搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于高折射率液体填充的花瓣形微结构光纤可调滤模特性

戴震飞 姜文帆 王玲 陈明阳 高永锋 任乃飞

引用本文:
Citation:

基于高折射率液体填充的花瓣形微结构光纤可调滤模特性

戴震飞, 姜文帆, 王玲, 陈明阳, 高永锋, 任乃飞

Tunable mode-selective characteristics of a mode-filter petal-fiber with liquid rods

Dai Zhen-Fei, Jiang Wen-Fan, Wang Ling, Chen Ming-Yang, Gao Yong-Feng, Ren Nai-Fei
PDF
HTML
导出引用
  • 提出一种新型的可调滤模光纤结构, 利用纤芯模式与微结构包层形成的超模群之间的耦合实现选择性滤模, 采用花瓣形包层结构使包层中传输的模式更容易产生高的泄漏损耗; 提出以液体填充包层介质柱, 使包层形成的超模群有效折射率区间可以通过环境温度来调节, 从而达到可调选择性滤模目的. 利用液体柱的LP11模所形成的超模群, 有效增大了其工作带宽和温度调谐范围. 数值模拟结果表明, 采用长度仅为71.4 mm的滤模光纤, 可以使特定的抑制模式损耗达到20 dB以上, 而其他模式损耗均在1 dB以下. 提出的光纤可以在少模光纤传输系统中作为滤模器使用, 以降低模式转换器、复用器/解复用器以及光开关和光路由等的模式串扰.
    In this paper, a novel tunable mode-filter optical fiber consisting of a high-index core and petal-shaped cladding surrounded by a high-index outer ring is proposed. The cladding of the fiber is formed with periodically arranged liquid rods that support cladding modes with effective indexes. These cladding modes form a two-super-mode group. The mode-selection is realized by the coupling between the core mode and the super-mode group. With the petal-shaped cladding, cladding mode can be transmitted at high loss. With the liquid rods, the index-band of super-mode group can be adjusted by external temperature field, thereby achieving the purpose of tunable mode-selective. The super-mode group formed by the LP11 mode of the liquid rods effectively increases its operating bandwidth and temperature tuning range. The numerical simulation results show that the mode-filter fiber with a length of only 71.4 mm can achieve a particular mode loss more than 20 dB, while other modes’ losses are below 1 dB. This special fiber can be used as a mode-filter in the few-mode fiber transmission system to reduce mode crosstalk of converters, multiplexer/demultiplexer, optical switch and optical routing.
      通信作者: 陈明阳, miniyoung@163.com
    • 基金项目: 镇江市重点研发计划(产业前瞻与共性关键技术)(批准号: GY2015033)和江苏大学镇江市先进感知材料与器件高技术研究重点实验室(批准号: SS2018001)资助的课题.
      Corresponding author: Chen Ming-Yang, miniyoung@163.com
    • Funds: Project supported by the Key Research and Development Projects (Industry Foresight and Common Key Technologies) of Zhenjiang, China (Grant No. GY2015033) and the Zhenjiang Key Laboratory of Advanced Sensing Materials and Devices, Jiangsu University, China (Grant No. SS2018001).
    [1]

    Turukhin A, Sinkin O V, Batshon H G, Zhang H, Sun Y, Mazurczyk M, Davidson C R, Cai J X, Bolshtyansky M A, Foursa D G, Pilipetskii A 2016 Proceedings of Optical Fiber Communications Conference and Exhibition (OFC 2016) Anaheim, California, USA. March 20−24, 2016

    [2]

    Hong X, Zeng X, Li Y, Mo Q, Tian Y, Li W, Liu Z, Wu J 2016 Appl. Opt. 55 9360Google Scholar

    [3]

    姚殊畅, 张敏明, 唐明, 沈平, 刘德明 2013 物理学报 62 144215Google Scholar

    Yao X C, Zhang M M, Tang M, Sheng P, Liu D M 2013 Acta Phys. Sin. 62 144215Google Scholar

    [4]

