搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含磷酸胍基间作用的磷酸双乙酸胍晶体电子结构与光学性质研究

王磊 涂兵田

引用本文:
Citation:

含磷酸胍基间作用的磷酸双乙酸胍晶体电子结构与光学性质研究

王磊, 涂兵田

Electronic structure and optical properties of phosphate bis-guanidinoacetate crystal containing guanidine phosphate interaction

Wang Lei, Tu Bing-Tian
PDF
HTML
导出引用
  • 基于磷酸胍基间作用在L-精氨酸磷酸盐晶体特异性与生物化学功能中的重要角色, 已制备了含有磷酸胍基的新晶体磷酸双乙酸胍. 本文采用第一性原理计算了磷酸双乙酸胍晶体的电子结构与三个晶向上的光学性质, 探讨了其中基团间作用与光学性质的关联. 结果表明, 磷酸双乙酸胍晶体能隙为4.77 eV, 远小于磷酸二氢钾晶体, 更易吸收光子, 在胍基、羧基与磷酸根上发生电子跃迁. 磷酸双乙酸胍晶体在[100]和[010]方向光学性质相近, [001]晶向上胍基N-2p在价带内电子跃迁产生强吸收, 能量损失高且分布较窄, 光学应用受到限制, 该研究对理解和研究磷酸双乙酸胍晶体中基团间作用及其光学性质奠定了良好的基础.
    L-arginine phosphate monohydrate (LAP) crystal is an excellent nonlinear optical material, its effective nonlinear optical coefficient is about 2−3.5 times that of potassium dideuterium phosphate (KDP) crystal, and its conversion efficiency can achieve up to 90%. The deuterated crystal of LAP has a very high laser damage threshold. Thus, once it was considered as a preferred material to replace KDP crystal for laser inertial confinement fusion and other fields. In addition, the LAP crystal has a much higher stimulated Brillouin scattering (SBS) reflectivity than quartz crystal and also has a lower SBS threshold. Moreover, it exhibits a special reversible phase-change in the variable temperature process, and shows an ultra-long spin-lattice relaxation time at solid-state NMR. In a word, the LAP crystal has shown its uniqueness under the action of energy such as light, heat and magnetic field. However, for these special phenomena, there is no reasonable explanation. Phosphate arginine is responsible for the biological energy storage and transfer in invertebrates as an important phosphorus source, which has a similar chemical composition to that of LAP crystal. The special electrostatic or hydrogen bonding interaction between guanidine and phosphate plays an important role in protein molecule interaction and their biochemical functions. Moreover, the conformational transitions of L-arginine molecule in phosphoric acid solution at different energies have been reported, and the fluorescence emission of L-arginine molecule aggregates can be changed by the interaction between phosphoate and guanidine group. The interaction between phosphoate and guanidine group in crystal structure is also studied as a model of biomolecular interaction. In order to further study the mechanism of interaction between phosphoate and guanidine group and the crystal macroscopic properties, phosphate bis-guanidinoacetate (PBGA) crystal containing the similar phosphoate and guanidine groups has been synthesized and reported. In this paper, the geometry parameters, band structure, electronic density of states, and optical properties of PBGA crystal are investigated by first-principles based the density functional theory. The energy gap of PBGA crystal is 4.77 eV, much smaller than 5.96 eV of KDP crystal. Therefore, the photon transition becomes easier and the corresponding photon absorption is relatively large in PBGA crystal. The top states of crystal valence band are mainly composed of the N-2p of guanidine and the O-2p of carboxyl and phosphate groups. There exists the electron interaction among guanidine, carboxyl and phosphate groups. The optical properties of PBGA crystal are similar in the [100] and [010] orientation, whose linear optical properties are better than those of [001] when the incident photon energy is less than 10 eV. The strong energy loss peak at 9.46 eV in the [001] orientation is due to the electronic transition of N-2p on guanidine group in the valence band, and its distribution is narrow. Thus the optical properties of [001] orientation are limited. The present research establishes a good foundation for further understanding and studying the intergroup interactions and optical properties in PBGA crystal.
      通信作者: 王磊, leiw@xsyu.edu.cn
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 51702257)、陕西省自然科学基础研究计划(批准号: 2018JQ5123)和西安石油大学《材料科学与工程》省级优势学科(批准号: ys37020203)资助的课题.
      Corresponding author: Wang Lei, leiw@xsyu.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 51702257), the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2018JQ5123), and the Provincial Superiority Discipline of Materials Science and Engineering of Xi’an Shiyou University, China (Grant No. ys37020203).
    [1]

