-
提出一种新型的可调滤模光纤结构, 利用纤芯模式与微结构包层形成的超模群之间的耦合实现选择性滤模, 采用花瓣形包层结构使包层中传输的模式更容易产生高的泄漏损耗; 提出以液体填充包层介质柱, 使包层形成的超模群有效折射率区间可以通过环境温度来调节, 从而达到可调选择性滤模目的. 利用液体柱的LP11模所形成的超模群, 有效增大了其工作带宽和温度调谐范围. 数值模拟结果表明, 采用长度仅为71.4 mm的滤模光纤, 可以使特定的抑制模式损耗达到20 dB以上, 而其他模式损耗均在1 dB以下. 提出的光纤可以在少模光纤传输系统中作为滤模器使用, 以降低模式转换器、复用器/解复用器以及光开关和光路由等的模式串扰.In this paper, a novel tunable mode-filter optical fiber consisting of a high-index core and petal-shaped cladding surrounded by a high-index outer ring is proposed. The cladding of the fiber is formed with periodically arranged liquid rods that support cladding modes with effective indexes. These cladding modes form a two-super-mode group. The mode-selection is realized by the coupling between the core mode and the super-mode group. With the petal-shaped cladding, cladding mode can be transmitted at high loss. With the liquid rods, the index-band of super-mode group can be adjusted by external temperature field, thereby achieving the purpose of tunable mode-selective. The super-mode group formed by the LP11 mode of the liquid rods effectively increases its operating bandwidth and temperature tuning range. The numerical simulation results show that the mode-filter fiber with a length of only 71.4 mm can achieve a particular mode loss more than 20 dB, while other modes’ losses are below 1 dB. This special fiber can be used as a mode-filter in the few-mode fiber transmission system to reduce mode crosstalk of converters, multiplexer/demultiplexer, optical switch and optical routing.
-
Keywords:
- micro-structure optical fiber /
- super-mode /
- liquid rods /
- mode-filter /
- loss
[1] Turukhin A, Sinkin O V, Batshon H G, Zhang H, Sun Y, Mazurczyk M, Davidson C R, Cai J X, Bolshtyansky M A, Foursa D G, Pilipetskii A 2016 Proceedings of Optical Fiber Communications Conference and Exhibition (OFC 2016) Anaheim, California, USA. March 20−24, 2016
[2] Hong X, Zeng X, Li Y, Mo Q, Tian Y, Li W, Liu Z, Wu J 2016 Appl. Opt. 55 9360Google Scholar
[3] 姚殊畅, 张敏明, 唐明, 沈平, 刘德明 2013 物理学报 62 144215Google Scholar
Yao X C, Zhang M M, Tang M, Sheng P, Liu D M 2013 Acta Phys. Sin. 62 144215Google Scholar
[4] Koebele C, Salsi M, Sperti D, Tran P, Brindel P, Mardoyan H, Bigo S, Boutin A, Verluise F, Sillard P, Astruc M, Provost L, Cerou F, Charlet G 2011 Opt. Express 19 16593Google Scholar
[5] Sarmiento S, Altabas J A, Izquierdo D, Garces I, Spadaro S, Lazaro J A 2017 J. Opt. Commun. Netw. 9 1116Google Scholar
[6] Ramachandran S, Fini J M, Mermelstein M, Nicholson J W, Ghalmi S, Yan M F 2008 Laser Photon. Rev. 2 429Google Scholar
[7] Driscoll J B, Grote R R, Souhan B, Dadap J I, Lu M, Osgood R M 2013 Opt. Lett. 38 1854Google Scholar
[8] Nobutomo H, Kuimasa S, Taiji S, Takashi M, Kyozo T, Masanori K, Fumihiko 2013 Opt. Express 21 25752Google Scholar
[9] Riesen N, Love J D 2012 Appl. Opt. 51 2778Google Scholar
[10] Saitoh F, Saitoh K, Koshiba M 2010 Opt. Express 18 4709Google Scholar
[11] Yu C P, Liou J H, Chiu Y J, Taga 2011 Opt. Express 19 12673Google Scholar
[12] Tsekrekos C P, Syvridis, 2012 IEEE Photonic Tech. L. 24 1638Google Scholar
[13] Chang S H, Chung H S, Ryf R, Fontaine N K, Han C, Park K J, Kim K, Lee J C, Lee J H, Kim B Y, Kim Y K 2015 Opt. Express 23 7164Google Scholar
