搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

悬浮液凝固研究进展

游家学 王锦程 王理林 王志军 李俊杰 林鑫

引用本文:
Citation:

悬浮液凝固研究进展

游家学, 王锦程, 王理林, 王志军, 李俊杰, 林鑫

Recent progress of solidification of suspensions

You Jia-Xue, Wang Jin-Cheng, Wang Li-Lin, Wang Zhi-Jun, Li Jun-Jie, Lin Xin
PDF
导出引用
  • 悬浮液凝固是将固体颗粒均匀分散于液体中,并对液体进行凝固.它涉及冷冻铸造法多孔材料制备、冻土冻胀、海上浮冰、生物组织冷藏等多个学科和领域.近年来通过悬浮液凝固的方法,人们相继开发出了众多性能优异的新材料,这更为悬浮液凝固的研究注入了新的活力.悬浮液凝固过程中存在众多不同于传统合金凝固的独特现象,如颗粒密堆层、层片晶组织、周期性冰透镜体组织等,但这些凝固微观组织的形成机理尚不清楚.揭示颗粒对悬浮液凝固界面形态演化的影响机理,建立悬浮液体系的凝固理论,不仅帮助人们理解冻土冻胀等自然现象,也为高性能材料的制备与开发提供理论依据.本文首先回顾了悬浮液凝固的研究历史,然后对当前悬浮液凝固微观组织及颗粒动态堆积等方面的研究进展进行述评,并简要介绍本课题组近年来在悬浮液凝固方面的工作进展,最后对悬浮液凝固研究的未来发展进行了展望.
    Suspensions include solvent and uniformly dispersed particles. Solidification of suspensions is to freeze the solvent while numerous particles disturb the pattern formation during the growth of the solid/liquid interface. It is a new interdisciplinary subject, involving the fields of freeze-casting porous materials, frost heaving, sea ice and biological tissue engineering and so on. Especially in recent years, many advanced materials with excellent properties were developed based on the processing of suspension solidification. Experimental phenomenon in suspension solidification is different from that in alloy solidification, such as the close-packed particle layer and self assembly, the ice lamellae structure and the periodic ice lenses and so on. Up to now, the formation mechanisms of these microstructures are still unclear. In this paper, we first review the historical development of suspension solidification in theory and in experiment. Then we demonstrate some recent progress of microstructural evolution and dynamical particle packing of suspension solidification. Finally, the outlooks of the future study on solidification of suspensions are also presented.
    [1]

    Deville S 2013 J. Mater. Res. 28 2202

    [2]

    Wettlaufer J S, Worster M G 2006 Annu. Rev. Fluid Mech. 38 427

    [3]

    Peppin S S L, Style R W 2013 Vadose Zone J. 12 1

    [4]

    Zhang L, Ma W, Yang C, Yuan C 2014 Eng. Geol. 181 233

    [5]

    Liu J, Wickramaratne N P, Qiao S Z, Jaroniec M 2015 Nat. Mater. 14 763

    [6]

    Xia Z, Yu X, Jiang X, Brody H D, Rowe D W, Wei M 2013 Acta Biomater. 9 7308

    [7]

    Wegst U G K, Bai H, Saiz E, Tomsia A P, Ritchie R O 2015 Nat. Mater. 14 23

    [8]

    Deville S 2008 Adv. Eng. Matter 10 155

    [9]

    Youssef Y M, Dashwood R J, Lee P D 2005 Composites Part A 36 747

    [10]

    Stefanescu D M, Juretzko F R, Catalina A, Dhindaw B, Sen S, Curreri P A 1998 Metall. Mater. Trans. A 29 1697

    [11]

    You J X, Wang Z J, Li J J, Wang J C 2015 Chin. Phys. B 24 078107

    [12]

    You J, Wang J, Wang L, Wang Z, Li J, Lin X 2018 Colloid. Surface A 553 681

    [13]

    Mukai S R, Nishihara H, Tamon H 2004 Chem. Commun. 7 874

    [14]