    王镜岩, 朱圣庚, 徐长法 2002 生物化学 (第三版下册) (北京: 高等教育出版社) 第41页

    Wang J Y, Zhu S G, Xu C F 2002 Biochemistry (3rd Ed.) Vol. 2 (Beijing: Higher Education Press) p41 (in Chinese)

    [2]

    Bailey D M, Peck L S, Bock C, Portner H 2003 Physiol. Biochem. Zool. 76 622Google Scholar

    [3]

    Senior A E, Nadanaciva S, Weber J 2002 Biochem. Biophys. Acta 1553 188Google Scholar

    [4]

    Xian L, Liu S, Ma Y, Lu G 2007 Spectrochim. Acta Part A 67 368Google Scholar

    [5]

    Mandell D J, Chorny I, Groban E S, Wong S E, Levine E, Rapp C S, Jacobson M P 2007 J. Am. Chem. Soc. 129 820Google Scholar

    [6]

    Tang M, Waring A J, Lehrer R I, Hong M 2008 Angew. Chem. Int. Ed. 47 3202Google Scholar

    [7]

    Cotton F A, Day V W, Hazen E E, Larsen S 1973 J. Am. Chem. Soc. 95 4834Google Scholar

    [8]

    许东, 蒋民华, 谭忠恪 1983 化学学报 41 570

    Xu D, Jiang M H, Tan Z K 1983 Acta Chim. Sin. 41 570

    [9]

    Eimerl D, Velsko S, Davis L, Wang F, Loiacono G, Kennedy G 1989 IEEE J. Quantum Electron. 25 179Google Scholar

    [10]

    Eimerl D 1985 LLNL Report UCID 20565 92

    [11]

    Yoshimura M, Mori Y, Sasaki T, Yoshida H, Nakatsuka M 1998 J. Opt. Soc. Am. 15 446Google Scholar

    [12]

    孙贵花 2011 博士学位论文 (济南: 山东大学)

    Sun G H 2011 Ph. D. Dissertation (Jinan: Shandong University) (in Chinese)

    [13]

    Wang L N, Zhang G H, Wang X Q, Wang L, Liu X T, Jin L T, Xu D 2012 J. Mol. Strct. 1026 71Google Scholar

    [14]

    Liu X T, Wang L, Wang L N, Zhang G H, Wang X Q, Xu D 2014 Int. J. Mater. Sci. 4 39Google Scholar

    [15]

    王磊 2014 博士学位论文 (济南: 山东大学)

    Wang L 2014 Ph. D. Dissertation (Jinan: Shandong University) (in Chinese)

    [16]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Mater. 14 2717Google Scholar

    [17]

    Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244Google Scholar

    [18]

    Vanderbilt D 1990 Phys. Rev. B 41 7892Google Scholar

    [19]

    段满益, 徐明, 周海平, 陈青云, 胡志刚, 董成军 2008 物理学报 57 6520Google Scholar

    Duan M Y, Xu M, Zhou H P, Chen Q Y, Hu Z G, Dong C J 2008 Acta Phys. Sin. 57 6520Google Scholar

    [20]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [21]

    沈学础 1992 半导体光学性质 (北京: 科学出版社) 第24页

    Shen X C 1992 Optical Property of Semiconductor (Beijing: Science Press) p24 (in Chinese)

    [22]

    徐大庆, 赵子涵, 李培咸, 王超, 张岩, 刘树林, 童军 2018 物理学报 67 087501Google Scholar

    Xu D Q, Zhao Z H, Li P X, Wang C, Zhang Y, Liu S L, Tong J 2018 Acta Phys. Sin. 67 087501Google Scholar

    [23]

    Zhang Q, Chen F, Kioussis N, Demos S G, Radousky H B 2001 Phys. Rev. B 65 024108Google Scholar

  • 图 1  PBGA晶体的(a)分子构型和(b)沿a轴方向的投影图

    Fig. 1.  (a) Molecular configuration and (b) projection viewed along a-axis of PBGA crystal

    图 2  PBGA晶体(a)原始模型与(b)优化后模型

    Fig. 2.  (a) Original and (b) optimized model of PBGA crystal

    图 3  PBGA晶体的分态密度

    Fig. 3.  Partial density of states of PBGA crystal

    图 4  PBGA晶体中(a)氧和(b)氮的p轨道分态密度

    Fig. 4.  The p-orbital partial density of states of (a) oxygen and (b) nitrogen in PBGA crystal

    图 5  PBGA晶体的介电函数虚部与能量关系

    Fig. 5.  Relationship between energy and imaginary part of dielectric function of PBGA crystal

