

  • [1]

    张仁和, 李文华, 裘辛方, 金国亮 1995 声学学报 20 417

    Zhang R H, Li W H, Qiu X F, Jin G L 1995 Acta Acoust. 20 417

    [2]

    刘建军, 李风华, 张仁和 2006 声学学报 31 173Google Scholar

    Liu J J, Li F H, Zhang R H 2006 Acta Acoust. 31 173Google Scholar

    [3]

    姚万军, 蔡志明, 卫红凯 2009 声学学报 34 223Google Scholar

    Yao W J, Cai Z M, Wei H K 2009 Acta Acoust. 34 223Google Scholar

    [4]

    Zhou J X, Zhang X Z 2012 J. Acoust. Soc. Am. 131 2611Google Scholar

    [5]

    Isakson M J, Chotiros N P 2011 J. Acoust. Soc. Am. 129 1237

    [6]

    彭朝晖, 周纪浔, 张仁和 2004 中国科学G辑 物理学 力学 天文学 34 378

    Peng Z H, Zhou J X, Zhang R H 2004 Sci. China (Series G) 34 378

    [7]

    Ivakin A N 1998 J. Acoust. Soc. Am. 103 827Google Scholar

    [8]

    Ivakin A N 2016 J. Acoust. Soc. Am. 140 657Google Scholar

    [9]

    Moe J E, Jackson D R 1994 J. Acoust. Soc. Am. 96 1748Google Scholar

    [10]

    Tang D J, Jackson D R 2017 J. Acoust. Soc. Am. 142 2968Google Scholar

    [11]

    Shang E C, Gao T F, Wu J R 2008 IEEE J. Ocean Eng. 33 451Google Scholar

    [12]

    高天赋 1989 声学学报 14 126

    Gao T F 1989 Acta Acoust. 14 126

    [13]

    Tang D J 1997 Internal Conference on Shallow-Water Acoustics Beijing, China, April 21-25, 1997 p323

    [14]

    Gao T F, Shang E C, Tang D J 2001 Theoretical and Computational Acoustics Beijing, China, May 21-25, 2001 p67

    [15]

    Wu J R, Shang E C, Gao T F 2010 AIP Conf. Proc. 1272 314

    [16]

    Wu J R, Shang E C, Gao T F 2010 J. Comput. Acous. 18 209Google Scholar

    [17]

    尚尔昌 1979 海洋学报 1 58

    Shang E C 1979 Acta Ocean. Sin. 1 58

    [18]

    Zhao Z D, Ma L, Shang E C 2014 J. Comput. Acoust. 22 1440005Google Scholar

    [19]

    赵振东 2014 博士学位论文 (北京: 中国科学院大学)

    Zhao Z D 2007 Ph. D. Dissertation (Beijing: The University of Chinese Academy of Sciences) (in Chinese)

    [20]