    Bai H, Polini A, Delattre B, Tomsia A P 2013 Chem. Mater. 25 4551

    [15]

    Rempel A W 2010 J. Glaciol. 56 1122

    [16]

    Hunger P M, Donius A E, Wegst U G K 2013 Acta Biomater. 9 6338

    [17]

    Roberts A D, Li X, Zhang H 2014 Chem. Soc. Rev. 43 4341

    [18]

    Bai H, Wang D, Delattre B, Gao W, de Coninck J, Li S, Tomsia A P 2015 Acta Biomater. 20 113

    [19]

    Munch E, Launey M E, Alsem D H, Saiz E, Tomsia A P, Ritchie R O 2008 Science 322 1516

    [20]

    Garvin J, Yang Y, Udaykumar H 2007 Int. J. Heat Mass Trans. 50 2969

    [21]

    Rempel A W 2011 Quaternary Res. 75 316

    [22]

    Zhu D M, Vilches O E, Dash J G, Sing B, Wettlaufer J S 2000 Phys. Rev. Lett. 85 4908

    [23]

    Deville S, Maire E, Bernard-Granger G, Lasalle A, Bogner A, Gauthier C, Leloup J, Guizard C 2009 Nature Mater. 8 966

    [24]

    Zuo K H, Zeng Y P, Jiang D 2010 Mater. Sci. Eng.: C 30 283

    [25]

    Wegst U G K, Ashby M F 2004 Philos. Mag. 84 2167

    [26]

    Peppin S, Elliott J, Worster M G 2006 J. Fluid Mech. 554 147

    [27]

    Anderson A M, Worster M G 2014 J. Fluid Mech. 758 786

    [28]

    Dash J G, Rempel A W, Wettlaufer J S 2006 Rev. Mod. Phys. 78 695

    [29]

    Wettlaufer J S, Worster M G, Wilen L A 1997 J. Phys. Chem. B 101 6137

    [30]

    Corte A E 1962 J. Geophys. Res. 67 1085

    [31]

    Uhlmann D R, Chalmers B, Jackson K 1964 J. Appl. Phys. 35 2986

    [32]

    Cissé J, Bolling G F 1971 J. Cryst. Growth 10 67

    [33]

    Köber C, Rau G, Cosman M D, Cravalho E G 1985 J. Cryst. Growth 72 649

    [34]

    Shangguan D, Ahuja S, Stefanescu D M 1992 Metall. Mater. Trans. A 23 669

    [35]

    Rempel A, Worster M G 1999 J. Cryst. Growth 205 427

    [36]

    Rempel A W, Wettlaufer J S, Worster M G 2001 Phys. Rev. Lett. 87 088501

    [37]

    Rempel A W, Worster M G 2001 J. Cryst. Growth 223 420

    [38]

    Dedovets D, Monteux C, Deville S 2018 Science 360 303

    [39]

    Peppin S S, Worster M G, Wettlaufer J 2007 Proc. R. Soc. A 463 723

    [40]

    You J, Wang L, Wang Z, Li J, Wang J, Lin X, Huang W 2016 Sci. Rep. 6 28434

    [41]

    Waschkies T, Oberacker R, Hoffmann M J 2011 Acta Mater. 59 5135

    [42]

    Style R W, Peppin S S L, Cocks A C F, Wettlaufer J S 2011 Phys. Rev. E 84 041402

    [43]

    Kozlowski T 2009 Cold Reg. Sci. Technol. 59 25

    [44]

    Carnahan N F, Starling K E 1969 J. Chem. Phys. 51 635

    [45]

    Peppin S, Wettlaufer J, Worster M 2008 Phys. Rev. Lett. 100 238301

    [46]

    Kozlowski T 2004 Cold Reg. Sci. Technol. 38 93

    [47]

    You J, Wang L, Wang Z, Li J, Wang J, Lin X, Huang W 2015 Rev. Sci. Instrum. 86 084901

    [48]

    Bodnar R 1993 Geochim. Cosmochimica Acta 57 683

    [49]

