搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单光束扩束扫描激光周视探测系统参数对探测能力的影响

查冰婷 袁海璐 马少杰 陈光宋

引用本文:
Citation:

单光束扩束扫描激光周视探测系统参数对探测能力的影响

查冰婷, 袁海璐, 马少杰, 陈光宋

Influence of single-beam expanding scanning laser circumferential detection system parameters on detection capability

Zha Bing-Ting, Yuan Hai-Lu, Ma Shao-Jie, Chen Guang-Song
PDF
HTML
导出引用
  • 针对现有单光束激光同步扫描周视探测对脉冲重复频率要求较高, 难以实际应用的问题, 提出单光束扩束扫描激光周视探测方法. 基于单光束扩束扫描激光周视探测工作原理, 推导了最低扫描频率和脉冲频率解析式; 分析了圆柱目标回波特性及关键参数截面衰减系数, 建立了脉冲扩束激光圆柱目标回波功率数学模型, 讨论了系统参数对截面衰减系数的影响, 得到最大相邻脉冲光束夹角表达式; 重点分析了脉冲频率、光束角和光束入射角对不同直径目标的探测能力的影响; 得到了探测系统对典型条件下最大光束角、最低脉冲频率的计算方法. 结果表明, 对扫描光束稍加扩束可有效降低脉冲重复频率要求. 研究结果可为单光束脉冲激光周视探测系统设计、优化提供理论依据.
    Aiming at the high requirement for pulse-repetition frequency of the existing single-beam synchronous scanning circumferential detection, which is difficult to use practically. The method of single-beam expanding scanning laser circumferential detection is proposed. Based on the principle of single-beam expanding scanning laser circumferential detection, the mode of scanning has an inherent defect of periodic detection blind area in the detection field. The method of one-way spreading laser line beam into fan-shaped beam is proposed. The analytical expression of the lowest scanning frequency and the pulse frequency are derived. Echo characteristics of cylindrical target and the section attenuation coefficient are analyzed. Mathematic model of cylindrical target echo power of pulsed expanding laser beam is established. The mathematical model of section attenuation coefficient of cylindrical object is established, and the variation of the section attenuation coefficient when the center line and the edge of the beam have different positions relative to the cylindrical target is analyzed. The expression of the position having the smallest section attenuation coefficient and the expression of largest angle between the adjacent pulse laser beams are obtained, then the influence of system parameters on the section attenuation coefficient is also discussed. The emphasis is placed on the influence of pulse frequency, beam angle and incidence angle on the ability to detect different diameter targets. As the laser pulse frequency increases, the detectable target diameter is smaller and the detection ability is stronger. Increasing the beam angle and lowering the laser incident angle are beneficial to reducing the minimum laser pulse frequency required to discover the target. The methods of calculating maximum beam angle and minimum pulse frequency under typical conditions of the detection system are presented. When the incident angles are ${\text{π}}/3$, ${\text{π}}/4$ and ${\text{π}}/6$, the maximum beam angle and the lowest pulse frequency are calculated for a cylindrical target with a diameter of 0.18 m at a detection distance of 6 m, the minimum pulse frequency decreases effectively after beam expansion. The results show that the pulse repetition frequency will be effectively reduced by slightly expanding the beam. This study may provide theoretical basis for designing and optimizing the single-beam pulsed laser circumferential detection.
      通信作者: 查冰婷, zhabingting@njust.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51709147)和中央高校基本科研业务费(批准号: 309171B8805, 30918012201)资助的课题.
      Corresponding author: Zha Bing-Ting, zhabingting@njust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51709147) and the Fundamental Research Fund for the Central Universities, China (Grant Nos. 309171B8805, 30918012201).
    [1]

    杨雨川, 谭碧涛, 龙超, 陈力子, 张己化, 陈军燕 2013 红外与激光工程 42 3228Google Scholar

    Yang Y C, Tan B T, Long C, Cen L Z, Zhang J H, Chen J Y 2013 Infrared and Laser Engineering 42 3228Google Scholar

    [2]

