搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

AlxCrFeNiTi系高熵合金成分和弹性性质关系

王浩玉 农智升 王继杰 朱景川

引用本文:
Citation:

AlxCrFeNiTi系高熵合金成分和弹性性质关系

王浩玉, 农智升, 王继杰, 朱景川

Relationship between compositions and elastic properties of AlxCrFeNiTi high entropy alloys

Wang Hao-Yu, Nong Zhi-Sheng, Wang Ji-Jie, Zhu Jing-Chuan
PDF
HTML
导出引用
  • 为了探索AlxCrFeNiTi系高熵合金组成成分和弹性性质的关系, 结合固溶体特征参数和第一性原理计算, 研究Al元素含量对AlxCrFeNiTi (x = 0, 0.5, 1, 2, 3, 4)合金结构和弹性性质的影响, 并分析合金固溶体特征参数与弹性性质之间的关系. 结果表明: AlxCrFeNiTi系合金的价电子浓度随着Al含量的增加逐渐减小, 合金在体心立方结构下的形成焓均低于面心立方结构, 说明研究的AlxCrFeNiTi系合金会形成单一的体心立方结构固溶体; 合金的晶格常数和形成能力强弱随着Al含量的增加而增大, 但合金的结构稳定性略有下降; 当合金元素按照等原子比进行成分配比时, 合金的原子尺寸差异最大; AlxCrFeNiTi系合金中不同原子之间除了金属键结合外, 还表现出一定的共价和离子键结合特征; 对于AlxCrFeNiTi系合金而言, 随着热力学熵焓比的增大, 合金体弹模量和韧性随之增大; 随着合金混合焓的增加, 合金在压缩方向的各向异性程度明显降低. 热力学熵焓比和混合焓可作为AlxCrFeNiTi系高熵合金成分设计的重要参数.
    The effects of Al content on structure and elastic properties of AlxCrFeNiTi (x = 0, 0.5, 1, 2, 3, 4), and elastic properties varying with solid solution characteristic parameters of alloys are investigated in this work to explore the relationships between compositions and elastic properties of AlxCrFeNiTi high entropy alloys. The results show that the valence electron concentrations of AlxCrFeNiTi alloys decrease gradually with the increase of Al content, and the enthalpy formed by alloy with body center cubic structure is lower than that with face center cubic structure when Al content of the alloy is the same. It implies that AlxCrFeNiTi alloy will form a single solid solution with body centered cubic structure by referring to valence electron concentration theory and formation enthalpy calculation. The lattice constants and formation capacities of AlxCrFeNiTi alloys increase with Al content rising, while the structure stability of alloys presents a gradual downward trend. The atomic size difference shows the largest value when all elements in the alloy have equal molar ratio, indicating that the lattice distortion of the alloy exhibits the highest level at this time. The total state of density of AlxCrFeNiTi alloy moves to a higher energy level as the content of Al increases, which is an obvious characteristic of the declining structural stability of alloys. It is consistent with the result of cohesive energy. Al and Ti both lose electrons after bonding, while Ni and Fe both gain electrons. The bonding behavior between atoms shows not only metal bonding but also somewhat covalent and ionic bonding characteristics by analyzing the electron density difference and atomic Mulliken populations of AlxCrFeNiTi alloys. The elastic modulus and toughness of alloy will be improved with the increase of the ratio of thermodynamic entropy to enthalpy ($\varOmega $), and the anisotropy in compression direction of alloy decreases obviously with the rise of mixing enthalpy (ΔHmix). The solid solution characteristics including $\varOmega $ and ΔHmix will be used as important parameters for the compositions’ design for AlxCrFeNiTi alloy.
      通信作者: 农智升, nzsfir@163.com
    • 基金项目: 国家自然科学基金(批准号: 51701128)资助的课题.
      Corresponding author: Nong Zhi-Sheng, nzsfir@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51701128).
    [1]

    Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y 2004 Adv. Eng. Mater. 6 299Google Scholar

    [2]

    Miracle D B, Senkov O N 2017 Acta Mater. 122 448Google Scholar

    [3]

    Gludovatz B, Hohenwarter A, Catoor D, Chang E H, George E P, Ritchie R O 2014 Science 345 1153Google Scholar