    Mullins W W, Sekerka R F 1964 J. Appl. Phys. 35 444

    [50]

    Wang L, You J, Wang Z, Wang J, Lin X 2016 Sci. Rep. 6 23358

    [51]

    Taber S 1929 J. Geol. 37 428

    [52]

    Taber S 1930 J. Geol. 38 303

    [53]

    Rempel A W 2012 Vadose Zone J. 11 1

    [54]

    Rempel A W, Wettlaufer J, Worster M 2004 J. Fluid Mech. 498 227

    [55]

    Nixon J F 1991 Can. Geotech. J. 28 843

    [56]

    Anderson A M, Worster M G 2012 Langmuir 28 16512

    [57]

    You J, Wang Z, Worster M G 2018 Acta Mater. 157 288

    [58]

    Schollick J M H, Style R W, Curran A, Wettlaufer J S, Dufresne E R, Warren P B, Velikov K P, Dullens R P A, Aarts D G A L 2016 J. Phys. Chem. B 120 3941

    [59]

    Saint-Michel B, Georgelin M, Deville S, Pocheau A 2017 Langmuir 33 5617

    [60]

    Jackson K A, Chalmers B 1958 J. Appl. Phys. 29 1178

    [61]

    Fowler A C 1989 SIAM J. Appl. Math. 49 991

    [62]

    O’Neill K, Miller R D 1985 Water Resour. Res. 21 281

    [63]

    Watanabe K, Mizoguchi M 2000 J. Cryst. Growth 213 135

    [64]

    Watanabe K, Muto Y, Mizoguchi M 2001 Cryst. Growth Des. 1 207

    [65]

    Watanabe K, Mizoguchi M 2002 Cold Reg. Sci. Technol. 34 103

    [66]

    Watanabe K 2002 J. Cryst. Growth 237 2194

    [67]

    Shanti N O, Araki K, Halloran J W 2006 J. Am. Ceram. Soc. 89 2444

    [68]

    Sylvain D, Sylvain M, Jordi S 2015 Sci. Technol. Adv. Matter 16 043501

    [69]

    Barr S A, Luijten E 2010 Acta Mater. 58 709

    [70]

    You J, Wang J, Wang L, Wang Z, Wang Z, Li J, Lin X 2017 Colloid. Surface A 531 93

    [71]

    Kumaraswamy G, Biswas B, Choudhury C K 2016 Faraday Discuss. 186 61

    [72]

    You J, Wang J, Wang L, Wang Z, Li J, Lin X 2018 Colloid. Surface A 543 126

    [73]

    You J, Wang J, Wang L, Wang Z, Li J, Lin X 2016 Chin. Phys. B 25 128202

  • [1]

    Deville S 2013 J. Mater. Res. 28 2202

    [2]

    Wettlaufer J S, Worster M G 2006 Annu. Rev. Fluid Mech. 38 427

    [3]

    Peppin S S L, Style R W 2013 Vadose Zone J. 12 1

    [4]

    Zhang L, Ma W, Yang C, Yuan C 2014 Eng. Geol. 181 233

    [5]

    Liu J, Wickramaratne N P, Qiao S Z, Jaroniec M 2015 Nat. Mater. 14 763

    [6]

    Xia Z, Yu X, Jiang X, Brody H D, Rowe D W, Wei M 2013 Acta Biomater. 9 7308

    [7]

    Wegst U G K, Bai H, Saiz E, Tomsia A P, Ritchie R O 2015 Nat. Mater. 14 23

    [8]

    Deville S 2008 Adv. Eng. Matter 10 155

    [9]

    Youssef Y M, Dashwood R J, Lee P D 2005 Composites Part A 36 747

    [10]

    Stefanescu D M, Juretzko F R, Catalina A, Dhindaw B, Sen S, Curreri P A 1998 Metall. Mater. Trans. A 29 1697

    [11]

    You J X, Wang Z J, Li J J, Wang J C 2015 Chin. Phys. B 24 078107

    [12]