    黄涛, 胡以华, 赵钢, 赵楠翔, 翟福琪, 吴永华 2011 红外与毫米波学报 30 179

    Huang T, Hu Y H, Zhao G, Zhao N X, Zhai F Q, Wu Y H 2011 J. Infrared Millim. Waves 30 179

    [3]

    赵楠翔, 胡以华, 雷武虎, 贺敏 2009 红外与激光工程 38 748Google Scholar

    Zhao N X, Hu Y H, Lei W H, He M 2009 Infrared and Laser Engineering 38 748Google Scholar

    [4]

    徐效文 2004 博士学位论文 (长春: 中国科学院研究生院)

    Xu X W 2004 Ph. D. Dissertation (Changchun: Graduate University of the Chinese Academy of Sciences)

    [5]

    李元, 李燕华, 李洛, 郭海超, 张彦梅, 温玉全 2015 兵工学报 36 2073Google Scholar

    Li Y, Li Y H, Li L, Guo H C, Zhang Y M, Wen Y Q 2015 Acta Armamentarii 36 2073Google Scholar

    [6]

    林永兵, 张国雄, 李真, 李杏华 2002 中国激光 11 1000Google Scholar

    Lin Y B, Zhang G X, Li Z, Li X H 2002 Chin. J. Lasers 11 1000Google Scholar

    [7]

    张伟, 张合, 陈勇, 张祥金, 徐孝彬 2017 物理学报 66 012901Google Scholar

    Zhang W, Zhang H, Chen Y, Zhang X J, Xu X B 2017 Acta Phys. Sin. 66 012901Google Scholar

    [8]

    张磊, 郭劲 2012 光学精密工程 20 789

    Zhang L, Guo J 2012 Optics Precis Eng. 20 789

    [9]

    赵延仲, 宋丰华, 孙华燕 2007 红外与激光工程 36 891Google Scholar

    Zhao Y Z, Song F H, Sun H Y 2007 Infrared and Laser Engineering 36 891Google Scholar

    [10]

    甘霖, 张合, 张祥金, 冯颖 2013 红外与激光工程 42 84Google Scholar

    Gan L, Zhang H, Zhang X J, Feng Y 2013 Infrared and Laser Engineering 42 84Google Scholar

    [11]

    谭亚运, 张合, 查冰婷 2015 强激光与粒子束 27 73

    Tan Y Y, Zhang H, Zha B T 2015 High Pow. Las. Part. Beams 27 73

    [12]

    查冰婷, 张合 2014 红外与激光工程 43 2081Google Scholar

    Zha B T, Zhang H 2014 Infrared and Laser Engineering 43 2081Google Scholar

    [13]

    徐孝彬, 张合 2016 中国激光 43 201

    Xu X B, Zhang H 2016 Chin. J. Lasers 43 201

    [14]

    寇添, 王海晏, 王芳, 陈闽, 徐强 2015 光学学报 35 211

    Kou T, Wang H Y, Wang F, Chen M, Xu Q 2015 Acta Opt. Sin. 35 211

    [15]

    张旭升, 郭亮, 黄勇, 罗志涛 2015 中国激光 42 20

    Zhang X S, Guo L, Huang Y, Luo Z T 2015 Chin. J. Lasers 42 20

    [16]

    Xu G, Zhang X Y, Su J, Li X T, Zheng A Q 2016 Appl. Opt. 55 2653Google Scholar

    [17]

    Steinvall O 2000 Appl. Opt. 39 4381Google Scholar

    [18]

    Cao T, Xiao A C, Wu L, Mao L G 2017 Comput. Geosci. 106 209Google Scholar

    [19]

    Krása J, Delle S D, Giuffreda E, Nassisi V 2015 Laser Part. Beams 33 601Google Scholar

    [20]

    马圆 2015 硕士学位论文 (南京: 南京理工大学)

    Ma Y 2015 M. S. Thesis (Nanjing: Nanjing University of Science and Technology)

    [21]

    Louis E 1964 Appl. Opt. 3 745Google Scholar

  • 图 1  单光束扩束扫描激光周视探测系统结构

    Fig. 1.  The structure of a single beam expanding beam scanning laser periscope detection system.

