搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于声学超材料的低频可调吸收器

翟世龙 王元博 赵晓鹏

引用本文:
Citation:

基于声学超材料的低频可调吸收器

翟世龙, 王元博, 赵晓鹏

A kind of tunable acoustic metamaterial for low frequency absorption

Zhai Shi-Long, Wang Yuan-Bo, Zhao Xiao-Peng
PDF
HTML
导出引用
  • 在当今社会, 噪声污染已经成为人类健康的一大威胁, 如何有效地控制和消除噪声污染一直是科研领域的一个重要话题. 本文以开口环嵌套结构为模型, 设计并制备了一种声学超材料. 通过理论分析、数值模拟和实验测试, 发现由于模型内部空腔的强烈耦合共振效应, 该超材料可以在低频区域实现接近完美的吸声效应. 此外, 通过简单地绕轴旋转其内腔开口方向, 即可改变该超材料的相对阻抗值, 进而在较宽的频带范围内实现对吸收峰位置的可调控制. 由于该超材料具有深亚波长的尺寸, 因此非常有利于低频吸声器件的小型化和集成化, 同时该模型也为宽带吸收器的设计奠定了基础.
    Low frequency noise is always an important factor affecting people’s quality of life. At present, the most widely used sound absorbing materials include polyurethane foam, trimeric amine, mineral cotton, textiles, cotton and special sound insulation materials. However, the sizes of these materials are generally large, and the sound absorption efficiencies are often low, especially in a low frequency range (below 2000 Hz). Acoustic metamaterial is a kind of artificial composite material, which is constructed by microunits whose dimensions are much smaller than the working wavelength. The results show that if the strong coupling condition between the resonant scatter and the waveguide is satisfied, the sound energy flowing through the metamaterial will be completely offset by the internal loss of the resonant scatter. Therefore, it is believed that this kind of acoustic metamaterial can solve the absorption problem of low-frequency sound waves. In order to solve this problem, researchers have conducted a lot of exploratory researches. However, most of the structural units that are constructed with acoustic metamaterials are passive, that is, once the material is processed and shaped, its properties are fixed and cannot be changed. This defect greatly limits the development of acoustical metamaterials, so it is urgent to study acoustical metamaterials whose material properties and the working frequency bands are flexibly adjustable. Although tunable acoustic metamaterials have been studied, few people have extended this research to the field of low-frequency tunable sound absorption. In our previous work, we systematically studied the acoustic properties of two kinds of acoustic artificial " meta-atoms”, namely, open hollow sphere model with negative equivalent elastic modulus and hollow tube model with negative equivalent mass density. The research shows that these two kinds of " meta-atoms” both have obvious sound absorption effect. According to our previous studies, in this paper we couple these two kinds of " meta-atoms” into a whole, and design a new nested model of open loop. The model has the advantages of simple structure and easy preparation. Through theoretical analysis, numerical simulation and experimental testing, it is found that the strong coupling resonance effects between these " meta-atoms” can be excited by the low frequency incident acoustic wave in the nested structure, thus achieving nearly perfect sound energy absorption. In addition, the relative impedance of the metamaterial can be changed by simply rotating the inner splitting ring around the axis, therefore the position of the absorption peak can be freely controlled in a wide frequency band. Because of its deep sub-wavelength size, the metamaterial is very useful for miniaturizing and integrating the low-frequency acoustic absorption devices. What is more, this model also lays a foundation for designing the broadband absorbers.
      通信作者: 翟世龙, shilongzhai@nwpu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11804278, 11174234, 51272215)和中央高校基本科研业务费(批准号: G2017KY0105)资助的课题.
      Corresponding author: Zhai Shi-Long, shilongzhai@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11804278, 11174234, 51272215) and the Fundamental Research Fund for the Central Universities, China (Grant No. G2017KY0105).
    [1]

    Rahimabady M, Statharas E C, Yao K, Mirshekarloo M S, Chen S, Tay F E H 2017 Appl. Phys. Lett. 111 241601Google Scholar

    [2]

    Gwon J G, Kim S K, Kim J H 2016 Mater. Des. 89 448Google Scholar

    [3]

    Xue B, Li R, Deng J, Zhang J 2016 Ind. Eng. Chem. Res. 55 3982Google Scholar

    [4]