    图 6  PBGA晶体的(a)折射率和(b)吸收系数

    Fig. 6.  (a) Refractive index and (b) absorption coefficient of PBGA crystal

    图 7  PBGA晶体的(a)反射率与(b)能量损失函数

    Fig. 7.  (a) Reflectivity and (b) loss function of PBGA crystal

  • [1]

    王镜岩, 朱圣庚, 徐长法 2002 生物化学 (第三版下册) (北京: 高等教育出版社) 第41页

    Wang J Y, Zhu S G, Xu C F 2002 Biochemistry (3rd Ed.) Vol. 2 (Beijing: Higher Education Press) p41 (in Chinese)

    [2]

    Bailey D M, Peck L S, Bock C, Portner H 2003 Physiol. Biochem. Zool. 76 622Google Scholar

    [3]

    Senior A E, Nadanaciva S, Weber J 2002 Biochem. Biophys. Acta 1553 188Google Scholar

    [4]

    Xian L, Liu S, Ma Y, Lu G 2007 Spectrochim. Acta Part A 67 368Google Scholar

    [5]

    Mandell D J, Chorny I, Groban E S, Wong S E, Levine E, Rapp C S, Jacobson M P 2007 J. Am. Chem. Soc. 129 820Google Scholar

    [6]

    Tang M, Waring A J, Lehrer R I, Hong M 2008 Angew. Chem. Int. Ed. 47 3202Google Scholar

    [7]

    Cotton F A, Day V W, Hazen E E, Larsen S 1973 J. Am. Chem. Soc. 95 4834Google Scholar

    [8]

    许东, 蒋民华, 谭忠恪 1983 化学学报 41 570

    Xu D, Jiang M H, Tan Z K 1983 Acta Chim. Sin. 41 570

    [9]

    Eimerl D, Velsko S, Davis L, Wang F, Loiacono G, Kennedy G 1989 IEEE J. Quantum Electron. 25 179Google Scholar

    [10]

    Eimerl D 1985 LLNL Report UCID 20565 92

    [11]

    Yoshimura M, Mori Y, Sasaki T, Yoshida H, Nakatsuka M 1998 J. Opt. Soc. Am. 15 446Google Scholar

    [12]

    孙贵花 2011 博士学位论文 (济南: 山东大学)

    Sun G H 2011 Ph. D. Dissertation (Jinan: Shandong University) (in Chinese)

    [13]

    Wang L N, Zhang G H, Wang X Q, Wang L, Liu X T, Jin L T, Xu D 2012 J. Mol. Strct. 1026 71Google Scholar

    [14]

    Liu X T, Wang L, Wang L N, Zhang G H, Wang X Q, Xu D 2014 Int. J. Mater. Sci. 4 39Google Scholar

    [15]

    王磊 2014 博士学位论文 (济南: 山东大学)

    Wang L 2014 Ph. D. Dissertation (Jinan: Shandong University) (in Chinese)

    [16]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Mater. 14 2717Google Scholar

    [17]

    Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244Google Scholar

    [18]

    Vanderbilt D 1990 Phys. Rev. B 41 7892Google Scholar

    [19]

    段满益, 徐明, 周海平, 陈青云, 胡志刚, 董成军 2008 物理学报 57 6520Google Scholar

    Duan M Y, Xu M, Zhou H P, Chen Q Y, Hu Z G, Dong C J 2008 Acta Phys. Sin. 57 6520Google Scholar

    [20]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [21]

    沈学础 1992 半导体光学性质 (北京: 科学出版社) 第24页

    Shen X C 1992 Optical Property of Semiconductor (Beijing: Science Press) p24 (in Chinese)

    [22]

    徐大庆, 赵子涵, 李培咸, 王超, 张岩, 刘树林, 童军 2018 物理学报 67 087501Google Scholar

    Xu D Q, Zhao Z H, Li P X, Wang C, Zhang Y, Liu S L, Tong J 2018 Acta Phys. Sin. 67 087501Google Scholar

    [23]

    Zhang Q, Chen F, Kioussis N, Demos S G, Radousky H B 2001 Phys. Rev. B 65 024108Google Scholar

