搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Q-plate的双图像非对称偏振加密

绪其军 李德林 常琛亮 袁操今 冯少彤 聂守平

引用本文:
Citation:

基于Q-plate的双图像非对称偏振加密

绪其军, 李德林, 常琛亮, 袁操今, 冯少彤, 聂守平

Q-plate based dual image asymmetric polarization encryption

Xu Qi-Jun, Li De-Lin, Chang Chen-Liang, Yuan Cao-Jin, Feng Shao-Tong, Nie Shou-Ping
PDF
HTML
导出引用
  • 基于Q-plate提出了一种对两幅图像做非对称偏振加密的新方法. 在该方法中, 首先, 将待加密的两幅图像通过干涉分解成两块纯相位板; 其次, 将这两块纯相位板分别编码到偏振光的两个正交分量中; 最后, 利用Q-plate和像素化的偏振片改变这束光的偏振分布, 达到对图像的加密效果, 用电荷耦合器件接收输出面的强度分布图作为最终的密文. 其中一块纯相位板作为解密密钥. 算法的解密密钥不同于加密密钥, 由此实现了非对称加密. 由于Q-plate是电调控的, 它的每个像素点的光轴各不相同, 所以能够根据描述变面结构空间旋转率的常数q来改变每个像素的偏振态. 加密过程中用Q-plate的q值和像素化的偏振片的偏振角度作为加密密钥, 这两个加密密钥具有很高的敏感性, 极大地提高了算法的安全性. 数值模拟结果验证了该方法的可行性和有效性.
    With the rapid development of computer network technology, information security has drawn considerable attention in recent years. Owing to the characteristics of multi-dimensional operation and parallel processing capability, optical image encryption techniques are arousing great interest in many exciting fields. Since the pioneering work on optical image encryption using double random phase encoding technique, a large number of algorithms and architectures have been proposed and realized. However, with the further analysis of the securities of these schemes, most of them have been verified to be vulnerable to different types of attack algorithms. Recently, optical encryption schemes based on the polarization properties of light wave have been extensively studied, for an additional flexibility in the encryption key design is provided, which can achieve high robustness against brute force attack by a combination of multiple private keys. Nevertheless, optical encryption schemes based on the polarization properties of light wave could still be vulnerable to known- and chosen- plaintext attacks. Therefore, in this paper, a novel asymmetric polarization encryption method is implemented for dual images, and combined with interference-based optical image encryption method and a Q-plate. First, the information about the two images to be encrypted is separated into two pure phase plates by means of interference optical image encryption, which will be further encoded into two mutually orthogonally polarized light beams. Next, the Q-plate and pixelated polarizer are used for realizing different polarization distributions of the two light beam. Ultimately, the output intensity distribution is recorded by a charge coupled device (CCD) which will be treated as the final ciphertext. For actualizing the asymmetric encryption, one of the pure phase plates acts as a decryption key, which is different from the encryption key. We can control the polarization state of each pixel according to the parameter q, causing the Q-plate to be electrically controllable and the optic-axis orientation of each pixel to differ from one another. It should be emphasized that the value of q and the polarization angle of the pixelated polarizer play the role of two encryption keys, which improves the security of the algorithm extremely, due to their high sensitiveness. Theoretical analyses and numerical simulations verify the feasibility and effectiveness of the proposed encryption scheme.
      通信作者: 聂守平, nieshouping@njnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61775097, 11574152, 61605080)、国家重点研发计划(批准号: 2017YFB0503505)、中国教育部虚拟地理环境重点实验室(南京师范大学)开放基金(批准号: 2017VGE02)和江苏省研究生科研与实践创新计划项目(批准号: SJCX17_0336)资助的课题.
      Corresponding author: Nie Shou-Ping, nieshouping@njnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China(Grant Nos. 61775097, 11574152, 61605080), the National Key Research and Development Program of China (Grant No. 2017YFB0503505),the Open Foundation of Key Lab of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education of China (Grant No. 2017VGE02), and the Postgraduate Research and Practice Innovation Program of Jiangsu Province, China (Grant No. SJCX17_0336).
    [1]