    图 2  单光束脉冲激光周向扫描探测系统探测目标示意图[11]

    Fig. 2.  Schematic diagram of detection target of single-beam pulsed laser circumferential scan detection system.

    图 3  沿x轴正方向脉冲光束视图

    Fig. 3.  Pulse beam view in the positive direction of the x-axis.

    图 4  相邻脉冲激光束在面M上的投影

    Fig. 4.  Projection of adjacent pulsed laser beam on plane M.

    图 5  发射激光束与投影图像几何关系

    Fig. 5.  Geometrical relationship between the laser beam and the projected image.

    图 6  回波功率PrK(R), R, $\alpha$之间的关系 (a) ${\alpha _{\rm{t}}}={\text{π}}/6$; (b) ${\alpha _{\rm{t}}}={\text{π}}/4$; (c) ${\alpha _{\rm{t}}}={\text{π}}/3$

    Fig. 6.  The echo power with different K(R), R and $\alpha$: (a) ${\alpha _{\rm{t}}}={\text{π}}/6$; (b) ${\alpha _{\rm{t}}}={\text{π}}/4$; (c) ${\alpha _{\rm{t}}}={\text{π}}/3$

    图 7  K(R)数学模型 (a)光束中心线位置示意图; (b)光束左边沿线与目标相交时K(R)模型; (c)光束左边沿线与目标相离时K(R)模型

    Fig. 7.  Mathematical model of K(R): (a) The position of the center line of the beam; (b) the K(R) model when the left side of the beam intersects the target; (c) the K(R) model when the left side of the beam is separated from the target.

    图 8  K(R)与${\alpha _{\rm{t}}}$, ${\xi _1}$$\theta_{\rm{d}}$之间的关系 (a) ${\alpha _{\rm{t}}}$, $\theta_{\rm{d}}$K(R)的关系; (b) ${\alpha _{\rm{t}}}$, ${\xi _1}$$\theta_{\rm{d}}$K(R)的影响曲线

    Fig. 8.  The relationship between K(R) and ${\alpha _{\rm{t}}}$, ${\xi _1}$ and $\theta_{\rm{d}}$: (a) The relationship between K(R) and ${\alpha _{\rm{t}}}$, $\theta_{\rm{d}}$; (b) the influence curve of ${\alpha _{\rm{t}}}$, ${\xi _1}$ and $\theta_{\rm{d}}$ on K(R).

    图 9  脉冲频率f、光束角$\theta$和光束入射角${\alpha _{\rm{t}}}$对不同目标直径的影响 (a) ${\alpha _{\rm{t}}}={\text{π}}/6$; (b) ${\alpha _{\rm{t}}}={\text{π}}/4$; (c) ${\alpha _{\rm{t}}}={\text{π}}/3$

    Fig. 9.  Effects of pulse frequency f, beam angle $\theta$, and beam incidence angle ${\alpha _{\rm{t}}}$ on targets with different diameters: (a) ${\alpha _{\rm{t}}}={\text{π}}/6$; (b) ${\alpha _{\rm{t}}}={\text{π}}/4$; (c) ${\alpha _{\rm{t}}}={\text{π}}/3$.

    图 10  最大相邻脉冲光束夹角${\xi _{\max}}$ (a) f1与目标圆位置关系曲线; (b) $\theta_{\rm{d1}}$$\theta_{\rm{d2}}$取值计算

    Fig. 10.  Maximum angle ${\xi _{\max}}$ between adjacent pulse beams: (a) The relation curve between f1 and the position of the target circle; (b) value of $\theta_{\rm{d1}}$ and $\theta_{\rm{d2}}$.