    [4]

    Tsai M H, Yeh J W 2014 Mater. Res. Lett. 2 107Google Scholar

    [5]

    Senkov O N, Miller J D, Miracle D B, Woodward C 2015 Nat. Commun. 6 6529Google Scholar

    [6]

    Chuang M H, Tsai M H, Wang W R, Lin S J, Yeh J W 2011 Acta Mater. 59 6308Google Scholar

    [7]

    Dong Y, Zhou K, Lu Y P, Gao X X, Wang T M, Li T J 2014 Mater. Des. 57 67Google Scholar

    [8]

    Nong Z S, Zhu J C, Zhao R D 2017 Intermetallics 86 134Google Scholar

    [9]

    刘瑞文 2018 硕士学位论文 (山东: 山东农业大学)

    Liu R W 2018 M. S. Thesis (Shandong: Shandong Agricultural University) (in Chinese)

    [10]

    Zhang Y, Yang X 2012 Mater. Chem. Phys. 132 233Google Scholar

    [11]

    Tian F Y, Varga L K, Chen N X, Shen J, Vitos L 2014 J. Alloys Compd. 599 19Google Scholar

    [12]

    Zhang Y, Zhou Y J, Lin J P, Chen G L, Liaw P K 2008 Adv. Eng. Mater. 10 534Google Scholar

    [13]

    张章, 熊贤仲, 乙姣姣, 李金富 2013 物理学报 62 136401Google Scholar

    Zhang Z, Xiong X Z, Yi J J, Li J F 2013 Acta Phys. Sin. 62 136401Google Scholar

    [14]

    Massalaski T B 2010 Mater. Trans. 51 583Google Scholar

    [15]

    Guo S, Ng C, Lu J, Liu C T 2011 J. Appl. Phys. 109 103505Google Scholar

    [16]

    Marlo M, Milman V 2000 Phys. Rev. B 62 2899Google Scholar

    [17]

    Yao H Z, Ouyang L Z, Ching W Y 2007 J. Am. Ceram. Soc. 90 3194Google Scholar

    [18]

    Hao X F, Xu Y H, Wu Z J, Zhou D F, Liu X J, Meng J 2008 J. Alloys Compd. 453 413Google Scholar

    [19]

    Sahu B R 1997 Mater. Sci. Eng. B 49 74Google Scholar

    [20]

    Broyden C G, Dennis J E, Moré J J 1973 J. Appl. Math. 12 223Google Scholar

    [21]

    Sui Y W, Gao S, Chen X, Qi J Q, Yang F, Wei F X, He Y Z 2017 Vacuum 144 80Google Scholar

    [22]

    Segall M D, Shah R, Pickard C J, Payne M C 1996 Phys. Rev. B 54 16317Google Scholar

    [23]

    范开敏, 杨莉, 孙庆强, 代云雅, 彭述明, 龙兴贵, 周晓松, 祖小涛 2013 物理学报 62 116201Google Scholar

    Fan K M, Yang L, Sun Q Q, Dai Y Y, Peng S M, Long X G, Zhou X S, Zu X T 2013 Acta Phys. Sin. 62 116201Google Scholar

    [24]

    Born M, Huang K 1954 Dynamical Theory of Crystal Lattices (Oxford: Oxford University Press) p10

    [25]

    Nye J F 1985 Physical Properties of Crystals (Oxford: Oxford University Press) p113

  • 图 1  Al含量对AlxCrFeNiTi系合金的VEC、形成焓和结构的影响, 其中当x = 0, 0.5, 1, 2, 3, 4时, 分别对应Al含量的原子百分比为0, 11.11 at.%, 20 at.%, 33.33 at.%, 42.86 at.%, 50 at.%

    Fig. 1.  Effect of Al contents on valence electron concentration, formation enthalpy and structure of AlxCrFeNiTi alloys. When x = 0, 0.5, 1, 2, 3, 4, the atomic percentages corresponding to Al content are 0, 11.11 at.%, 20 at.%, 33.33 at.%, 42.86 at.%, 50 at.% respectively.

    图 2  Al含量对AlxCrFeNiTi系合金的晶格常数和原子尺寸差异的影响

    Fig. 2.  Effect of Al contents on lattice constant and atomic size difference of AlxCrFeNiTi alloys.

