搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

表面形貌对热阴极电子发射特性的影响

郝广辉 李泽鹏 高玉娟 周亚昆

引用本文:
Citation:

表面形貌对热阴极电子发射特性的影响

郝广辉, 李泽鹏, 高玉娟, 周亚昆

Effect of surface topography on emission properties of hot-cathode

Hao Guang-Hui, Li Ze-Peng, Gao Yu-Juan, Zhou Ya-Kun
PDF
HTML
导出引用
  • 为了研究热阴极表面形貌对电子发射能力的影响, 使用飞秒激光微纳加工技术在光滑的热阴极表面制备不同尺寸和形状的周期性条纹结构, 并使用相同的制备工艺对阴极进行除气和激活. 测试结果显示: 阴极表面周期性条纹结构可有效增强阴极的电子发射能力, 正交双向条纹结构表面阴极的发射电流密度高于单向条纹结构表面阴极的发射电流密度, 而且随条纹结构尺寸的降低, 阴极的电子发射能力逐渐增强. 对阴极表面形貌进行仿真, 发现微尖顶端位置在强电场的作用下具有较强的电子发射能力. 当阴极表面微尖底部直径与高度比值(r/h)较小时, 微尖的侧面仍是阴极电子发射的主要区域, 但是随着r/h减小, 阴极的电子发射区域逐渐由微尖侧面发射向微尖顶端转移, 场助电子发射效应成为阴极电子发射的主要组成部分.
    As a kind of influence factor, the surface topography determines the uniformity and current of peritoneal impregnated diffusion cathode (M-type dispenser cathode) emitted electrons. It can be seen from the emission characteristics of the cathode in the micro-range that the lathe tool grains at the cathode surface can affect the current uniformity, and the electron emission will be enhanced. But the distribution of the lathe tool grains is uncontrollable. Therefore to fully utilize the promoting effect of surface stripes on electron emission, the effect of surface topography onthe emission property of M-type dispenser cathode is investigated. And the simplest way to change the surface morphology of cathode surface is to fabricate a periodic stripe structure which can be divided into unidirectional stripe structure and orthogonal bidirectional stripe structure. And the orthogonal bidirectional stripe structure at the cathode surface can form micro-tip structure like the spindle cathode. To research the effect of surface topography on the emission properties of M-type dispenser cathode, the periodic stripe structures on the cathode surface with different sizes and shapes are processed by the femtosecond leaser in the fabrication of micro/nano-size microstructure. The cathodes are prepared with the same degassing and activated method. The test results of the cathodes show the periodic stripe structure on the cathode surface can effectively enhance the cathode electron emission capability. The emission current density of cathode with orthogonal bidirectional stripe is higher than that of cathode with unidirectional stripe. And with the stripe size declining, the emission capability is gradually enhanced. Also, this phenomenon occurs in the scandium-impregnated diffusion cathode. With the help of simulation of cathode surface topography, it is shown that the top of tip has a great electron emission capability for its strong electric field. When the ratio of bottom radius to height of the tip (r/h) is small, the side area is the main region of cathode electron emission. But as the r/h keeps decreasing, the main electron emission region is transferred from the side of tip to the top of tip, and the field assisted effect is the major component of the cathode electron emission.
      通信作者: 郝广辉, hghhgh@126.com
      Corresponding author: Hao Guang-Hui, hghhgh@126.com
    [1]

    Chen D S, Lindau I, Hecht M H, Viescas A J, Nogami J, Spicer W E 1982 Appl. Surf. Sci. 13 321Google Scholar

    [2]

    廖复疆 2006 电子学报 34 513Google Scholar

    Liao F J 2006 Acta Electron. Sin. 34 513Google Scholar

    [3]

    阴生毅, 张洪来, 杨靖鑫, 奎热西, 钱海杰, 王嘉欧, 王宇, 王欣欣 2011 电子与信息学报 33 3040

    Yin S Y, Zhang H L, Yang J X, Urash I, Qian H J, Wang J O, Wang Y, Wang X X 2011 J. Electron. Inf. Technol. 33 3040

    [4]

    Ares Fang C S, Maloney C E 1990 J. Vac. Sci. Technol. A 8 2329Google Scholar

    [5]