    Koebele C, Salsi M, Sperti D, Tran P, Brindel P, Mardoyan H, Bigo S, Boutin A, Verluise F, Sillard P, Astruc M, Provost L, Cerou F, Charlet G 2011 Opt. Express 19 16593Google Scholar

    [5]

    Sarmiento S, Altabas J A, Izquierdo D, Garces I, Spadaro S, Lazaro J A 2017 J. Opt. Commun. Netw. 9 1116Google Scholar

    [6]

    Ramachandran S, Fini J M, Mermelstein M, Nicholson J W, Ghalmi S, Yan M F 2008 Laser Photon. Rev. 2 429Google Scholar

    [7]

    Driscoll J B, Grote R R, Souhan B, Dadap J I, Lu M, Osgood R M 2013 Opt. Lett. 38 1854Google Scholar

    [8]

    Nobutomo H, Kuimasa S, Taiji S, Takashi M, Kyozo T, Masanori K, Fumihiko 2013 Opt. Express 21 25752Google Scholar

    [9]

    Riesen N, Love J D 2012 Appl. Opt. 51 2778Google Scholar

    [10]

    Saitoh F, Saitoh K, Koshiba M 2010 Opt. Express 18 4709Google Scholar

    [11]

    Yu C P, Liou J H, Chiu Y J, Taga 2011 Opt. Express 19 12673Google Scholar

    [12]

    Tsekrekos C P, Syvridis, 2012 IEEE Photonic Tech. L. 24 1638Google Scholar

    [13]

    Chang S H, Chung H S, Ryf R, Fontaine N K, Han C, Park K J, Kim K, Lee J C, Lee J H, Kim B Y, Kim Y K 2015 Opt. Express 23 7164Google Scholar

    [14]

    Chang S H, Moon S R, Chen H, Fontaine N K, Park K J, Kim K, Lee J K 2017 Opt. Express 25 5734Google Scholar

    [15]

    Pureur V, Knight J C, Kuhlmey B T 2010 Opt. Express 18 8906Google Scholar

    [16]

    Park K J, Song K Y, Kim Y K, Lee J H, Kim B Y 2016 Opt. Express 24 3543Google Scholar

    [17]

    Yerolatsitis S, Harrington K, Thomson R R, Birks T A 2017 Optical Fiber Communications Conference and Exhibition (Ofc 2017) Los Angeles, California, USA. March 19−23

    [18]

    Velazquez-Benitez A M, Alvarado J C, Lopez-Galmiche G, Antonio-Lopez J E, Hernandez-Cordero J, Sanchez-Mondragon J, Sillard P, Okonkwo C M, Amezcua-Correa R 2015 Opt. Lett. 40 1663Google Scholar

    [19]

    Sai X, Li Y, Yang C, Li W, Qiu J, Hong X, Zuo Y, Guo H, Tong W, Wu J 2017 Opt. Lett. 42 4355Google Scholar

    [20]

    Chen M Y, Chiang K S 2016 IEEE J. Sel. Top. Quant. 22 4900307

    [21]

    姚建铨, 王然, 苗银萍, 陆颖, 赵晓蕾, 景磊 2013 中国激光 40 0101002

    Yao J Q, Wang R, Miao Y P, Lu Y, Zhao X L, Jin L 2013 Chinese J. Lasers 40 0101002

    [22]

    吴倩, 郭晓晨, 施伟华 2018 物理学报 67 184212Google Scholar

    Wu Q, Guo X C, Shi W H 2018 Acta Phys. Sin. 67 184212Google Scholar

    [23]

    Qi T, Jung Y, Xiao L, Wang J, Xiao S, Lu C, Tam H Y, Peacock A C 2016 Opt. Lett. 41 4763Google Scholar

    [24]

    程兰, 罗兴, 韦会峰, 李海清, 彭景刚, 戴能利, 李进延 2014 物理学报 63 074210Google Scholar

    Cheng L, Luo X, Wei H F, Li H Q, Peng J G, Dai N L, Li J Y 2014 Acta Phys. Sin. 63 074210Google Scholar

    [25]

    Stone J M, Pearce G J, Luan F, Birks T A, Knight J C, George A K, Bird D M 2006 Opt. Express 14 6291Google Scholar

    [26]