[14] Chang S H, Moon S R, Chen H, Fontaine N K, Park K J, Kim K, Lee J K 2017 Opt. Express 25 5734Google Scholar
[15] Pureur V, Knight J C, Kuhlmey B T 2010 Opt. Express 18 8906Google Scholar
[16] Park K J, Song K Y, Kim Y K, Lee J H, Kim B Y 2016 Opt. Express 24 3543Google Scholar
[17] Yerolatsitis S, Harrington K, Thomson R R, Birks T A 2017 Optical Fiber Communications Conference and Exhibition (Ofc 2017) Los Angeles, California, USA. March 19−23
[18] Velazquez-Benitez A M, Alvarado J C, Lopez-Galmiche G, Antonio-Lopez J E, Hernandez-Cordero J, Sanchez-Mondragon J, Sillard P, Okonkwo C M, Amezcua-Correa R 2015 Opt. Lett. 40 1663Google Scholar
[19] Sai X, Li Y, Yang C, Li W, Qiu J, Hong X, Zuo Y, Guo H, Tong W, Wu J 2017 Opt. Lett. 42 4355Google Scholar
[20] Chen M Y, Chiang K S 2016 IEEE J. Sel. Top. Quant. 22 4900307
[21] 姚建铨, 王然, 苗银萍, 陆颖, 赵晓蕾, 景磊 2013 中国激光 40 0101002
Yao J Q, Wang R, Miao Y P, Lu Y, Zhao X L, Jin L 2013 Chinese J. Lasers 40 0101002
[22] 吴倩, 郭晓晨, 施伟华 2018 物理学报 67 184212Google Scholar
Wu Q, Guo X C, Shi W H 2018 Acta Phys. Sin. 67 184212Google Scholar
[23] Qi T, Jung Y, Xiao L, Wang J, Xiao S, Lu C, Tam H Y, Peacock A C 2016 Opt. Lett. 41 4763Google Scholar
[24] 程兰, 罗兴, 韦会峰, 李海清, 彭景刚, 戴能利, 李进延 2014 物理学报 63 074210Google Scholar
Cheng L, Luo X, Wei H F, Li H Q, Peng J G, Dai N L, Li J Y 2014 Acta Phys. Sin. 63 074210Google Scholar
[25] Stone J M, Pearce G J, Luan F, Birks T A, Knight J C, George A K, Bird D M 2006 Opt. Express 14 6291Google Scholar
[26] Argyros A, Birks T A, Leon-Saval S G, Cordeiro C M B, Russell P S 2005 Opt. Express 13 2503Google Scholar
[27] Park J, Kang D E, Paulson B, Nazari T, Oh K 2014 Opt. Express 22 17320Google Scholar
[28] Dimitropoulos D, Houshmand B, Claps R, Jalali B 2003 Opt. Lett. 28 1954Google Scholar
[29] Poon J, Istrate E, Allard M, Sargent E H 2003 IEEE J. Sel. Top. Quant. 39 778Google Scholar
[30] Samoc A 2003 J. Appl. Phys. 94 6167Google Scholar
[31] Zhang R, Teipel J, Giessen H 2006 Opt. Express 14 6800Google Scholar
[32] Couris S, Renard M, Faucher O, Lavorel B, Chaux R, Koudoumas E, Michaut X 2003 Chem. Phys. Lett. 369 318Google Scholar
[33] Liu Y Q, Guo Z Y, Zhang Y, Chiang K S, Dong X Y 2000 Electron. Lett. 36 56
-
图 7 不同液体折射率时, 四种纤芯模式的损耗曲线 (a)
${n_{{\rm{liquid}}}} = {\rm{1}}{\rm{.4937}}$ ; (b)${n_{{\rm{liquid}}}} = {\rm{1}}{\rm{.4892}}$ ; (c)${n_{{\rm{liquid}}}} = {\rm{1}}{\rm{.486}}$ ; (d)${n_{{\rm{liquid}}}}$ = 1.4812Fig. 7. The loss of four core-mode with various liquid index: (a)
${n_{{\rm{liquid}}}} = {\rm{1}}{\rm{.4937}}$ ; (b)${n_{{\rm{liquid}}}} = {\rm{1}}{\rm{.4892}}$ ; (c)${n_{{\rm{liquid}}}} = {\rm{1}}{\rm{.486}}$ ; (d)${n_{{\rm{liquid}}}} = {\rm{1}}{\rm{.4812}}$ . -
[1] Turukhin A, Sinkin O V, Batshon H G, Zhang H, Sun Y, Mazurczyk M, Davidson C R, Cai J X, Bolshtyansky M A, Foursa D G, Pilipetskii A 2016 Proceedings of Optical Fiber Communications Conference and Exhibition (OFC 2016) Anaheim, California, USA. March 20−24, 2016
[2] Hong X, Zeng X, Li Y, Mo Q, Tian Y, Li W, Liu Z, Wu J 2016 Appl. Opt. 55 9360Google Scholar
[3] 姚殊畅, 张敏明, 唐明, 沈平, 刘德明 2013 物理学报 62 144215Google Scholar
Yao X C, Zhang M M, Tang M, Sheng P, Liu D M 2013 Acta Phys. Sin. 62 144215Google Scholar