    Jones D, Mcneely D, Swanson L W 1979 Appl. Surf. Sci. 2 232Google Scholar

    [6]

    任峰, 阴生毅, 卢志鹏, 李阳, 王宇, 张申金, 杨峰, 卫东 2017 物理学报 66 187901Google Scholar

    Ren F, Yin S Y, Lu Z P, Li Y, Wang Y, Zhang S J, Yang F, Wei D 2017 Acta Phys. Sin. 66 187901Google Scholar

    [7]

    Barik R, Bera A, Tanwar A K, Baek I K, Eom K, Sattorov M A, Min S H, Kwon O J, Park G S 2013 Int. J. Refract. Met. Hard Mat. 38 60Google Scholar

    [8]

    Brion D, Tonnerre J C, Shroff A M 1983 Appl. Surf. Sci. 16 55Google Scholar

    [9]

    王光强, 王建国, 李小泽, 范如玉, 王行舟, 王雪锋, 童长江 2010 物理学报 59 8459Google Scholar

    Wang G Q, Wang J G, Li X Z, Fan R Y, Wang X Z, Wang X F, Tong C J 2010 Acta Phys. Sin. 59 8459Google Scholar

    [10]

    Booske J H, Dobbs R J, Joye C D, Kory C L, Neil G R, Park G, Park J, Temkin R J 2011 IEEE Trans. on Teraheeth Sci. Technol. 1 54Google Scholar

    [11]

    Wang Y, Wang J, Liu W, Zhang K, Li J 2007 IEEE Trans. Electron Dev. 54 1061Google Scholar

    [12]

    梁文龙, 王亦曼, 刘伟, 李洪义, 王金淑 2014 物理学报 63 057901Google Scholar

    Liang W L, Wang Y M, Liu W, Li H Y, Wang J S 2014 Acta Phys. Sin. 63 057901Google Scholar

    [13]

    李玉涛, 张洪来, 刘濮鲲, 张明晨 2006 物理学报 55 6677Google Scholar

    Li Y T, Zhang H L, Liu P K, Zhang M C 2006 Acta Phys. Sin. 55 6677Google Scholar

    [14]

    Gaertner G 2012 J. Vac. Sci. Technol. B 30 060801Google Scholar

    [15]

    Wang J, Liu W, Li L, Wang Y C, Wang Y, Zhou M 2009 IEEE Trans. Electron Dev. 56 779Google Scholar

    [16]

    Liu W, Wang Y, Wang J, Wang Y C 2011 IEEE Trans. Electron Dev. 58 1241Google Scholar

    [17]

    Meduri R, Shubankar S, Mukta J 2018 IEEE Trans. Electron Dev. 65 2083Google Scholar

    [18]

    Ryan J, Dane M, John B 2017 APL Mater. 5 116105Google Scholar

    [19]

    Bernard V, Wayne L O, Minchael C G, Charles O, Victor S, Allan V 2018 IEEE Trans. Electron Dev. 65 2077Google Scholar

    [20]

    Yang Y, Wang Y, Liu W, Pan Z, Li J, Wang J 2018 IEEE Trans. Electron Dev. 65 2072Google Scholar

    [21]

    Gartner G, Geittner P, Raasch D, Wiechert D U 1999 Appl. Surf. Sci. 146 22Google Scholar

  • 图 1  热阴极制备工艺流程图

    Fig. 1.  Production process of thermal cathode preparation.

    图 2  周期性条纹结构阴极的表面显微形貌 (a)单向条纹结构; (b)正交双向条纹结构

    Fig. 2.  Surface microtopography of cathode with periodic stripe structure: (a) Unidirectionalstripe structure; (b) orthogonal bidirectional stripe structure.

    图 3  水冷真空二极管结构及阴极性能测试系统示意图(1为阴极, 2为玻壳, 3为阳极, 4为冷却水接口)

    Fig. 3.  Diagram of water-cooled vacuum diode and cathode performance testing system. Symbol 1, 2, 3 and 4 are cathode, glass shell, anode and cooling water connector, respectively.