    Goff J A, Jordan T H 1988 J. Geophys. Res. 93 13589Google Scholar

  • [1] 汪磊, 黄益旺, 郭霖, 任超. 浅海粗糙海底声散射建模及声场特性. 物理学报, 2024, 73(3): 034301. doi: 10.7498/aps.73.20231472
    [2] 黎章龙, 胡长青, 赵梅, 秦继兴, 李整林, 杨雪峰. 基于大掠射角海底反射特性的深海地声参数反演. 物理学报, 2022, 71(11): 114302. doi: 10.7498/aps.71.20211915
    [3] 李郝, 杨鑫, 张正平. THz波在不同角度磁化的非均匀磁化等离子体中的传输特性分析. 物理学报, 2021, 70(7): 075202. doi: 10.7498/aps.70.20201450
    [4] 聂丹丹, 冯晋霞, 戚蒙, 李渊骥, 张宽收. 基于光学参量振荡器的可调谐红外激光的强度噪声特性. 物理学报, 2020, 69(9): 094205. doi: 10.7498/aps.69.20191952
    [5] 张肖肖, 吴振森, 苏翔. 阻抗劈绕射对破碎波后向散射特性的影响. 物理学报, 2016, 65(21): 214101. doi: 10.7498/aps.65.214101
    [6] 相坤生, 程天海, 顾行发, 郭红, 陈好, 王颖, 魏曦, 包方闻. 基于多角度偏振载荷数据的中国典型地物偏振特性研究. 物理学报, 2015, 64(22): 227801. doi: 10.7498/aps.64.227801
    [7] 宋洪胜, 庄桥, 刘桂媛, 秦希峰, 程传福. 菲涅耳深区散斑强度统计特性及演化. 物理学报, 2014, 63(9): 094201. doi: 10.7498/aps.63.094201
    [8] 周天, 李海森, 朱建军, 魏玉阔. 利用多角度海底反向散射信号进行地声参数估计. 物理学报, 2014, 63(8): 084302. doi: 10.7498/aps.63.084302
    [9] 谢东海, 顾行发, 程天海, 余涛, 李正强, 陈兴峰, 陈好, 郭婧. 基于多角度偏振相机的城市典型地物双向反射特性研究. 物理学报, 2012, 61(7): 077801. doi: 10.7498/aps.61.077801
    [10] 姚呈康, 曾晓东, 曹长庆. 机械抖动棱镜式激光陀螺出射光强度特性. 物理学报, 2012, 61(9): 094216. doi: 10.7498/aps.61.094216
    [11] 鄂鹏, 韩轲, 武志文, 于达仁. 磁场强度对霍尔推力器放电特性影响的实验研究. 物理学报, 2009, 58(4): 2535-2542. doi: 10.7498/aps.58.2535
    [12] 王可嘉, 张清泉, 吕健滔, 杜泽明, 刘劲松. 二维无序介质中横磁模的谱线宽度随抽运强度的变化特性. 物理学报, 2008, 57(5): 2941-2945. doi: 10.7498/aps.57.2941
    [13] 余 辉, 江晓清, 杨建义, 戚 伟, 王明华. 窄光束在掠反射条件下的特性. 物理学报, 2008, 57(7): 4208-4213. doi: 10.7498/aps.57.4208
    [14] 程天海, 顾行发, 陈良富, 余 涛, 田国良. 卷云多角度偏振特性研究. 物理学报, 2008, 57(8): 5323-5332. doi: 10.7498/aps.57.5323
    [15] 刘 军, 陈晓伟, 刘建胜, 冷雨欣, 朱 毅, 戴 君, 李儒新, 徐至展. 负啁啾高强度飞秒脉冲在正常色散材料中传输特性研究. 物理学报, 2006, 55(4): 1821-1826. doi: 10.7498/aps.55.1821
    [16] 厉以宇, 顾培夫, 李明宇, 刘 旭, 杨 彗. 波状膜层全角度偏振分束特性的分析. 物理学报, 2006, 55(2): 910-913. doi: 10.7498/aps.55.910
    [17] 尚也淳, 刘忠立, 王姝睿. SiC Schottky结反向特性的研究. 物理学报, 2003, 52(1): 211-216. doi: 10.7498/aps.52.211
    [18] 宋远红, 王友年, 宫 野. 氢离子在固体表面掠角散射与能量损失的数值模拟. 物理学报, 1999, 48(7): 1275-1281. doi: 10.7498/aps.48.1275
    [19] 黄燕霞, 郭光灿. 依赖强度耦合Jaynes-Cummings模型中原子和场的Disentangled-states及其演化特性. 物理学报, 1999, 48(1): 49-57. doi: 10.7498/aps.48.49
    [20] 郑海菜, 苟增光, 崔明, 李秀英, 莫育俊. 固-液系统中表面增强喇曼散射强度ISERS对浓度c的依赖关系及水杨酸分子的吸附等温特性研究. 物理学报, 1992, 41(6): 1027-1031. doi: 10.7498/aps.41.1027
计量
  • 文章访问数:  7702
  • PDF下载量:  105
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-02
  • 修回日期:  2018-12-25
  • 上网日期:  2019-02-01
  • 刊出日期:  2019-02-20

/

返回文章
返回