    Argyros A, Birks T A, Leon-Saval S G, Cordeiro C M B, Russell P S 2005 Opt. Express 13 2503Google Scholar

    [27]

    Park J, Kang D E, Paulson B, Nazari T, Oh K 2014 Opt. Express 22 17320Google Scholar

    [28]

    Dimitropoulos D, Houshmand B, Claps R, Jalali B 2003 Opt. Lett. 28 1954Google Scholar

    [29]

    Poon J, Istrate E, Allard M, Sargent E H 2003 IEEE J. Sel. Top. Quant. 39 778Google Scholar

    [30]

    Samoc A 2003 J. Appl. Phys. 94 6167Google Scholar

    [31]

    Zhang R, Teipel J, Giessen H 2006 Opt. Express 14 6800Google Scholar

    [32]

    Couris S, Renard M, Faucher O, Lavorel B, Chaux R, Koudoumas E, Michaut X 2003 Chem. Phys. Lett. 369 318Google Scholar

    [33]

    Liu Y Q, Guo Z Y, Zhang Y, Chiang K S, Dong X Y 2000 Electron. Lett. 36 56

  • 图 1  花瓣形MOF结构

    Fig. 1.  Petal-shape structure of MOF.

    图 2  ${n_{{\rm{core}}}} = 1.464$时, 图1中MOF的纤芯4种模式和2个包层超模群区间的色散特性

    Fig. 2.  Dispersion characteristics of the two cladding super-mode band and the four core modes for the MOF shown in Fig.1, when ${n_{{\rm{core}}}} = 1.464$.

    图 3  波长$\lambda = 1550\;{\rm{ nm}}$时, 纤芯模式的模场分布图 (a) LP01模; (b) LP11模; (c) LP11模; (d) LP02

    Fig. 3.  Field distributions of the core-mode at the wavelength $\lambda = 1550\;{\rm{ nm}}$: (a) The LP01 mode; (b) the LP11 mode; (c) the LP21 mode; (d) the LP02 mode.

    图 4  波长1550 nm时, 超模群区间随液体介质柱折射率(温度)变化曲线

    Fig. 4.  Variation of super-mode band with liquid-rod index change at the wavelength 1550 nm.

    图 5  考虑和不考虑液体吸收损耗两种情况下的纤芯LP01模和LP11模损耗曲线

    Fig. 5.  Variation of the core-mode LP01 mode and LP11 mode loss with and without liquid absorption loss.

    图 6  纤芯四种模式单独处于超模群区间时损耗曲线 (a) LP01模; (b) LP11模; (c) LP21模; (d) LP02

    Fig. 6.  The loss of single core-mode on the super-mode band: (a) The LP01 mode; (b) the LP11 mode; (c) the LP21 mode; (d) the LP02 mode.

    图 7  不同液体折射率时, 四种纤芯模式的损耗曲线 (a) ${n_{{\rm{liquid}}}} = {\rm{1}}{\rm{.4937}}$; (b) ${n_{{\rm{liquid}}}} = {\rm{1}}{\rm{.4892}}$; (c) ${n_{{\rm{liquid}}}} = {\rm{1}}{\rm{.486}}$; (d)${n_{{\rm{liquid}}}}$ = 1.4812

    Fig. 7.  The loss of four core-mode with various liquid index: (a) ${n_{{\rm{liquid}}}} = {\rm{1}}{\rm{.4937}}$; (b) ${n_{{\rm{liquid}}}} = {\rm{1}}{\rm{.4892}}$; (c) ${n_{{\rm{liquid}}}} = {\rm{1}}{\rm{.486}}$; (d) ${n_{{\rm{liquid}}}} = {\rm{1}}{\rm{.4812}}$.

    图 8  不同结构光纤的LP01模的模场分布 (a)圆形结构; (b)花瓣结构

    Fig. 8.  Field distributions of LP01 mode with various circle structures: (a) Circle structure; ( b) petal-shape structure.

    图 9  两种MOF的模式损耗对比 (a) LP01模和LP11模损耗曲线; (b) LP21模和LP02模曲线

    Fig. 9.  Loss of two MOF: (a) Loss band of the LP01 mode and LP11 mode; (b) loss band of the LP21 mode and LP02 mode.