    Refregier P, Javidi B 1995 Opt. Lett. 20 767Google Scholar

    [2]

    Deng X P, Zhao D M 2012 Opt. Laser Technol. 44 136Google Scholar

    [3]

    Abuturab M R 2015 Opt. Lasers Eng. 69 49Google Scholar

    [4]

    Liu Z J, Guo C, Tan J B, Liu W, Wu J J, Wu Q, Pan L Q, Liu S T 2015 Opt. Lasers Eng. 68 87Google Scholar

    [5]

    Sui L S, Xin M T, Tian A L, Jin H Y 2013 Opt. Lasers Eng. 51 1297Google Scholar

    [6]

    Chen W, Chen X 2012 Appl. Opt. 51 6076Google Scholar

    [7]

    Rajput S K, Nishchal N K 2013 Appl. Opt. 52 4343Google Scholar

    [8]

    Qin W, Peng X 2010 Opt. Lett. 35 118Google Scholar

    [9]

    Chen W, Chen X D 2011 Opt. Commun. 284 3913Google Scholar

    [10]

    Rajput S K, Nishchal N K 2012 Appl. Opt. 51 1446Google Scholar

    [11]

    Liu W, Liu Z J, Liu S T 2013 Opt. Lett. 38 1651Google Scholar

    [12]

    Wang X G, Zhao D M 2012 Opt. Commun. 285 1078Google Scholar

    [13]

    Rajput S K, Nishchal N K 2013 Appl. Opt. 52 871Google Scholar

    [14]

    Wang X G, Chen Y X, Dai C Q, Zhao D M 2013 Appl. Opt. 53 208

    [15]

    Alfalou A, Brosseau C 2010 Opt. Lett. 35 2185Google Scholar

    [16]

    Rajput S K, Nishchal N K 2012 Appl. Opt. 51 5377Google Scholar

    [17]

    Wang Q, Guo Q, Zhou J Y 2013 Appl. Opt. 52 8854Google Scholar

    [18]

    Cai J J, Shen X J, Lei M 2017 Opt. Commun. 403 211Google Scholar

    [19]

    Wang Q, Xiong D, Alfalou A, Brosseau C 2018 Opt. Commun. 415 56Google Scholar

    [20]

    Fatima A, Nishchal N K 2018 Opt. Commun. 417 30Google Scholar

    [21]

    Zhou J X, Liu Y C, Ke Y G, Luo H L, Wen S C 2015 Opt. Lett. 40 3193Google Scholar

    [22]

    Marrucci L, Manzo C, Paparo D 2006 Rev. Lett. 96 163905Google Scholar

    [23]

    Yi X N, Ling X H, Zhang Z Y, Li Y, Zhou X X, Liu Y C, Chen S Z, Luo H L, Wen S C 2014 Opt. Express 22 17207Google Scholar

    [24]

    Zhan Q W 2009 Adv. Opt. Photonics 1 1Google Scholar

    [25]

    Hasman E, Kleiner V, Biener G, Niv A 2003 Appl. Phys. Lett. 82 328Google Scholar

    [26]

    Niv A, Biener G, Kleiner V, Hasman E 2005 Opt. Lett. 30 2933Google Scholar

    [27]

    Zhang Y, Wang B 2008 Opt. Lett. 33 2443Google Scholar

  • 图 1  q为0.5时的结构化示意图 ((x, y)代表笛卡尔坐标, 黄色虚线代表子波长槽, $\alpha $表示局部光轴的方向)

    Fig. 1.  Structural diagram when q is 0.5 ((x, y) represents Cartesian coordinates; yellow dashed line represents subwavelength scale; $\alpha $ represents local optical axes).

    图 2  加密流程图

    Fig. 2.  Flowcharts of encryption.