    图 4  不同工作温度条件下阴极样品1和样品2发射电流密度特性

    Fig. 4.  Current density character of cathode sample 1 and 2 with different working temperature.

    图 5  不同工作温度条件下阴极样品3和样品4的发射电流密度特性

    Fig. 5.  Current density character of cathode sample 3 and 4 with different working temperature.

    图 6  极间距为0.1 mm时阴极样品4的发射电流密度特性

    Fig. 6.  Current density character of cathode sample 4 with polar distance 0.1 mm.

    图 7  不同工作温度条件下阴极样品5和样品6发射电流密度特性

    Fig. 7.  Current density character of cathode sample 5 and 6 with different working temperature.

    图 8  3 × 3阵列结构的阴极电子发射性能仿真模型

    Fig. 8.  Emulation model of electron emission performance of cathode with array 3 × 3.

    图 9  3 × 3阵列结构的阴极纵向截面处电子的空间分布 (a)微尖尖端位置截面; (b)微尖间隙位置截面

    Fig. 9.  Spatial distribution of electrons of longitudinal sections of cathode with array 3 × 3: (a) Cross section of top of tip; (b) cross section of clearance of tips.

    图 10  距阴极表面微尖顶端$10\;\text{μm}$位置处横向截面中的电子分布

    Fig. 10.  Electronic distribution of lateral interface that far from the cathode surface about $10\;\text{μm}.$

    图 11  4 × 4阵列结构阴极表面理想结构模型

    Fig. 11.  Ideal structural model of cathode surface with array 4 × 4.

    图 12  锥形微尖阵列结构中阴极电势分布

    Fig. 12.  Potential distribution of cathode at the tapered micro-tip array structure.

    图 13  微尖结构r/h值对阴极发射电流密度的影响

    Fig. 13.  Effect of r/h value of micro-tip structure on emission current density of cathode.

    表 1  阴极种类及其表面结构参数

    Table 1.  Type of cathode and surface structure parameters.

    样品编号 阴极类型 条纹结构 条纹间距
    $/\text{μm}$
    条纹深度
    $/\text{μm}$
    1 覆膜浸渍
    扩散阴极
    单向 50 50
    2 覆膜浸渍
    扩散阴极
    正交双向 50 50
    3 覆膜浸渍
    扩散阴极
    正交双向 35 35
    4 覆膜浸渍
    扩散阴极
    正交双向 8 8
    5 钪酸盐
    阴极
    单向 8 8
    6 钪酸盐
    阴极
    正交双向 8 8
    下载: 导出CSV

    表 2  阴极样品2、样品3和样品4的零场发射电流密度

    Table 2.  Zero field emission current density of cathode sample 2, 3 and 4.

    测试温度/℃ 阴极样品2
    /A·cm−2
    阴极样品3
    /A·cm−2
    阴极样品4
    /A·cm−2
    1000 7.2 9.1 20.6
    1050 12.3 17.8 35.5
    1100 19.5 31.6 63.5
    下载: 导出CSV
  • [1]

    Chen D S, Lindau I, Hecht M H, Viescas A J, Nogami J, Spicer W E 1982 Appl. Surf. Sci. 13 321Google Scholar

    [2]

    廖复疆 2006 电子学报 34 513Google Scholar

    Liao F J 2006 Acta Electron. Sin. 34 513Google Scholar

    [3]

    阴生毅, 张洪来, 杨靖鑫, 奎热西, 钱海杰, 王嘉欧, 王宇, 王欣欣 2011 电子与信息学报 33 3040

    Yin S Y, Zhang H L, Yang J X, Urash I, Qian H J, Wang J O, Wang Y, Wang X X 2011 J. Electron. Inf. Technol. 33 3040

    [4]

    Ares Fang C S, Maloney C E 1990 J. Vac. Sci. Technol. A 8 2329Google Scholar

    [5]

    Jones D, Mcneely D, Swanson L W 1979 Appl. Surf. Sci. 2 232Google Scholar

    [6]

    任峰, 阴生毅, 卢志鹏, 李阳, 王宇, 张申金, 杨峰, 卫东 2017 物理学报 66 187901Google Scholar

    Ren F, Yin S Y, Lu Z P, Li Y, Wang Y, Zhang S J, Yang F, Wei D 2017 Acta Phys. Sin. 66 187901Google Scholar