    You J, Wang J, Wang L, Wang Z, Li J, Lin X 2018 Colloid. Surface A 553 681

    [13]

    Mukai S R, Nishihara H, Tamon H 2004 Chem. Commun. 7 874

    [14]

    Bai H, Polini A, Delattre B, Tomsia A P 2013 Chem. Mater. 25 4551

    [15]

    Rempel A W 2010 J. Glaciol. 56 1122

    [16]

    Hunger P M, Donius A E, Wegst U G K 2013 Acta Biomater. 9 6338

    [17]

    Roberts A D, Li X, Zhang H 2014 Chem. Soc. Rev. 43 4341

    [18]

    Bai H, Wang D, Delattre B, Gao W, de Coninck J, Li S, Tomsia A P 2015 Acta Biomater. 20 113

    [19]

    Munch E, Launey M E, Alsem D H, Saiz E, Tomsia A P, Ritchie R O 2008 Science 322 1516

    [20]

    Garvin J, Yang Y, Udaykumar H 2007 Int. J. Heat Mass Trans. 50 2969

    [21]

    Rempel A W 2011 Quaternary Res. 75 316

    [22]

    Zhu D M, Vilches O E, Dash J G, Sing B, Wettlaufer J S 2000 Phys. Rev. Lett. 85 4908

    [23]

    Deville S, Maire E, Bernard-Granger G, Lasalle A, Bogner A, Gauthier C, Leloup J, Guizard C 2009 Nature Mater. 8 966

    [24]

    Zuo K H, Zeng Y P, Jiang D 2010 Mater. Sci. Eng.: C 30 283

    [25]

    Wegst U G K, Ashby M F 2004 Philos. Mag. 84 2167

    [26]

    Peppin S, Elliott J, Worster M G 2006 J. Fluid Mech. 554 147

    [27]

    Anderson A M, Worster M G 2014 J. Fluid Mech. 758 786

    [28]

    Dash J G, Rempel A W, Wettlaufer J S 2006 Rev. Mod. Phys. 78 695

    [29]

    Wettlaufer J S, Worster M G, Wilen L A 1997 J. Phys. Chem. B 101 6137

    [30]

    Corte A E 1962 J. Geophys. Res. 67 1085

    [31]

    Uhlmann D R, Chalmers B, Jackson K 1964 J. Appl. Phys. 35 2986

    [32]

    Cissé J, Bolling G F 1971 J. Cryst. Growth 10 67

    [33]

    Köber C, Rau G, Cosman M D, Cravalho E G 1985 J. Cryst. Growth 72 649

    [34]

    Shangguan D, Ahuja S, Stefanescu D M 1992 Metall. Mater. Trans. A 23 669

    [35]

    Rempel A, Worster M G 1999 J. Cryst. Growth 205 427

    [36]

    Rempel A W, Wettlaufer J S, Worster M G 2001 Phys. Rev. Lett. 87 088501

    [37]

    Rempel A W, Worster M G 2001 J. Cryst. Growth 223 420

    [38]

    Dedovets D, Monteux C, Deville S 2018 Science 360 303

    [39]

    Peppin S S, Worster M G, Wettlaufer J 2007 Proc. R. Soc. A 463 723

    [40]

    You J, Wang L, Wang Z, Li J, Wang J, Lin X, Huang W 2016 Sci. Rep. 6 28434

    [41]

    Waschkies T, Oberacker R, Hoffmann M J 2011 Acta Mater. 59 5135

    [42]

    Style R W, Peppin S S L, Cocks A C F, Wettlaufer J S 2011 Phys. Rev. E 84 041402

    [43]

    Kozlowski T 2009 Cold Reg. Sci. Technol. 59 25

    [44]

    Carnahan N F, Starling K E 1969 J. Chem. Phys. 51 635

    [45]

    Peppin S, Wettlaufer J, Worster M 2008 Phys. Rev. Lett. 100 238301

    [46]

    Kozlowski T 2004 Cold Reg. Sci. Technol. 38 93

    [47]