    图 11  ${\xi _1}$$\theta_{\rm{d}}$对系统回波功率的影响 (a) ${\alpha _{\rm{t}}}={\text{π}}/3$; (b) ${\alpha _{\rm{t}}}={\text{π}}/4$; (c) ${\alpha _{\rm{t}}}={\text{π}}/6$

    Fig. 11.  Influence of ${\xi _1}$ and $\theta_{\rm{d}}$ on echo power. (a) ${\alpha _{\rm{t}}}={\text{π}}/3$; (b) ${\alpha _{\rm{t}}}={\text{π}}/4$; (c) ${\alpha _{\rm{t}}}={\text{π}}/6$.

    表 1  探测系统仿真参数

    Table 1.  Simulation parameters of the detection system.

    ParameterValueParameterValue
    Pt/W70Pmin/${\text{μ}}$W5
    vm/m·s–1700vt/m·s–1200
    Lt/m3$\eta$0.9
    Ar/m20.00031$\sigma$/m–10.00054
    $\theta_{\simfont\text{边界}}$/rad0.26$\xi_{\simfont\text{边界}}$/rad${\text{π}}/2$
    下载: 导出CSV

    表 2  计算最低脉冲频率及光束角系统参数

    Table 2.  Calculate the minimum pulse frequency and beam angle system parameters

    ParameterValueParameterValue
    Pt/W70Dt/m0.18
    R/m6${\alpha _{\rm{t}}}$${\text{π}}/3$, ${\text{π}}/4$, ${\text{π}}/6$
    下载: 导出CSV

    表 3  不同入射角${\alpha _{\rm{t}}}$下的nmin, ${\xi _{\max}}$, ${\theta _{\max }}$以及fmin

    Table 3.  nmin, ${\xi _{\max}}$, ${\theta _{\max }}$ and fmin at different incident angles ${\alpha _{\rm{t}}}$.

    入射角扩束前扩束后
    ${\alpha _{\rm{t}}}$/rad$\xi$/rad$\theta$/radkf/Hz${\xi _{\max}}$/rad${\theta _{\max }}$/radkminfmin/Hz
    ${\text{π}}/3$0.03450.0025182544110.24170.2417267798.74
    ${\text{π}}/4$0.04220.0025149444250.25130.2513257500.82
    ${\text{π}}/6$0.05980.0025105314110.25130.2513257500.82
    下载: 导出CSV
  • [1]

    杨雨川, 谭碧涛, 龙超, 陈力子, 张己化, 陈军燕 2013 红外与激光工程 42 3228Google Scholar

    Yang Y C, Tan B T, Long C, Cen L Z, Zhang J H, Chen J Y 2013 Infrared and Laser Engineering 42 3228Google Scholar

    [2]

    黄涛, 胡以华, 赵钢, 赵楠翔, 翟福琪, 吴永华 2011 红外与毫米波学报 30 179

    Huang T, Hu Y H, Zhao G, Zhao N X, Zhai F Q, Wu Y H 2011 J. Infrared Millim. Waves 30 179

    [3]

    赵楠翔, 胡以华, 雷武虎, 贺敏 2009 红外与激光工程 38 748Google Scholar

    Zhao N X, Hu Y H, Lei W H, He M 2009 Infrared and Laser Engineering 38 748Google Scholar

    [4]

    徐效文 2004 博士学位论文 (长春: 中国科学院研究生院)

    Xu X W 2004 Ph. D. Dissertation (Changchun: Graduate University of the Chinese Academy of Sciences)

    [5]

    李元, 李燕华, 李洛, 郭海超, 张彦梅, 温玉全 2015 兵工学报 36 2073Google Scholar

    Li Y, Li Y H, Li L, Guo H C, Zhang Y M, Wen Y Q 2015 Acta Armamentarii 36 2073Google Scholar

    [6]

    林永兵, 张国雄, 李真, 李杏华 2002 中国激光 11 1000Google Scholar

    Lin Y B, Zhang G X, Li Z, Li X H 2002 Chin. J. Lasers 11 1000Google Scholar

    [7]

    张伟, 张合, 陈勇, 张祥金, 徐孝彬 2017 物理学报 66 012901Google Scholar

    Zhang W, Zhang H, Chen Y, Zhang X J, Xu X B 2017 Acta Phys. Sin. 66 012901Google Scholar