    [7]

    Barik R, Bera A, Tanwar A K, Baek I K, Eom K, Sattorov M A, Min S H, Kwon O J, Park G S 2013 Int. J. Refract. Met. Hard Mat. 38 60Google Scholar

    [8]

    Brion D, Tonnerre J C, Shroff A M 1983 Appl. Surf. Sci. 16 55Google Scholar

    [9]

    王光强, 王建国, 李小泽, 范如玉, 王行舟, 王雪锋, 童长江 2010 物理学报 59 8459Google Scholar

    Wang G Q, Wang J G, Li X Z, Fan R Y, Wang X Z, Wang X F, Tong C J 2010 Acta Phys. Sin. 59 8459Google Scholar

    [10]

    Booske J H, Dobbs R J, Joye C D, Kory C L, Neil G R, Park G, Park J, Temkin R J 2011 IEEE Trans. on Teraheeth Sci. Technol. 1 54Google Scholar

    [11]

    Wang Y, Wang J, Liu W, Zhang K, Li J 2007 IEEE Trans. Electron Dev. 54 1061Google Scholar

    [12]

    梁文龙, 王亦曼, 刘伟, 李洪义, 王金淑 2014 物理学报 63 057901Google Scholar

    Liang W L, Wang Y M, Liu W, Li H Y, Wang J S 2014 Acta Phys. Sin. 63 057901Google Scholar

    [13]

    李玉涛, 张洪来, 刘濮鲲, 张明晨 2006 物理学报 55 6677Google Scholar

    Li Y T, Zhang H L, Liu P K, Zhang M C 2006 Acta Phys. Sin. 55 6677Google Scholar

    [14]

    Gaertner G 2012 J. Vac. Sci. Technol. B 30 060801Google Scholar

    [15]

    Wang J, Liu W, Li L, Wang Y C, Wang Y, Zhou M 2009 IEEE Trans. Electron Dev. 56 779Google Scholar

    [16]

    Liu W, Wang Y, Wang J, Wang Y C 2011 IEEE Trans. Electron Dev. 58 1241Google Scholar

    [17]

    Meduri R, Shubankar S, Mukta J 2018 IEEE Trans. Electron Dev. 65 2083Google Scholar

    [18]

    Ryan J, Dane M, John B 2017 APL Mater. 5 116105Google Scholar

    [19]

    Bernard V, Wayne L O, Minchael C G, Charles O, Victor S, Allan V 2018 IEEE Trans. Electron Dev. 65 2077Google Scholar

    [20]

    Yang Y, Wang Y, Liu W, Pan Z, Li J, Wang J 2018 IEEE Trans. Electron Dev. 65 2072Google Scholar

    [21]

    Gartner G, Geittner P, Raasch D, Wiechert D U 1999 Appl. Surf. Sci. 146 22Google Scholar