  • [1] 宋蕊, 王必利, 冯凯, 姚佳, 李霞. 应力调控对单层TiOCl2电子结构及光学性质的影响. 物理学报, 2022, 71(7): 077101. doi: 10.7498/aps.71.20212023
    [2] 李发云, 杨志雄, 程雪, 甄丽营, 欧阳方平. 单层缺陷碲烯电子结构与光学性质的第一性原理研究. 物理学报, 2021, 70(16): 166301. doi: 10.7498/aps.70.20210271
    [3] 熊子谦, 张鹏程, 康文斌, 方文玉. 一种新型二维TiO2的电子结构与光催化性质. 物理学报, 2020, 69(16): 166301. doi: 10.7498/aps.69.20200631
    [4] 潘凤春, 林雪玲, 曹志杰, 李小伏. Fe, Co, Ni掺杂GaSb的电子结构和光学性质. 物理学报, 2019, 68(18): 184202. doi: 10.7498/aps.68.20190290
    [5] 王闯, 赵永红, 刘永. Ga1–xCrxSb (x = 0.25, 0.50, 0.75) 磁学和光学性质的第一性原理研究. 物理学报, 2019, 68(17): 176301. doi: 10.7498/aps.68.20182305
    [6] 赵佰强, 张耘, 邱晓燕, 王学维. Cu,Fe掺杂LiNbO3晶体电子结构和光学性质的第一性原理研究. 物理学报, 2016, 65(1): 014212. doi: 10.7498/aps.65.014212
    [7] 骆最芬, 岑伟富, 范梦慧, 汤家俊, 赵宇军. BiTiO3电子结构及光学性质的第一性原理研究. 物理学报, 2015, 64(14): 147102. doi: 10.7498/aps.64.147102
    [8] 何静芳, 郑树凯, 周鹏力, 史茹倩, 闫小兵. Cu-Co共掺杂ZnO光电性质的第一性原理计算. 物理学报, 2014, 63(4): 046301. doi: 10.7498/aps.63.046301
    [9] 谢知, 程文旦. TiO2纳米管电子结构和光学性质的第一性原理研究. 物理学报, 2014, 63(24): 243102. doi: 10.7498/aps.63.243102
    [10] 程旭东, 吴海信, 唐小路, 王振友, 肖瑞春, 黄昌保, 倪友保. Na2Ge2Se5电子结构和光学性质的第一性原理研究. 物理学报, 2014, 63(18): 184208. doi: 10.7498/aps.63.184208
    [11] 程和平, 但加坤, 黄智蒙, 彭辉, 陈光华. 黑索金电子结构和光学性质的第一性原理研究. 物理学报, 2013, 62(16): 163102. doi: 10.7498/aps.62.163102
    [12] 潘磊, 卢铁城, 苏锐, 王跃忠, 齐建起, 付佳, 张燚, 贺端威. -AlON晶体电子结构和光学性质研究. 物理学报, 2012, 61(2): 027101. doi: 10.7498/aps.61.027101
    [13] 王寅, 冯庆, 王渭华, 岳远霞. 碳-锌共掺杂锐钛矿相TiO2 电子结构与光学性质的第一性原理研究. 物理学报, 2012, 61(19): 193102. doi: 10.7498/aps.61.193102
    [14] 杨春燕, 张蓉, 张利民, 可祥伟. 0.5NdAlO3-0.5CaTiO3电子结构及光学性质的第一性原理计算. 物理学报, 2012, 61(7): 077702. doi: 10.7498/aps.61.077702
    [15] 宋庆功, 刘立伟, 赵辉, 严慧羽, 杜全国. YFeO3的电子结构和光学性质的第一性原理研究. 物理学报, 2012, 61(10): 107102. doi: 10.7498/aps.61.107102
    [16] 崔冬萌, 谢泉, 陈茜, 赵凤娟, 李旭珍. Si基外延Ru2Si3电子结构及光学性质研究. 物理学报, 2010, 59(3): 2027-2032. doi: 10.7498/aps.59.2027
    [17] 李旭珍, 谢泉, 陈茜, 赵凤娟, 崔冬萌. OsSi2电子结构和光学性质的研究. 物理学报, 2010, 59(3): 2016-2021. doi: 10.7498/aps.59.2016
    [18] 邢海英, 范广涵, 赵德刚, 何 苗, 章 勇, 周天明. Mn掺杂GaN电子结构和光学性质研究. 物理学报, 2008, 57(10): 6513-6519. doi: 10.7498/aps.57.6513
    [19] 毕艳军, 郭志友, 孙慧卿, 林 竹, 董玉成. Co和Mn共掺杂ZnO电子结构和光学性质的第一性原理研究. 物理学报, 2008, 57(12): 7800-7805. doi: 10.7498/aps.57.7800
    [20] 段满益, 徐 明, 周海平, 沈益斌, 陈青云, 丁迎春, 祝文军. 过渡金属与氮共掺杂ZnO电子结构和光学性质的第一性原理研究. 物理学报, 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
计量
  • 文章访问数:  7867
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-31
  • 修回日期:  2019-01-15
  • 上网日期:  2019-03-01
  • 刊出日期:  2019-03-20

/

返回文章
返回