    图 3  加密算法的模拟结果 (a), (b)原图1和原图2; (c)密文图像; (d)加密密钥$\theta _{{\rm{rand}}}^{\left( {u,v} \right)}$; (e)解密密钥${\varphi _2}$; (f), (g)解密得到的两幅图像

    Fig. 3.  Simulation result of encryption algorithm: (a), (b) Original image of Lena and library; (c) ciphertext image; (d) encryption key$\theta _{{\rm{rand}}}^{\left( {u,v} \right)}$; (e) decryption key; (f), (g) decrypted image.

    图 4  加密密钥q加上0.0001时的解密图像 (a)解密图像1; (b)解密图像2

    Fig. 4.  Decrypted image when the encryption key q is added with 0.0001: (a) Decrypted image 1; (b) decrypted image 2.

    图 5  加密密钥$\theta $增加了0.0001倍后的解密图像 (a)解密图像1; (b)解密图像2

    Fig. 5.  Decrypted image when the encryption key$\theta $is add with 0.0001 times: (a) Decrypted image 1; (b) decrypted image 2.

    图 6  抗剪切攻击模拟结果图 (a)信息丢失6.25%的密文图; (b), (c)密文信息丢失6.25%后的解密图; (d)信息丢失25%的密文图; (e), (f)密文信息丢失25%的解密图

    Fig. 6.  Simulation t diagram of anti-shear attack: (a) Ciphertext with 6.25% occlusion; (b), (c) decrypted images from (a); (d) 25% occlusion; (e), (f) decrypted images from (d).

    图 7  抗噪声攻击模拟图 (a)第一幅解密图的相关系数CC随k变化的曲线图及k = 0.02, 0.06时的解密图; (b)第二幅解密图的相关系数CC随k变化的曲线图及k = 0.02, 0.06时的解密图

    Fig. 7.  Simulation diagram of anti-noise attack: (a) CC curve of noise attack including decrypted the first image obtained with k = 0.02, 0.06; (b) CC curve of noise attack including decrypted the second image obtained with k = 0.02, 0.06.

    图 8  传统偏振加密和使用Q-plate做偏振加密比较 (a)传统用波片做偏振加密, 加密密钥波片角度改变万分之一后的解密图; (b), (c)用Q-plate做偏振加密, 密钥q值改变万分之一后的解密图

    Fig. 8.  Traditional polarization encryption compared with polarization encryption utilizing a q-plate: (a) Decryption image of traditional polarization encryption employing wave plates with the angle changed by 1/10000; (b), (c) decryption image of polarization encryption employing a Q-plate with the parameter q changed by 1/10000.

    图 9  使用Q-plate做偏振加密和传统偏振加密比较 (a)用Q-plate做偏振加密, 信息丢失6.25%的密文图; (b), (c)用Q-plate做偏振加密, 密文信息丢失6.25%的解密图; (d)传统偏振加密, 信息丢失6.25%的密文图; (e)传统偏振加密, 信息丢失6.25%的解密图

    Fig. 9.  Polarization encryption utilizing a q-plate compared with traditional polarization encryption: (a) Ciphertext with 6.25% occlusion of polarization encryption employing a Q-plate; (b), (c) decrypted image from (a); (d) ciphertext with 6.25% occlusion of traditional polarization encryption; (e) decrypted image from (d).