    图 10  纤芯 LP01模式在双超模群时的两种超模群区间LP01模损耗 (a)波长为1550 nm, 温度改变量相同; (b)温度相同, 波长改变

    Fig. 10.  Dependence of the loss of the core LP01 mode locating in different two super-mode region: (a) With same temperature variation at wavelength 1550 nm; (b) with various wavelength at the same temperature.

  • [1]

    Turukhin A, Sinkin O V, Batshon H G, Zhang H, Sun Y, Mazurczyk M, Davidson C R, Cai J X, Bolshtyansky M A, Foursa D G, Pilipetskii A 2016 Proceedings of Optical Fiber Communications Conference and Exhibition (OFC 2016) Anaheim, California, USA. March 20−24, 2016

    [2]

    Hong X, Zeng X, Li Y, Mo Q, Tian Y, Li W, Liu Z, Wu J 2016 Appl. Opt. 55 9360Google Scholar

    [3]

    姚殊畅, 张敏明, 唐明, 沈平, 刘德明 2013 物理学报 62 144215Google Scholar

    Yao X C, Zhang M M, Tang M, Sheng P, Liu D M 2013 Acta Phys. Sin. 62 144215Google Scholar

    [4]

    Koebele C, Salsi M, Sperti D, Tran P, Brindel P, Mardoyan H, Bigo S, Boutin A, Verluise F, Sillard P, Astruc M, Provost L, Cerou F, Charlet G 2011 Opt. Express 19 16593Google Scholar

    [5]

    Sarmiento S, Altabas J A, Izquierdo D, Garces I, Spadaro S, Lazaro J A 2017 J. Opt. Commun. Netw. 9 1116Google Scholar

    [6]

    Ramachandran S, Fini J M, Mermelstein M, Nicholson J W, Ghalmi S, Yan M F 2008 Laser Photon. Rev. 2 429Google Scholar

    [7]

    Driscoll J B, Grote R R, Souhan B, Dadap J I, Lu M, Osgood R M 2013 Opt. Lett. 38 1854Google Scholar

    [8]

    Nobutomo H, Kuimasa S, Taiji S, Takashi M, Kyozo T, Masanori K, Fumihiko 2013 Opt. Express 21 25752Google Scholar

    [9]

    Riesen N, Love J D 2012 Appl. Opt. 51 2778Google Scholar

    [10]

    Saitoh F, Saitoh K, Koshiba M 2010 Opt. Express 18 4709Google Scholar

    [11]

    Yu C P, Liou J H, Chiu Y J, Taga 2011 Opt. Express 19 12673Google Scholar

    [12]

    Tsekrekos C P, Syvridis, 2012 IEEE Photonic Tech. L. 24 1638Google Scholar

    [13]

    Chang S H, Chung H S, Ryf R, Fontaine N K, Han C, Park K J, Kim K, Lee J C, Lee J H, Kim B Y, Kim Y K 2015 Opt. Express 23 7164Google Scholar

    [14]

    Chang S H, Moon S R, Chen H, Fontaine N K, Park K J, Kim K, Lee J K 2017 Opt. Express 25 5734Google Scholar

    [15]

    Pureur V, Knight J C, Kuhlmey B T 2010 Opt. Express 18 8906Google Scholar

    [16]

    Park K J, Song K Y, Kim Y K, Lee J H, Kim B Y 2016 Opt. Express 24 3543Google Scholar

    [17]

    Yerolatsitis S, Harrington K, Thomson R R, Birks T A 2017 Optical Fiber Communications Conference and Exhibition (Ofc 2017) Los Angeles, California, USA. March 19−23

    [18]

    Velazquez-Benitez A M, Alvarado J C, Lopez-Galmiche G, Antonio-Lopez J E, Hernandez-Cordero J, Sanchez-Mondragon J, Sillard P, Okonkwo C M, Amezcua-Correa R 2015 Opt. Lett. 40 1663Google Scholar

    [19]