    Padhye R, Nayak R 2016 Acoustic Textiles (Singapore: Springer)

    [5]

    丁昌林, 董怡宝, 赵晓鹏 2018 物理学报 67 194301Google Scholar

    Ding C L, Dong Y B, Zhao X P 2018 Acta Phys. Sin. 67 194301Google Scholar

    [6]

    Liu Z Y, Zhang X X, Mao Y W, Zhu Y Y, Yang Z Y, Chan C T, Sheng P 2000 Science 289 1734Google Scholar

    [7]

    Fang N, Xi D J, Xu J Y, Ambati M, Srituravanich W, Sun C, Zhang X 2006 Nat. Mater. 5 452Google Scholar

    [8]

    Lee S H, Park C M, Seo Y M, Wang Z G, Kim C K 2010 Phys. Rev. Lett. 104 054301Google Scholar

    [9]

    Li Y, Liang B, Zou X Y, Cheng J C 2013 Appl. Phys. Lett. 103 063509Google Scholar

    [10]

    Zhai S L, Zhao X P, Liu S, Shen F L, Li L L, Luo C R 2016 Sci. Rep. 6 32388Google Scholar

    [11]

    Zhai S L, Chen H J, Ding C L, Li L L, Shen F L, Luo C R, Zhao X P 2016 J. Phys. D: Appl. Phys. 49 225302Google Scholar

    [12]

    Ma G C, Fan X Y, Ma F Y, de Rosny J, Sheng P, Fink M 2018 Nat. Phys. 14 608Google Scholar

    [13]

    Xu Y, Li Y, Lee R K, Yariv A 2000 Phys. Rev. E 62 7389Google Scholar

    [14]

    Yang Z, Mei J, Yang M, Chan N H, Sheng P 2008 Phys. Rev. Lett. 101 204301Google Scholar

    [15]

    Mei J, Ma G, Yang M, Yang Z, Wen W, Sheng P 2012 Nat. Commun. 3 756Google Scholar

    [16]

    Cai X, Guo Q, Hu G, Yang J 2014 Appl. Phys. Lett. 105 121901Google Scholar

    [17]

    Starkey T A, Smith J D, Hibbins A P, Sambles J R, Rance H J 2017 Appl. Phys. Lett. 110 041902Google Scholar

    [18]

    Li Y, Assouar B M 2016 Appl. Phys. Lett. 108 063502Google Scholar

    [19]

    Richoux O, Achilleos V, Theocharis G, Brouzos I 2018 Sci. Rep. 8 12328Google Scholar

    [20]

    Badreddine Assouar M, Senesi M, Oudich M, Ruzzene M, Hou Z 2012 Appl. Phys. Lett. 101 173505Google Scholar

    [21]

    Climente A, Torrent D, Anchez-Dehesa J S 2012 Appl. Phys. Lett. 100 144103Google Scholar

    [22]

    Romero-García V, Theocharis G, Richoux O, Merkel A, Tournat V, Pagneux V 2016 Sci. Rep. 6 19519Google Scholar

    [23]

    Li J, Wang W, Xie Y, Popa B I, Cummer S A 2016 Appl. Phys. Lett. 109 091908Google Scholar

    [24]

    Li Y, Shen C, Xie Y, Li J, Wang W, Cummer S, Jing Y 2017 Phys. Rev. Lett. 119 035501Google Scholar

    [25]

    Wang X, Luo X, Zhao H, Huang Z 2018 Appl. Phys. Lett. 112 021901Google Scholar

    [26]

    Peng X, Ji J, Jing Y 2018 J. Acoust. Soc. Am. 144 EL255Google Scholar

    [27]

    Xia J P, Zhang X T, Sun H X, Yuan S Q, Qian J, Ge Y 2018 Phys. Rev. Appl. 10 014016Google Scholar

    [28]

    Chen Z, Xue C, Fan L, Zhang S Y, Li X J, Zhang H, Ding J 2016 Sci. Rep. 6 30254Google Scholar

    [29]

    Ma G, Fan X, Sheng P, Fink M 2018 Proc. Natl. Acad. Sci. USA 115 6638Google Scholar

    [30]

    Wang Y, Zhao H, Yang H, Zhong J, Zhao D, Lu Z, Wen J 2018 J. Appl. Phys. 123 185109Google Scholar

    [31]