  • [1]

    Refregier P, Javidi B 1995 Opt. Lett. 20 767Google Scholar

    [2]

    Deng X P, Zhao D M 2012 Opt. Laser Technol. 44 136Google Scholar

    [3]

    Abuturab M R 2015 Opt. Lasers Eng. 69 49Google Scholar

    [4]

    Liu Z J, Guo C, Tan J B, Liu W, Wu J J, Wu Q, Pan L Q, Liu S T 2015 Opt. Lasers Eng. 68 87Google Scholar

    [5]

    Sui L S, Xin M T, Tian A L, Jin H Y 2013 Opt. Lasers Eng. 51 1297Google Scholar

    [6]

    Chen W, Chen X 2012 Appl. Opt. 51 6076Google Scholar

    [7]

    Rajput S K, Nishchal N K 2013 Appl. Opt. 52 4343Google Scholar

    [8]

    Qin W, Peng X 2010 Opt. Lett. 35 118Google Scholar

    [9]

    Chen W, Chen X D 2011 Opt. Commun. 284 3913Google Scholar

    [10]

    Rajput S K, Nishchal N K 2012 Appl. Opt. 51 1446Google Scholar

    [11]

    Liu W, Liu Z J, Liu S T 2013 Opt. Lett. 38 1651Google Scholar

    [12]

    Wang X G, Zhao D M 2012 Opt. Commun. 285 1078Google Scholar

    [13]

    Rajput S K, Nishchal N K 2013 Appl. Opt. 52 871Google Scholar

    [14]

    Wang X G, Chen Y X, Dai C Q, Zhao D M 2013 Appl. Opt. 53 208

    [15]

    Alfalou A, Brosseau C 2010 Opt. Lett. 35 2185Google Scholar

    [16]

    Rajput S K, Nishchal N K 2012 Appl. Opt. 51 5377Google Scholar

    [17]

    Wang Q, Guo Q, Zhou J Y 2013 Appl. Opt. 52 8854Google Scholar

    [18]

    Cai J J, Shen X J, Lei M 2017 Opt. Commun. 403 211Google Scholar

    [19]

    Wang Q, Xiong D, Alfalou A, Brosseau C 2018 Opt. Commun. 415 56Google Scholar

    [20]

    Fatima A, Nishchal N K 2018 Opt. Commun. 417 30Google Scholar

    [21]

    Zhou J X, Liu Y C, Ke Y G, Luo H L, Wen S C 2015 Opt. Lett. 40 3193Google Scholar

    [22]

    Marrucci L, Manzo C, Paparo D 2006 Rev. Lett. 96 163905Google Scholar

    [23]

    Yi X N, Ling X H, Zhang Z Y, Li Y, Zhou X X, Liu Y C, Chen S Z, Luo H L, Wen S C 2014 Opt. Express 22 17207Google Scholar

    [24]

    Zhan Q W 2009 Adv. Opt. Photonics 1 1Google Scholar

    [25]

    Hasman E, Kleiner V, Biener G, Niv A 2003 Appl. Phys. Lett. 82 328Google Scholar

    [26]

    Niv A, Biener G, Kleiner V, Hasman E 2005 Opt. Lett. 30 2933Google Scholar

    [27]