    You J, Wang L, Wang Z, Li J, Wang J, Lin X, Huang W 2015 Rev. Sci. Instrum. 86 084901

    [48]

    Bodnar R 1993 Geochim. Cosmochimica Acta 57 683

    [49]

    Mullins W W, Sekerka R F 1964 J. Appl. Phys. 35 444

    [50]

    Wang L, You J, Wang Z, Wang J, Lin X 2016 Sci. Rep. 6 23358

    [51]

    Taber S 1929 J. Geol. 37 428

    [52]

    Taber S 1930 J. Geol. 38 303

    [53]

    Rempel A W 2012 Vadose Zone J. 11 1

    [54]

    Rempel A W, Wettlaufer J, Worster M 2004 J. Fluid Mech. 498 227

    [55]

    Nixon J F 1991 Can. Geotech. J. 28 843

    [56]

    Anderson A M, Worster M G 2012 Langmuir 28 16512

    [57]

    You J, Wang Z, Worster M G 2018 Acta Mater. 157 288

    [58]

    Schollick J M H, Style R W, Curran A, Wettlaufer J S, Dufresne E R, Warren P B, Velikov K P, Dullens R P A, Aarts D G A L 2016 J. Phys. Chem. B 120 3941

    [59]

    Saint-Michel B, Georgelin M, Deville S, Pocheau A 2017 Langmuir 33 5617

    [60]

    Jackson K A, Chalmers B 1958 J. Appl. Phys. 29 1178

    [61]

    Fowler A C 1989 SIAM J. Appl. Math. 49 991

    [62]

    O’Neill K, Miller R D 1985 Water Resour. Res. 21 281

    [63]

    Watanabe K, Mizoguchi M 2000 J. Cryst. Growth 213 135

    [64]

    Watanabe K, Muto Y, Mizoguchi M 2001 Cryst. Growth Des. 1 207

    [65]

    Watanabe K, Mizoguchi M 2002 Cold Reg. Sci. Technol. 34 103

    [66]

    Watanabe K 2002 J. Cryst. Growth 237 2194

    [67]

    Shanti N O, Araki K, Halloran J W 2006 J. Am. Ceram. Soc. 89 2444

    [68]

    Sylvain D, Sylvain M, Jordi S 2015 Sci. Technol. Adv. Matter 16 043501

    [69]

    Barr S A, Luijten E 2010 Acta Mater. 58 709

    [70]

    You J, Wang J, Wang L, Wang Z, Wang Z, Li J, Lin X 2017 Colloid. Surface A 531 93

    [71]

    Kumaraswamy G, Biswas B, Choudhury C K 2016 Faraday Discuss. 186 61

    [72]

    You J, Wang J, Wang L, Wang Z, Li J, Lin X 2018 Colloid. Surface A 543 126

    [73]