    Ding C L, Hao L M, Zhao X P 2010 J. Appl. Phys. 108 074911Google Scholar

    [32]

    Chen H J, Zeng H C, Ding C L, Luo C R, Zhao X P 2013 J. Appl. Phys. 113 104902Google Scholar

    [33]

    Yang M, Sheng P 2017 Annu. Rev. Mater. Res. 47 83Google Scholar

  • 图 1  可调声学超材料的模型设计 (a), (b)二维SHS的结构示意图和等效电路图; (c), (d)二维HT的结构示意图和等效电路图; (e), (f)SHS和HT耦合后的结构示意图和等效电路图; (g)进一步变形优化得到的可调声学超材料模型的结构示意图

    Fig. 1.  Model design of the acoustic metamaterial: (a), (b) Schematic diagram and equivalent circuit diagram of the two-dimensional SHS; (c), (d) schematic diagram and equivalent circuit diagram of the two-dimensional HT; (e), (f) schematic diagram and equivalent circuit diagram of the coupled structure of SHS and HT; (g) schematic diagram of the tunable acoustic metamaterial obtained by the deformation and optimization of the coupled structure.

    图 2  仿真得到的可调声学超材料的吸收性能对比 (a)不同内腔旋转角度下的吸收系数随频率的变化; (b)不同内腔旋转角度下的相对阻抗实部与虚部随频率的变化; (c)理论和仿真得到的共振频率随内腔旋转角度的变化关系

    Fig. 2.  Simulated comparison of the absorption performance of tunable acoustic metamaterial: (a) Absorption coefficient for different rotation angles of the inner split ring as a function of frequency; (b) real parts and imaginary parts of the relative impedance for different rotation angles of the inner split ring as a function of frequency; (c) comparison of the theoretical and simulated resonant frequency as a function of rotation angle.

    图 3  不同频率下的声能量和空气介质局域速度分布图对比 (a), (b) 500 Hz处的声能量和空气局域速度图; (c), (d) 1000 Hz处的声能量和空气局域速度图; (e), (f) 1600 Hz处的声能量和空气局域速度图

    Fig. 3.  Comparison of the sound energy and local speed distributions at different frequencies: (a), (b) Sound energy and local speed fields at 500 Hz; (c), (d) sound energy and local speed fields at 1000 Hz; (e), (f) sound energy and local speed fields at 1600 Hz.

    图 4  3D打印制备的样品实物图 (a)组装成整体的样品; (b)外层开口腔体; (c)顶部密封端; (d)内层可旋转开口腔体; (e)底部密封端

    Fig. 4.  Photographs of sample prepared by 3D printing technology: (a) Assembled whole sample; (b) outer split cavity; (c) top seal; (d) inner split ring; (e) bottom seal.

    图 5  实验测试得到的样品在不同内腔旋转角度(分别为0°, 90°和180°)下的吸收系数随频率的变化

    Fig. 5.  Experimental absorption coefficient of the sample at different rotation angles (i.e. 0°, 90°and 180°, respectively) of the inner split ring as a function of frequency.

  • [1]

    Rahimabady M, Statharas E C, Yao K, Mirshekarloo M S, Chen S, Tay F E H 2017 Appl. Phys. Lett. 111 241601Google Scholar

    [2]

    Gwon J G, Kim S K, Kim J H 2016 Mater. Des. 89 448Google Scholar

    [3]

    Xue B, Li R, Deng J, Zhang J 2016 Ind. Eng. Chem. Res. 55 3982Google Scholar

    [4]

    Padhye R, Nayak R 2016 Acoustic Textiles (Singapore: Springer)

    [5]

    丁昌林, 董怡宝, 赵晓鹏 2018 物理学报 67 194301Google Scholar

    Ding C L, Dong Y B, Zhao X P 2018 Acta Phys. Sin. 67 194301Google Scholar

    [6]

    Liu Z Y, Zhang X X, Mao Y W, Zhu Y Y, Yang Z Y, Chan C T, Sheng P 2000 Science 289 1734Google Scholar

    [7]

    Fang N, Xi D J, Xu J Y, Ambati M, Srituravanich W, Sun C, Zhang X 2006 Nat. Mater. 5 452Google Scholar

    [8]

    Lee S H, Park C M, Seo Y M, Wang Z G, Kim C K 2010 Phys. Rev. Lett. 104 054301Google Scholar