    Sai X, Li Y, Yang C, Li W, Qiu J, Hong X, Zuo Y, Guo H, Tong W, Wu J 2017 Opt. Lett. 42 4355Google Scholar

    [20]

    Chen M Y, Chiang K S 2016 IEEE J. Sel. Top. Quant. 22 4900307

    [21]

    姚建铨, 王然, 苗银萍, 陆颖, 赵晓蕾, 景磊 2013 中国激光 40 0101002

    Yao J Q, Wang R, Miao Y P, Lu Y, Zhao X L, Jin L 2013 Chinese J. Lasers 40 0101002

    [22]

    吴倩, 郭晓晨, 施伟华 2018 物理学报 67 184212Google Scholar

    Wu Q, Guo X C, Shi W H 2018 Acta Phys. Sin. 67 184212Google Scholar

    [23]

    Qi T, Jung Y, Xiao L, Wang J, Xiao S, Lu C, Tam H Y, Peacock A C 2016 Opt. Lett. 41 4763Google Scholar

    [24]

    程兰, 罗兴, 韦会峰, 李海清, 彭景刚, 戴能利, 李进延 2014 物理学报 63 074210Google Scholar

    Cheng L, Luo X, Wei H F, Li H Q, Peng J G, Dai N L, Li J Y 2014 Acta Phys. Sin. 63 074210Google Scholar

    [25]

    Stone J M, Pearce G J, Luan F, Birks T A, Knight J C, George A K, Bird D M 2006 Opt. Express 14 6291Google Scholar

    [26]

    Argyros A, Birks T A, Leon-Saval S G, Cordeiro C M B, Russell P S 2005 Opt. Express 13 2503Google Scholar

    [27]

    Park J, Kang D E, Paulson B, Nazari T, Oh K 2014 Opt. Express 22 17320Google Scholar

    [28]

    Dimitropoulos D, Houshmand B, Claps R, Jalali B 2003 Opt. Lett. 28 1954Google Scholar

    [29]

    Poon J, Istrate E, Allard M, Sargent E H 2003 IEEE J. Sel. Top. Quant. 39 778Google Scholar

    [30]

    Samoc A 2003 J. Appl. Phys. 94 6167Google Scholar

    [31]

    Zhang R, Teipel J, Giessen H 2006 Opt. Express 14 6800Google Scholar

    [32]

    Couris S, Renard M, Faucher O, Lavorel B, Chaux R, Koudoumas E, Michaut X 2003 Chem. Phys. Lett. 369 318Google Scholar

    [33]