    You J, Wang J, Wang L, Wang Z, Li J, Lin X 2016 Chin. Phys. B 25 128202

  • [1] 李雨凡, 薛文清, 李玉超, 战艳虎, 谢倩, 李艳凯, 查俊伟. 三明治结构柔性储能电介质材料研究进展. 物理学报, 2024, 73(2): 027702. doi: 10.7498/aps.73.20230614
    [2] 李燕, 贺红, 党威武, 陈雪莲, 孙璨, 郑嘉璐. 钙钛矿太阳电池中各功能层的光辐照稳定性研究进展. 物理学报, 2021, 70(9): 098402. doi: 10.7498/aps.70.20201762
    [3] 贾宁, 王善朋, 陶绪堂. 中远红外非线性光学晶体研究进展. 物理学报, 2018, 67(24): 244203. doi: 10.7498/aps.67.20181591
    [4] 弭光宝, 黄旭, 曹京霞, 王宝, 曹春晓. 摩擦点火Ti-V-Cr阻燃钛合金燃烧产物的组织特征. 物理学报, 2016, 65(5): 056103. doi: 10.7498/aps.65.056103
    [5] 夏辉, 杨伟国. 浓悬浮液中纳米SiO2团聚体的渗透率. 物理学报, 2016, 65(14): 144203. doi: 10.7498/aps.65.144203
    [6] 王德, 沈容, 刘灿灿, 韦世强, 陆坤权. 纳米TiO2颗粒对电流变悬浮液中硅油的挥发增强效应. 物理学报, 2015, 64(15): 154704. doi: 10.7498/aps.64.154704
    [7] 王祥, 钞润泽, 管仁国, 李元东, 刘春明. 金属熔体近壁面流动剪切模型及其对金属凝固影响的理论研究. 物理学报, 2015, 64(11): 116601. doi: 10.7498/aps.64.116601
    [8] 孟广慧, 林鑫. 二元层片共晶凝固过程的特征尺度选择. 物理学报, 2014, 63(6): 068104. doi: 10.7498/aps.63.068104
    [9] 陈海楠, 孙东科, 戴挺, 朱鸣芳. 凝固前沿和气泡相互作用的大密度比格子玻尔兹曼方法模拟. 物理学报, 2013, 62(12): 120502. doi: 10.7498/aps.62.120502
    [10] 苑轶, 李英龙, 王强, 刘铁, 高鹏飞, 赫冀成. 强磁场对Mn-Sb包晶合金相变及凝固组织的影响. 物理学报, 2013, 62(20): 208106. doi: 10.7498/aps.62.208106
    [11] 丁勇, 陈仁杰, 郭帅, 刘兴民, 李东, 闫阿儒. 添加Dy元素对钕铁硼速凝片微观组织和磁特性的影响. 物理学报, 2011, 60(5): 057103. doi: 10.7498/aps.60.057103
    [12] 王春江, 苑轶, 王强, 刘铁, 娄长胜, 赫冀成. 强磁场条件下金属凝固过程中第二相的迁移行为. 物理学报, 2010, 59(5): 3116-3122. doi: 10.7498/aps.59.3116
    [13] 张宗宁, 刘美林, 李蔚, 耿长建, 赵骞, 张林. 熔融Cu55团簇在Cu(010)表面上凝固过程的分子动力学模拟. 物理学报, 2009, 58(13): 67-S71. doi: 10.7498/aps.58.67
    [14] 徐送宁, 张林, 张彩碚, 祁阳. 熔融Cu55团簇在铜块体中凝固过程的分子动力学模拟. 物理学报, 2009, 58(13): 40-S46. doi: 10.7498/aps.58.40
    [15] 单博炜, 林鑫, 魏雷, 黄卫东. 纯物质枝晶凝固的元胞自动机模型. 物理学报, 2009, 58(2): 1132-1138. doi: 10.7498/aps.58.1132
    [16] 朱昌盛, 冯力, 王智平, 肖荣振. 三维枝晶生长的相场法数值模拟研究. 物理学报, 2009, 58(11): 8055-8061. doi: 10.7498/aps.58.8055
    [17] 韩 永, 王体健, 饶瑞中, 王英俭. 大气气溶胶物理光学特性研究进展. 物理学报, 2008, 57(11): 7396-7407. doi: 10.7498/aps.57.7396
    [18] 王海燕, 刘日平, 马明臻, 高 明, 姚玉书, 王文魁. FeSi2合金在高压下的凝固. 物理学报, 2004, 53(7): 2378-2383. doi: 10.7498/aps.53.2378
    [19] 黄卫东, 林 鑫, 李 涛, 王琳琳, Y. Inatomi. 单相合金凝固过程时间相关的界面稳定性(Ⅱ)实验对比. 物理学报, 2004, 53(11): 3978-3983. doi: 10.7498/aps.53.3978
    [20] 张 林, 王绍青, 叶恒强. 大角度Cu晶界在升温、急冷条件下晶界结构的分子动力学研究. 物理学报, 2004, 53(8): 2497-2502. doi: 10.7498/aps.53.2497
计量
  • 文章访问数:  8486
  • PDF下载量:  147
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-03
  • 修回日期:  2018-11-13
  • 刊出日期:  2019-01-05

/

返回文章
返回