    [8]

    张磊, 郭劲 2012 光学精密工程 20 789

    Zhang L, Guo J 2012 Optics Precis Eng. 20 789

    [9]

    赵延仲, 宋丰华, 孙华燕 2007 红外与激光工程 36 891Google Scholar

    Zhao Y Z, Song F H, Sun H Y 2007 Infrared and Laser Engineering 36 891Google Scholar

    [10]

    甘霖, 张合, 张祥金, 冯颖 2013 红外与激光工程 42 84Google Scholar

    Gan L, Zhang H, Zhang X J, Feng Y 2013 Infrared and Laser Engineering 42 84Google Scholar

    [11]

    谭亚运, 张合, 查冰婷 2015 强激光与粒子束 27 73

    Tan Y Y, Zhang H, Zha B T 2015 High Pow. Las. Part. Beams 27 73

    [12]

    查冰婷, 张合 2014 红外与激光工程 43 2081Google Scholar

    Zha B T, Zhang H 2014 Infrared and Laser Engineering 43 2081Google Scholar

    [13]

    徐孝彬, 张合 2016 中国激光 43 201

    Xu X B, Zhang H 2016 Chin. J. Lasers 43 201

    [14]

    寇添, 王海晏, 王芳, 陈闽, 徐强 2015 光学学报 35 211

    Kou T, Wang H Y, Wang F, Chen M, Xu Q 2015 Acta Opt. Sin. 35 211

    [15]

    张旭升, 郭亮, 黄勇, 罗志涛 2015 中国激光 42 20

    Zhang X S, Guo L, Huang Y, Luo Z T 2015 Chin. J. Lasers 42 20

    [16]

    Xu G, Zhang X Y, Su J, Li X T, Zheng A Q 2016 Appl. Opt. 55 2653Google Scholar

    [17]

    Steinvall O 2000 Appl. Opt. 39 4381Google Scholar

    [18]

    Cao T, Xiao A C, Wu L, Mao L G 2017 Comput. Geosci. 106 209Google Scholar

    [19]

    Krása J, Delle S D, Giuffreda E, Nassisi V 2015 Laser Part. Beams 33 601Google Scholar

    [20]

    马圆 2015 硕士学位论文 (南京: 南京理工大学)

    Ma Y 2015 M. S. Thesis (Nanjing: Nanjing University of Science and Technology)

    [21]