    Liu Y Q, Guo Z Y, Zhang Y, Chiang K S, Dong X Y 2000 Electron. Lett. 36 56

  • [1] 王晓凯, 李建设, 李曙光, 郭英, 孟潇剑, 汪国瑞, 王璐瑶, 李增辉, 赵原源, 丁钰鑫. 一种基于三芯光子晶体光纤的宽带模分复用器的设计与研究. 物理学报, 2022, 71(4): 044206. doi: 10.7498/aps.71.20211187
    [2] 丁子平, 廖健飞, 曾泽楷. 基于表面等离子体共振的新型超宽带微结构光纤传感器研究. 物理学报, 2021, 70(7): 074207. doi: 10.7498/aps.70.20201477
    [3] 王晓凯, 李建设, 李曙光, 郭英, 孟潇剑, 汪国瑞, 王璐瑶, 李增辉, 赵原源, 丁钰鑫. 一种基于三芯光子晶体光纤的宽带模分复用器的设计与研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211187
    [4] 董丽娟, 薛春华, 孙勇, 邓富胜, 石云龙. 单负材料异质结构中损耗诱导的场局域增强和光学双稳态. 物理学报, 2016, 65(11): 114207. doi: 10.7498/aps.65.114207
    [5] 陈其杰, 周桂耀, 石富坤, 李端明, 苑金辉, 夏长明, 葛姝. 微结构光纤近红外色散波产生的研究. 物理学报, 2015, 64(3): 034215. doi: 10.7498/aps.64.034215
    [6] 徐闵喃, 周桂耀, 陈成, 侯峙云, 夏长明, 周概, 刘宏展, 刘建涛, 张卫. 具有四模式的低串扰及大群时延多芯微结构光纤的设计. 物理学报, 2015, 64(23): 234206. doi: 10.7498/aps.64.234206
    [7] 陈艳, 周桂耀, 夏长明, 侯峙云, 刘宏展, 王超. 具有双模特性的大模场面积微结构光纤的设计. 物理学报, 2014, 63(1): 014701. doi: 10.7498/aps.63.014701
    [8] 程兰, 罗兴, 韦会峰, 李海清, 彭景刚, 戴能利, 李进延. 1550 nm低损耗单模全固态光子带隙光纤研究. 物理学报, 2014, 63(7): 074210. doi: 10.7498/aps.63.074210
    [9] 苗银萍, 姚建铨. 基于磁流体填充微结构光纤的温度特性研究. 物理学报, 2013, 62(4): 044223. doi: 10.7498/aps.62.044223
    [10] 周亚训, 於杏燕, 徐星辰, 戴世勋. 掺铒硫系玻璃的制备及其微结构光纤的中红外信号放大特性研究. 物理学报, 2012, 61(15): 157701. doi: 10.7498/aps.61.157701
    [11] 闫海峰, 俞重远, 田宏达, 刘玉敏, 韩利红. 八角光子晶体光纤传输特性与非线性特性研究. 物理学报, 2010, 59(5): 3273-3277. doi: 10.7498/aps.59.3273
    [12] 韩伟涛, 侯蓝田, 耿鹏程. 双包层多芯光子晶体光纤自相干合成的数值分析与实验. 物理学报, 2010, 59(10): 7091-7095. doi: 10.7498/aps.59.7091
    [13] 季玲玲, 陆培祥, 陈 伟, 戴能利, 张继皇, 蒋作文, 李进延, 李 伟. 微结构光纤次芯中的四波混频过程. 物理学报, 2008, 57(9): 5973-5977. doi: 10.7498/aps.57.5973
    [14] 周桂耀, 侯峙云, 李曙光, 韩 颖, 侯蓝田. 微结构光纤制备过程中不同位置空气孔的形变量分析. 物理学报, 2007, 56(11): 6486-6489. doi: 10.7498/aps.56.6486
    [15] 王 健, 雷乃光, 余重秀. 椭圆空气孔微结构光纤限制损耗的分析. 物理学报, 2007, 56(2): 946-951. doi: 10.7498/aps.56.946
    [16] 周桂耀, 侯峙云, 潘普丰, 侯蓝田, 李曙光, 韩 颖. 微结构光纤预制棒拉制过程的温度场分布. 物理学报, 2006, 55(3): 1271-1275. doi: 10.7498/aps.55.1271
    [17] 张春书, 开桂云, 王 志, 王 超, 孙婷婷, 张伟刚, 刘艳格, 刘剑飞, 袁树忠, 董孝义. 柚子型微结构光纤Bragg光栅温度和应变传感特性研究. 物理学报, 2005, 54(6): 2758-2763. doi: 10.7498/aps.54.2758
    [18] 李曙光, 周桂耀, 邢光龙, 侯蓝田, 王清月, 栗岩锋, 胡明列. 微结构光纤中超短激光脉冲传输的数值模拟. 物理学报, 2005, 54(4): 1599-1606. doi: 10.7498/aps.54.1599
    [19] 胡明列, 王清月, 栗岩峰, 王 专, 柴 路, 张伟力. 飞秒激光在双折射微结构光纤中模式控制的四波混频效应的实验研究. 物理学报, 2005, 54(9): 4411-4415. doi: 10.7498/aps.54.4411
    [20] 胡明列, 王清月, 栗岩峰, 倪晓昌, 张志刚, 王 专, 柴 路, 侯蓝田, 李曙光, 周桂耀. 非均匀微结构光纤中双折射现象的研究. 物理学报, 2004, 53(12): 4248-4252. doi: 10.7498/aps.53.4248
计量
  • 文章访问数:  9662
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-23
  • 修回日期:  2019-01-23
  • 上网日期:  2019-04-01
  • 刊出日期:  2019-04-20

/

返回文章
返回