    图 3  CrFeNiTi, Al2CrFeNiTi和Al4CrFeNiTi合金的总态密度

    Fig. 3.  Density of states (DOS) of CrFeNiTi, Al2CrFeNiTi and Al4CrFeNiTi alloys.

    图 4  AlxCrFeNiTi系合金的电荷分布 (a) Al2CrFeNiTi在(110)面的差分电荷密度; (b) AlxCrFeNiTi系合金的原子布居数

    Fig. 4.  Charge distribution of AlxCrFeNiTi alloys: (a) Electron density difference map on (110) plane for Al2CrFeNiTi; (b) the atomic Mulliken population of AlxCrFeNiTi alloys.

    图 5  Al含量对AlxCrFeNiTi系合金弹性模量的影响

    Fig. 5.  The effect of Al contents on elastic constants AlxCrFeNiTi alloys.

    图 6  Al含量对AlxCrFeNiTi系合金的B/G、泊松比$\nu $和(C12C44)的影响

    Fig. 6.  Effect of Al contents on B/G, Poisson’s ratio $\nu $ and (C12C44 ) of AlxCrFeNiTi alloys.

    图 7  AlxCrFeNiTi系合金固溶体特征参数和弹性性质之间的关系 (a) 热力学熵焓比$\varOmega $B, G, E, B/G的关系; (b) 混合焓$ \Delta H_{\rm mix}$AG, AB的关系

    Fig. 7.  Correlativity between solid solution characteristics and elastic properties of AlxCrFeNiTi alloys: (a) Ratio of thermodynamic entropy to enthalpy and B, G, E, B/G; (b) formation entahlpy $ \Delta H_{\rm mix}$ and AG, AB.

    图 8  合金杨氏模量E的各向异性 (a) CrFeNiTi; (b) Al2CrFeNiTi

    Fig. 8.  Anisotropy of Young modulus E of CrFeNiTi, Al2CrFeNiTi alloys: (a) CrFeNiTi; (b) Al2CrFeNiTi.

    表 1  AlxCrFeNiTi系合金中元素的物理参数[15]

    Table 1.  Physical parameters of alloying elements in AlxCrFeNiTi alloys[15].

    元素原子半径/ÅVEC熔点Tm/℃
    Al1.4323660.2
    Cr1.24961857
    Fe1.24181535
    Ni1.246101453
    Ti1.46241660
    下载: 导出CSV

    表 2  不同Al含量下AlxCrFeNiTi系合金的弹性常数Cij

    Table 2.  Elastic constant Cij (in GPa) of AlxCrFeNiTi alloys with different Al contents.

    合金弹性常数Cij/GPa
    C11C12C13C22C23C33C44C55C66
    CrFeNiTi276.1158.8158.8276.1158.8274.446.146.195.0
    Al0.5CrFeNiTi233.3173.6136.1233.3136.1246.587.187.1102.9
    AlCrFeNiTi198.1139.3139.3198.1139.3218.190.390.391.5
    Al2CrFeNiTi158.3118.4118.4158.3118.4245.875.775.780.7
    Al3CrFeNiTi191.6124.9130.4191.6130.4148.2104.6104.677.3
    Al4CrFeNiTi213.491.691.6213.491.6207.199.899.8106.9
    下载: 导出CSV
  • [1]

    Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y 2004 Adv. Eng. Mater. 6 299Google Scholar

    [2]

    Miracle D B, Senkov O N 2017 Acta Mater. 122 448Google Scholar

    [3]

    Gludovatz B, Hohenwarter A, Catoor D, Chang E H, George E P, Ritchie R O 2014 Science 345 1153Google Scholar

    [4]

    Tsai M H, Yeh J W 2014 Mater. Res. Lett. 2 107Google Scholar

    [5]

    Senkov O N, Miller J D, Miracle D B, Woodward C 2015 Nat. Commun. 6 6529Google Scholar

    [6]

    Chuang M H, Tsai M H, Wang W R, Lin S J, Yeh J W 2011 Acta Mater. 59 6308Google Scholar

    [7]