    [9]

    Li Y, Liang B, Zou X Y, Cheng J C 2013 Appl. Phys. Lett. 103 063509Google Scholar

    [10]

    Zhai S L, Zhao X P, Liu S, Shen F L, Li L L, Luo C R 2016 Sci. Rep. 6 32388Google Scholar

    [11]

    Zhai S L, Chen H J, Ding C L, Li L L, Shen F L, Luo C R, Zhao X P 2016 J. Phys. D: Appl. Phys. 49 225302Google Scholar

    [12]

    Ma G C, Fan X Y, Ma F Y, de Rosny J, Sheng P, Fink M 2018 Nat. Phys. 14 608Google Scholar

    [13]

    Xu Y, Li Y, Lee R K, Yariv A 2000 Phys. Rev. E 62 7389Google Scholar

    [14]

    Yang Z, Mei J, Yang M, Chan N H, Sheng P 2008 Phys. Rev. Lett. 101 204301Google Scholar

    [15]

    Mei J, Ma G, Yang M, Yang Z, Wen W, Sheng P 2012 Nat. Commun. 3 756Google Scholar

    [16]

    Cai X, Guo Q, Hu G, Yang J 2014 Appl. Phys. Lett. 105 121901Google Scholar

    [17]

    Starkey T A, Smith J D, Hibbins A P, Sambles J R, Rance H J 2017 Appl. Phys. Lett. 110 041902Google Scholar

    [18]

    Li Y, Assouar B M 2016 Appl. Phys. Lett. 108 063502Google Scholar

    [19]

    Richoux O, Achilleos V, Theocharis G, Brouzos I 2018 Sci. Rep. 8 12328Google Scholar

    [20]

    Badreddine Assouar M, Senesi M, Oudich M, Ruzzene M, Hou Z 2012 Appl. Phys. Lett. 101 173505Google Scholar

    [21]

    Climente A, Torrent D, Anchez-Dehesa J S 2012 Appl. Phys. Lett. 100 144103Google Scholar

    [22]

    Romero-García V, Theocharis G, Richoux O, Merkel A, Tournat V, Pagneux V 2016 Sci. Rep. 6 19519Google Scholar

    [23]

    Li J, Wang W, Xie Y, Popa B I, Cummer S A 2016 Appl. Phys. Lett. 109 091908Google Scholar

    [24]

    Li Y, Shen C, Xie Y, Li J, Wang W, Cummer S, Jing Y 2017 Phys. Rev. Lett. 119 035501Google Scholar

    [25]

    Wang X, Luo X, Zhao H, Huang Z 2018 Appl. Phys. Lett. 112 021901Google Scholar

    [26]

    Peng X, Ji J, Jing Y 2018 J. Acoust. Soc. Am. 144 EL255Google Scholar

    [27]

    Xia J P, Zhang X T, Sun H X, Yuan S Q, Qian J, Ge Y 2018 Phys. Rev. Appl. 10 014016Google Scholar

    [28]

    Chen Z, Xue C, Fan L, Zhang S Y, Li X J, Zhang H, Ding J 2016 Sci. Rep. 6 30254Google Scholar

    [29]

    Ma G, Fan X, Sheng P, Fink M 2018 Proc. Natl. Acad. Sci. USA 115 6638Google Scholar

    [30]

    Wang Y, Zhao H, Yang H, Zhong J, Zhao D, Lu Z, Wen J 2018 J. Appl. Phys. 123 185109Google Scholar

    [31]

    Ding C L, Hao L M, Zhao X P 2010 J. Appl. Phys. 108 074911Google Scholar

    [32]

    Chen H J, Zeng H C, Ding C L, Luo C R, Zhao X P 2013 J. Appl. Phys. 113 104902Google Scholar

    [33]