    Zhang Y, Wang B 2008 Opt. Lett. 33 2443Google Scholar

  • [1] 相萌, 何飘, 王天宇, 袁琳, 邓凯, 刘飞, 邵晓鹏. 计算偏振彩色傅里叶叠层成像: 散射光场偏振特性的复用技术. 物理学报, 2024, 73(12): 124202. doi: 10.7498/aps.73.20240268
    [2] 高晨栋, 赵明琳, 卢德贺, 窦健泰. 基于双层多指标优化的水下偏振成像技术. 物理学报, 2023, 72(7): 074202. doi: 10.7498/aps.72.20222017
    [3] 徐菁焓, 吴国俊, 董晶, 于洋, 封斐, 刘博. 基于Stokes矢量差分法的背景光偏振特性研究. 物理学报, 2023, 72(24): 244201. doi: 10.7498/aps.72.20230639
    [4] 赵富, 胡渝曜, 王鹏, 刘军. 偏振复用散射成像. 物理学报, 2023, 72(15): 154201. doi: 10.7498/aps.72.20230551
    [5] 霍永胜. 基于偏振的暗通道先验去雾. 物理学报, 2022, 71(14): 144202. doi: 10.7498/aps.71.20220332
    [6] 刘飞, 孙少杰, 韩平丽, 赵琳, 邵晓鹏. 基于稀疏低秩特性的水下非均匀光场偏振成像技术研究. 物理学报, 2021, 70(16): 164201. doi: 10.7498/aps.70.20210314
    [7] 冯帅, 常军, 胡瑶瑶, 吴昊, 刘鑫. 偏振成像激光雷达与短波红外复合光学接收系统设计与分析. 物理学报, 2020, 69(24): 244202. doi: 10.7498/aps.69.20200920
    [8] 席思星, 于娜娜, 王晓雷, 朱巧芬, 董昭, 王微, 刘秀红, 王华英. 基于计算全息和θ调制的彩色图像加密方法. 物理学报, 2019, 68(11): 110502. doi: 10.7498/aps.68.20182264
    [9] 才啟胜, 黄旻, 韩炜, 丛麟骁, 路向宁. 外差式偏振干涉成像光谱技术研究. 物理学报, 2017, 66(16): 160702. doi: 10.7498/aps.66.160702
    [10] 吕浩, 尤凯, 兰燕燕, 高冬, 赵秋玲, 王霞. 非对称光束干涉制备二维微纳光子结构研究. 物理学报, 2017, 66(21): 217801. doi: 10.7498/aps.66.217801
    [11] 郑东晖, 李金鹏, 陈磊, 朱文华, 韩志刚, 乌兰图雅, 郭仁慧. 空域移相偏振点衍射波前检测技术. 物理学报, 2016, 65(11): 114203. doi: 10.7498/aps.65.114203
    [12] 姚丽莉, 袁操今, 强俊杰, 冯少彤, 聂守平. 基于gyrator变换和矢量分解的非对称图像加密方法. 物理学报, 2016, 65(21): 214203. doi: 10.7498/aps.65.214203
    [13] 穆廷魁, 张淳民, 李祺伟, 魏宇童, 陈清颖, 贾辰凌. 差分偏振干涉成像光谱仪I.概念原理与操作. 物理学报, 2014, 63(11): 110704. doi: 10.7498/aps.63.110704
    [14] 穆廷魁, 张淳民, 李祺伟, 魏宇童, 陈清颖, 贾辰凌. 差分偏振干涉成像光谱仪Ⅱ.光学设计与分析. 物理学报, 2014, 63(11): 110705. doi: 10.7498/aps.63.110705
    [15] 梁善勇, 王江安, 宗思光, 吴荣华, 马治国, 王晓宇, 王乐东. 基于多重散射强度和偏振特征的舰船尾流气泡激光探测方法. 物理学报, 2013, 62(6): 060704. doi: 10.7498/aps.62.060704
    [16] 张二峰, 戴宏毅. 光的偏振对热光关联成像的影响. 物理学报, 2011, 60(6): 064209. doi: 10.7498/aps.60.064209
    [17] 赵建领, 吴令安. 基于偏振叠加和干涉两种方法的可控光脉冲延时器. 物理学报, 2010, 59(5): 3260-3263. doi: 10.7498/aps.59.3260
    [18] 徐凯, 杨艳芳, 何英, 韩小红, 李春芳. 局域椭圆偏振光束强聚焦性质的研究. 物理学报, 2010, 59(9): 6125-6130. doi: 10.7498/aps.59.6125
    [19] 郑国梁, 佘卫龙. 偏振方向对THz电光探测影响的理论研究. 物理学报, 2006, 55(3): 1061-1067. doi: 10.7498/aps.55.1061
    [20] 周国泉. 任意线偏振高斯光束的非傍轴传输. 物理学报, 2005, 54(10): 4710-4717. doi: 10.7498/aps.54.4710
计量
  • 文章访问数:  8811
  • PDF下载量:  113
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-25
  • 修回日期:  2019-01-11
  • 上网日期:  2019-03-23
  • 刊出日期:  2019-04-20

/

返回文章
返回