    Dong Y, Zhou K, Lu Y P, Gao X X, Wang T M, Li T J 2014 Mater. Des. 57 67Google Scholar

    [8]

    Nong Z S, Zhu J C, Zhao R D 2017 Intermetallics 86 134Google Scholar

    [9]

    刘瑞文 2018 硕士学位论文 (山东: 山东农业大学)

    Liu R W 2018 M. S. Thesis (Shandong: Shandong Agricultural University) (in Chinese)

    [10]

    Zhang Y, Yang X 2012 Mater. Chem. Phys. 132 233Google Scholar

    [11]

    Tian F Y, Varga L K, Chen N X, Shen J, Vitos L 2014 J. Alloys Compd. 599 19Google Scholar

    [12]

    Zhang Y, Zhou Y J, Lin J P, Chen G L, Liaw P K 2008 Adv. Eng. Mater. 10 534Google Scholar

    [13]

    张章, 熊贤仲, 乙姣姣, 李金富 2013 物理学报 62 136401Google Scholar

    Zhang Z, Xiong X Z, Yi J J, Li J F 2013 Acta Phys. Sin. 62 136401Google Scholar

    [14]

    Massalaski T B 2010 Mater. Trans. 51 583Google Scholar

    [15]

    Guo S, Ng C, Lu J, Liu C T 2011 J. Appl. Phys. 109 103505Google Scholar

    [16]

    Marlo M, Milman V 2000 Phys. Rev. B 62 2899Google Scholar

    [17]

    Yao H Z, Ouyang L Z, Ching W Y 2007 J. Am. Ceram. Soc. 90 3194Google Scholar

    [18]

    Hao X F, Xu Y H, Wu Z J, Zhou D F, Liu X J, Meng J 2008 J. Alloys Compd. 453 413Google Scholar

    [19]

    Sahu B R 1997 Mater. Sci. Eng. B 49 74Google Scholar

    [20]

    Broyden C G, Dennis J E, Moré J J 1973 J. Appl. Math. 12 223Google Scholar

    [21]

    Sui Y W, Gao S, Chen X, Qi J Q, Yang F, Wei F X, He Y Z 2017 Vacuum 144 80Google Scholar

    [22]

    Segall M D, Shah R, Pickard C J, Payne M C 1996 Phys. Rev. B 54 16317Google Scholar

    [23]

    范开敏, 杨莉, 孙庆强, 代云雅, 彭述明, 龙兴贵, 周晓松, 祖小涛 2013 物理学报 62 116201Google Scholar

    Fan K M, Yang L, Sun Q Q, Dai Y Y, Peng S M, Long X G, Zhou X S, Zu X T 2013 Acta Phys. Sin. 62 116201Google Scholar

    [24]

    Born M, Huang K 1954 Dynamical Theory of Crystal Lattices (Oxford: Oxford University Press) p10

    [25]

    Nye J F 1985 Physical Properties of Crystals (Oxford: Oxford University Press) p113