  • [1] 柴钰, 张妮, 刘杰, 殷宁, 刘树林, 张晶园. 微尺度下N2–O2电晕放电的动态特性二维仿真. 物理学报, 2020, 69(16): 165202. doi: 10.7498/aps.69.20200095
    [2] 郝广辉, 韩攀阳, 李兴辉, 李泽鹏, 高玉娟. 真空沟道结构GaAs光电阴极电子发射特性. 物理学报, 2020, 69(10): 108501. doi: 10.7498/aps.69.20191893
    [3] 张兴玉. 电流密度对微米硅电极断裂行为的影响. 物理学报, 2020, 69(24): 248201. doi: 10.7498/aps.69.20200915
    [4] 王毅, 郭哲, 朱立达, 周红仙, 马振鹤. 基于谱域相位分辨光学相干层析的纳米级表面形貌成像. 物理学报, 2017, 66(15): 154202. doi: 10.7498/aps.66.154202
    [5] 陶海岩, 陈锐, 宋晓伟, 陈亚楠, 林景全. 飞秒激光脉冲能量累积优化对黑硅表面形貌的影响. 物理学报, 2017, 66(6): 067902. doi: 10.7498/aps.66.067902
    [6] 任峰, 阴生毅, 卢志鹏, 李阳, 王宇, 张申金, 杨峰, 卫东. 深紫外激光光发射与热发射电子显微镜在热扩散阴极研究中的应用. 物理学报, 2017, 66(18): 187901. doi: 10.7498/aps.66.187901
    [7] 潘宵, 鞠焕鑫, 冯雪飞, 范其瑭, 王嘉兴, 杨耀文, 朱俊发. F8BT薄膜表面形貌及与Al形成界面的电子结构和反应. 物理学报, 2015, 64(7): 077304. doi: 10.7498/aps.64.077304
    [8] 喻晓, 沈杰, 钟昊玟, 张洁, 张高龙, 张小富, 颜莎, 乐小云. 强脉冲电子束辐照材料表面形貌演化的模拟. 物理学报, 2015, 64(21): 216102. doi: 10.7498/aps.64.216102
    [9] 周勋, 罗子江, 王继红, 郭祥, 丁召. 低As压退火对GaAs(001)表面形貌与重构的影响. 物理学报, 2015, 64(21): 216803. doi: 10.7498/aps.64.216803
    [10] 王益军, 严诚. 不同电场下碳纳米管场致发射电流密度研究. 物理学报, 2015, 64(19): 197304. doi: 10.7498/aps.64.197304
    [11] 景蔚萱, 王兵, 牛玲玲, 齐含, 蒋庄德, 陈路加, 周帆. ZnO纳米线薄膜的合成参数、表面形貌和接触角关系研究. 物理学报, 2013, 62(21): 218102. doi: 10.7498/aps.62.218102
    [12] 彭述明, 申华海, 龙兴贵, 周晓松, 杨莉, 祖小涛. 氘化及氦离子注入对钪膜的表面形貌和相结构的影响. 物理学报, 2012, 61(17): 176106. doi: 10.7498/aps.61.176106
    [13] 苏法刚, 梁静秋, 梁中翥, 朱万彬. 光辐射吸收材料表面形貌与吸收率关系研究. 物理学报, 2011, 60(5): 057802. doi: 10.7498/aps.60.057802
    [14] 狄国庆. 溅射制备Ta2O5薄膜的表面形貌与光学特性. 物理学报, 2011, 60(3): 038101. doi: 10.7498/aps.60.038101
    [15] 张丽卿, 张崇宏, 杨义涛, 姚存峰, 孙友梅, 李炳生, 赵志明, 宋书建. 高电荷态离子126Xeq+引起GaN表面形貌变化研究. 物理学报, 2009, 58(8): 5578-5584. doi: 10.7498/aps.58.5578
    [16] 王新庆, 李 良, 褚宁杰, 金红晓, 葛洪良. 纳米碳管阵列场发射电流密度的理论数值优化. 物理学报, 2008, 57(11): 7173-7177. doi: 10.7498/aps.57.7173
    [17] 刘龙平, 赵振杰, 黄灿星, 吴志明, 杨燮龙. 复合结构丝中的电流密度分布和巨磁阻抗效应. 物理学报, 2006, 55(4): 2014-2020. doi: 10.7498/aps.55.2014
    [18] 谷锦华, 周玉琴, 朱美芳, 李国华, 丁 琨, 周炳卿, 刘丰珍, 刘金龙, 张群芳. 低温制备微晶硅薄膜生长机制的研究. 物理学报, 2005, 54(4): 1890-1894. doi: 10.7498/aps.54.1890
    [19] 吴汉华, 汪剑波, 龙北玉, 吕宪义, 龙北红, 金曾孙, 白亦真, 毕冬梅. 电流密度对铝合金微弧氧化膜物理化学特性的影响. 物理学报, 2005, 54(12): 5743-5749. doi: 10.7498/aps.54.5743
    [20] 孙俊生, 武传松. 熔池表面形状对电弧电流密度分布的影响. 物理学报, 2000, 49(12): 2427-2432. doi: 10.7498/aps.49.2427
计量
  • 文章访问数:  8087
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-17
  • 修回日期:  2018-12-14
  • 上网日期:  2019-02-01
  • 刊出日期:  2019-02-05

/

返回文章
返回