[4] Koebele C, Salsi M, Sperti D, Tran P, Brindel P, Mardoyan H, Bigo S, Boutin A, Verluise F, Sillard P, Astruc M, Provost L, Cerou F, Charlet G 2011 Opt. Express 19 16593Google Scholar
[5] Sarmiento S, Altabas J A, Izquierdo D, Garces I, Spadaro S, Lazaro J A 2017 J. Opt. Commun. Netw. 9 1116Google Scholar
[6] Ramachandran S, Fini J M, Mermelstein M, Nicholson J W, Ghalmi S, Yan M F 2008 Laser Photon. Rev. 2 429Google Scholar
[7] Driscoll J B, Grote R R, Souhan B, Dadap J I, Lu M, Osgood R M 2013 Opt. Lett. 38 1854Google Scholar
[8] Nobutomo H, Kuimasa S, Taiji S, Takashi M, Kyozo T, Masanori K, Fumihiko 2013 Opt. Express 21 25752Google Scholar
[9] Riesen N, Love J D 2012 Appl. Opt. 51 2778Google Scholar
[10] Saitoh F, Saitoh K, Koshiba M 2010 Opt. Express 18 4709Google Scholar
[11] Yu C P, Liou J H, Chiu Y J, Taga 2011 Opt. Express 19 12673Google Scholar
[12] Tsekrekos C P, Syvridis, 2012 IEEE Photonic Tech. L. 24 1638Google Scholar
[13] Chang S H, Chung H S, Ryf R, Fontaine N K, Han C, Park K J, Kim K, Lee J C, Lee J H, Kim B Y, Kim Y K 2015 Opt. Express 23 7164Google Scholar
[14] Chang S H, Moon S R, Chen H, Fontaine N K, Park K J, Kim K, Lee J K 2017 Opt. Express 25 5734Google Scholar
[15] Pureur V, Knight J C, Kuhlmey B T 2010 Opt. Express 18 8906Google Scholar
[16] Park K J, Song K Y, Kim Y K, Lee J H, Kim B Y 2016 Opt. Express 24 3543Google Scholar
[17] Yerolatsitis S, Harrington K, Thomson R R, Birks T A 2017 Optical Fiber Communications Conference and Exhibition (Ofc 2017) Los Angeles, California, USA. March 19−23
[18] Velazquez-Benitez A M, Alvarado J C, Lopez-Galmiche G, Antonio-Lopez J E, Hernandez-Cordero J, Sanchez-Mondragon J, Sillard P, Okonkwo C M, Amezcua-Correa R 2015 Opt. Lett. 40 1663Google Scholar
[19] Sai X, Li Y, Yang C, Li W, Qiu J, Hong X, Zuo Y, Guo H, Tong W, Wu J 2017 Opt. Lett. 42 4355Google Scholar
[20] Chen M Y, Chiang K S 2016 IEEE J. Sel. Top. Quant. 22 4900307
[21] 姚建铨, 王然, 苗银萍, 陆颖, 赵晓蕾, 景磊 2013 中国激光 40 0101002
Yao J Q, Wang R, Miao Y P, Lu Y, Zhao X L, Jin L 2013 Chinese J. Lasers 40 0101002
[22] 吴倩, 郭晓晨, 施伟华 2018 物理学报 67 184212Google Scholar
Wu Q, Guo X C, Shi W H 2018 Acta Phys. Sin. 67 184212Google Scholar
[23] Qi T, Jung Y, Xiao L, Wang J, Xiao S, Lu C, Tam H Y, Peacock A C 2016 Opt. Lett. 41 4763Google Scholar
[24] 程兰, 罗兴, 韦会峰, 李海清, 彭景刚, 戴能利, 李进延 2014 物理学报 63 074210Google Scholar
Cheng L, Luo X, Wei H F, Li H Q, Peng J G, Dai N L, Li J Y 2014 Acta Phys. Sin. 63 074210Google Scholar
[25] Stone J M, Pearce G J, Luan F, Birks T A, Knight J C, George A K, Bird D M 2006 Opt. Express 14 6291Google Scholar
[26] Argyros A, Birks T A, Leon-Saval S G, Cordeiro C M B, Russell P S 2005 Opt. Express 13 2503Google Scholar
[27] Park J, Kang D E, Paulson B, Nazari T, Oh K 2014 Opt. Express 22 17320Google Scholar
[28] Dimitropoulos D, Houshmand B, Claps R, Jalali B 2003 Opt. Lett. 28 1954Google Scholar
[29] Poon J, Istrate E, Allard M, Sargent E H 2003 IEEE J. Sel. Top. Quant. 39 778Google Scholar
[30] Samoc A 2003 J. Appl. Phys. 94 6167Google Scholar
[31] Zhang R, Teipel J, Giessen H 2006 Opt. Express 14 6800Google Scholar
[32] Couris S, Renard M, Faucher O, Lavorel B, Chaux R, Koudoumas E, Michaut X 2003 Chem. Phys. Lett. 369 318Google Scholar
[33] Liu Y Q, Guo Z Y, Zhang Y, Chiang K S, Dong X Y 2000 Electron. Lett. 36 56
计量
- 文章访问数: 9662
- PDF下载量: 49
- 被引次数: 0