    Louis E 1964 Appl. Opt. 3 745Google Scholar

  • [1] 王辉林, 廖艳林, 赵艳, 章文, 谌正艮. 基于多激光束驱动准单能高能质子束模拟研究. 物理学报, 2023, 72(18): 184102. doi: 10.7498/aps.72.20230313
    [2] 冯凯源, 邵福球, 蒋祥瑞, 邹德滨, 胡理想, 张国博, 杨晓虎, 银燕, 马燕云, 余同普. 双束对射激光驱动超薄靶的超短脉冲中子源. 物理学报, 2023, 72(18): 185201. doi: 10.7498/aps.72.20230706
    [3] 李杭, 陈萍, 田进寿, 薛彦华, 王俊锋, 缑永胜, 张敏睿, 何凯, 徐向晏, 赛小锋, 李亚晖, 刘百玉, 王向林, 辛丽伟, 高贵龙, 汪韬, 王兴, 赵卫. 基于太赫兹脉冲加速及扫描电子束的高时间分辨探测器. 物理学报, 2022, 71(2): 028501. doi: 10.7498/aps.71.20210871
    [4] 侯阿慧, 胡以华, 方佳节, 赵楠翔, 徐世龙. 平动小目标光子探测回波特性及测距误差研究. 物理学报, 2022, 71(7): 074205. doi: 10.7498/aps.71.20211998
    [5] 李杭, 陈萍, 田进寿. 基于太赫兹脉冲加速及扫描电子束的高时间分辨探测器研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20210871
    [6] 韩金华, 郭刚, 刘建成, 隋丽, 孔福全, 肖舒颜, 覃英参, 张艳文. 100 MeV质子双环双散射体扩束方案设计. 物理学报, 2019, 68(5): 054104. doi: 10.7498/aps.68.20181787
    [7] 文锦辉, 胡婷, 吴琴菲. 快速扫描频率分辨光学开关装置测量超短激光脉冲. 物理学报, 2019, 68(11): 110601. doi: 10.7498/aps.68.20190034
    [8] 徐孝彬, 张合, 张祥金, 陈杉杉, 张伟. 脉冲激光探测平面目标特性对测距分布的影响. 物理学报, 2016, 65(21): 210601. doi: 10.7498/aps.65.210601
    [9] 葛烨, 胡以华, 舒嵘, 洪光烈. 一种新型的用于差分吸收激光雷达中脉冲式光学参量振荡器的种子激光器的频率稳定方法. 物理学报, 2015, 64(2): 020702. doi: 10.7498/aps.64.020702
    [10] 钟勉, 杨亮, 任玮, 向霞, 刘翔, 练友运, 徐世珍, 郭德成, 郑万国, 袁晓东. 高功率脉冲电子束辐照SiO2的光学和激光损伤性能. 物理学报, 2014, 63(24): 246103. doi: 10.7498/aps.63.246103
    [11] 党文佳, 曾晓东, 冯喆珺. 目标粗糙对合成孔径激光雷达回波的退相干效应. 物理学报, 2013, 62(2): 024204. doi: 10.7498/aps.62.024204
    [12] 邹德滨, 卓红斌, 邵福球, 银燕, 马燕云, 田成林, 徐涵, 欧阳建明, 谢翔云, 陈德鹏. 单束激光脉冲俘获及放大机理的理论分析与数值模拟研究. 物理学报, 2012, 61(4): 045202. doi: 10.7498/aps.61.045202
    [13] 潘慧玲, 李鹏程, 周效信. 利用两束同色激光场和半周期脉冲驱动原子产生单个阿秒脉冲. 物理学报, 2011, 60(4): 043203. doi: 10.7498/aps.60.043203
    [14] 韩敬华, 冯国英, 杨李茗, 张秋慧, 傅玉青, 牛瑞华, 朱启华, 谢旭东, 周寿桓. 高重复频率激光脉冲光束大小对吸收玻璃损伤特征的影响. 物理学报, 2011, 60(2): 028106. doi: 10.7498/aps.60.028106
    [15] 严雄伟, 於海武, 曹丁象, 李明中, 蒋东镔, 蒋新颖, 段文涛, 徐美健. 脉冲储能型重复频率Yb:YAG片状激光放大器ASE效应研究. 物理学报, 2009, 58(6): 4230-4238. doi: 10.7498/aps.58.4230
    [16] 黄琳, 代志勇, 刘永智. 不同脉冲重复频率下抽运方式对全光纤声光调Q激光器性能的影响. 物理学报, 2009, 58(10): 6992-6999. doi: 10.7498/aps.58.6992
    [17] 邹其徽, 吕百达. 等束宽超短脉冲光束的远场特性. 物理学报, 2005, 54(12): 5642-5647. doi: 10.7498/aps.54.5642
    [18] 王兆华, 魏志义, 张 杰. 飞秒激光脉冲的频率分辨偏振光学开关法测量研究. 物理学报, 2005, 54(3): 1194-1199. doi: 10.7498/aps.54.1194
    [19] 徐涵, 常文蔚, 银燕. 尾波场中传播的激光脉冲的频率漂移. 物理学报, 2004, 53(1): 171-175. doi: 10.7498/aps.53.171
    [20] 王兆华, 魏志义, 滕 浩, 王 鹏, 张 杰. 飞秒激光脉冲的谐波频率分辨光学开关法测量研究. 物理学报, 2003, 52(2): 362-366. doi: 10.7498/aps.52.362
计量
  • 文章访问数:  6497
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-16
  • 修回日期:  2019-02-04
  • 上网日期:  2019-03-23
  • 刊出日期:  2019-04-05

/

返回文章
返回