    Yang M, Sheng P 2017 Annu. Rev. Mater. Res. 47 83Google Scholar

  • [1] 金嘉升, 马成举, 张垚, 张跃斌, 鲍士仟, 李咪, 李东明, 刘洺, 刘芊震, 张贻歆. 基于相变材料的慢光和吸收可切换多功能太赫兹超材料. 物理学报, 2023, 72(8): 084202. doi: 10.7498/aps.72.20222336
    [2] 胥强荣, 沈承, 韩峰, 卢天健. 一种准零刚度声学超材料板的低频宽频带隔声行为. 物理学报, 2021, 70(24): 244302. doi: 10.7498/aps.70.20211203
    [3] 江孝伟, 武华. 吸收波长和吸收效率可控的超材料吸收器. 物理学报, 2021, 70(2): 027804. doi: 10.7498/aps.70.20201173
    [4] 刘少刚, 赵跃超, 赵丹. 基于磁流变弹性体多包覆层声学超材料带隙及传输谱特性. 物理学报, 2019, 68(23): 234301. doi: 10.7498/aps.68.20191334
    [5] 丁昌林, 董仪宝, 赵晓鹏. 声学超材料与超表面研究进展. 物理学报, 2018, 67(19): 194301. doi: 10.7498/aps.67.20180963
    [6] 刘松, 罗春荣, 翟世龙, 陈怀军, 赵晓鹏. 负质量密度声学超材料的反常多普勒效应. 物理学报, 2017, 66(2): 024301. doi: 10.7498/aps.66.024301
    [7] 张永燕, 吴九汇, 钟宏民. 新型负模量声学超结构的低频宽带机理研究. 物理学报, 2017, 66(9): 094301. doi: 10.7498/aps.66.094301
    [8] 张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博. 基于石墨烯的太赫兹波散射可调谐超表面. 物理学报, 2017, 66(20): 204101. doi: 10.7498/aps.66.204101
    [9] 王飞, 黄益旺, 孙启航. 气泡体积分数对沙质沉积物低频声学特性的影响. 物理学报, 2017, 66(19): 194302. doi: 10.7498/aps.66.194302
    [10] 薛佳, 秦际良, 张玉驰, 李刚, 张鹏飞, 张天才, 彭堃墀. 低频标准真空涨落的测量. 物理学报, 2016, 65(4): 044211. doi: 10.7498/aps.65.044211
    [11] 刘娇, 侯志林, 傅秀军. 局域共振型声学超材料机理探讨. 物理学报, 2015, 64(15): 154302. doi: 10.7498/aps.64.154302
    [12] 马岩冰, 张怀武, 李元勋. 基于科赫分形的新型超材料双频吸收器. 物理学报, 2014, 63(11): 118102. doi: 10.7498/aps.63.118102
    [13] 王莹, 程用志, 聂彦, 龚荣洲. 基于集总元件的低频宽带超材料吸波体设计与实验研究. 物理学报, 2013, 62(7): 074101. doi: 10.7498/aps.62.074101
    [14] 刘亚红, 方石磊, 顾帅, 赵晓鹏. 多频与宽频超材料吸收器. 物理学报, 2013, 62(13): 134102. doi: 10.7498/aps.62.134102
    [15] 沈惠杰, 温激鸿, 郁殿龙, 蔡力, 温熙森. 基于主动声学超材料的圆柱声隐身斗篷设计研究. 物理学报, 2012, 61(13): 134303. doi: 10.7498/aps.61.134303
    [16] 苏斌, 龚伯仪, 赵晓鹏. 树叶状红外频段完美吸收器的仿真设计. 物理学报, 2012, 61(14): 144203. doi: 10.7498/aps.61.144203
    [17] 沈晓鹏, 崔铁军, 叶建祥. 基于超材料的微波双波段吸收器. 物理学报, 2012, 61(5): 058101. doi: 10.7498/aps.61.058101
    [18] 丁昌林, 赵晓鹏, 郝丽梅, 朱卫仁. 一种基于开口空心球的声学超材料. 物理学报, 2011, 60(4): 044301. doi: 10.7498/aps.60.044301
    [19] 樊京, 蔡广宇. 一种基于金属开口谐振环和杆阵列的左手材料宽带吸收器. 物理学报, 2010, 59(9): 6084-6088. doi: 10.7498/aps.59.6084
    [20] 艾 芬, 白 洋, 徐 芳, 乔利杰, 周 济. 基于铁氧体基板的开口谐振环的可调微波左手特性研究. 物理学报, 2008, 57(7): 4189-4194. doi: 10.7498/aps.57.4189
计量
  • 文章访问数:  10513
  • PDF下载量:  372
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-26
  • 修回日期:  2018-12-02
  • 上网日期:  2019-02-01
  • 刊出日期:  2019-02-05

/

返回文章
返回