  • [1] 杨顺杰, 李春梅, 周金萍. 磁无序及合金化效应影响Co2CrZ (Z = Ga, Si, Ge)合金相稳定性和弹性常数的第一性原理研究. 物理学报, 2022, 71(10): 106201. doi: 10.7498/aps.71.20212254
    [2] 王艳, 曹仟慧, 胡翠娥, 曾召益. Ce-La-Th合金高压相变的第一性原理计算. 物理学报, 2019, 68(8): 086401. doi: 10.7498/aps.68.20182128
    [3] 吕常伟, 王臣菊, 顾建兵. 高温高压下立方氮化硼和六方氮化硼的结构、力学、热力学、电学以及光学性质的第一性原理研究. 物理学报, 2019, 68(7): 077102. doi: 10.7498/aps.68.20182030
    [4] 付现凯, 陈万骐, 姜钟生, 杨波, 赵骧, 左良. Ti3O5弹性、电子和光学性质的第一性原理研究. 物理学报, 2019, 68(20): 207301. doi: 10.7498/aps.68.20190664
    [5] 胡洁琼, 谢明, 陈家林, 刘满门, 陈永泰, 王松, 王塞北, 李爱坤. Ti3AC2相(A = Si,Sn,Al,Ge)电子结构、弹性性质的第一性原理研究. 物理学报, 2017, 66(5): 057102. doi: 10.7498/aps.66.057102
    [6] 刘博, 王煊军, 卜晓宇. 高压下NH4ClO4结构、电子及弹性性质的第一性原理研究. 物理学报, 2016, 65(12): 126102. doi: 10.7498/aps.65.126102
    [7] 罗明海, 黎明锴, 朱家昆, 黄忠兵, 杨辉, 何云斌. CdxZn1-xO合金热力学性质的第一性原理研究. 物理学报, 2016, 65(15): 157303. doi: 10.7498/aps.65.157303
    [8] 王金荣, 朱俊, 郝彦军, 姬广富, 向钢, 邹洋春. 高压下RhB的相变、弹性性质、电子结构及硬度的第一性原理计算. 物理学报, 2014, 63(18): 186401. doi: 10.7498/aps.63.186401
    [9] 赵立凯, 赵二俊, 武志坚. 5d过渡金属二硼化物的结构和热、力学性质的第一性原理计算. 物理学报, 2013, 62(4): 046201. doi: 10.7498/aps.62.046201
    [10] 颜小珍, 邝小渝, 毛爱杰, 匡芳光, 王振华, 盛晓伟. 高压下ErNi2B2C弹性性质、电子结构和热力学性质的第一性原理研究. 物理学报, 2013, 62(10): 107402. doi: 10.7498/aps.62.107402
    [11] 范开敏, 杨莉, 孙庆强, 代云雅, 彭述明, 龙兴贵, 周晓松, 祖小涛. 六角相ErAx (A=H, He)体系弹性性质的第一性原理研究. 物理学报, 2013, 62(11): 116201. doi: 10.7498/aps.62.116201
    [12] 周平, 王新强, 周木, 夏川茴, 史玲娜, 胡成华. 第一性原理研究硫化镉高压相变及其电子结构与弹性性质. 物理学报, 2013, 62(8): 087104. doi: 10.7498/aps.62.087104
    [13] 邓娇娇, 刘波, 顾牡, 刘小林, 黄世明, 倪晨. 伽马CuX(X=Cl,Br,I)的电子结构和光学性质的第一性原理计算. 物理学报, 2012, 61(3): 036105. doi: 10.7498/aps.61.036105
    [14] 王斌, 刘颖, 叶金文. 高压下TiC的弹性、电子结构及热力学性质的第一性原理计算. 物理学报, 2012, 61(18): 186501. doi: 10.7498/aps.61.186501
    [15] 汝强, 胡社军, 赵灵智. LixFePO4(x=0.0, 0.75, 1.0)电子结构与弹性性质的第一性原理研究. 物理学报, 2011, 60(3): 036301. doi: 10.7498/aps.60.036301
    [16] 陈海川, 杨利君. LiGaX2(X=S, Se, Te)的电子结构,光学和弹性性质的第一性原理计算. 物理学报, 2011, 60(1): 014207. doi: 10.7498/aps.60.014207
    [17] 李晓凤, 刘中利, 彭卫民, 赵阿可. 高压下CaPo弹性性质和热力学性质的第一性原理研究. 物理学报, 2011, 60(7): 076501. doi: 10.7498/aps.60.076501
    [18] 侯榆青, 张小东, 姜振益. 第一性原理计算MAlH4(M=Na, K)的结构和弹性性质. 物理学报, 2010, 59(8): 5667-5671. doi: 10.7498/aps.59.5667
    [19] 杨天兴, 成强, 许红斌, 王渊旭. 几种三元过渡金属碳化物弹性及电子结构的第一性原理研究. 物理学报, 2010, 59(7): 4919-4924. doi: 10.7498/aps.59.4919
    [20] 周晶晶, 陈云贵, 吴朝玲, 庞立娟, 郑欣, 高涛. 钒基固溶体储氢材料弹性性质第一性原理研究. 物理学报, 2009, 58(10): 7044-7049. doi: 10.7498/aps.58.7044
计量
  • 文章访问数:  9835
  • PDF下载量:  148
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-23
  • 修回日期:  2018-12-04
  • 上网日期:  2019-02-01
  • 刊出日期:  2019-02-05

/

返回文章
返回