-
免掺杂、非对称异质接触的新型太阳电池由于近几年的飞速发展, 理论转化效率已达到28%, 具有较大的发展空间, 引起了人们的重视. 由于传统晶硅太阳电池产业存在生产设备成本高、原材料易燃易爆等诸多限制, 市场对太阳电池产业低成本、绿色无污染的期待越来越高, 极大地增加了免掺杂、非对称异质接触的新型太阳电池研究和开发的必要性. 为了进一步加快免掺杂、非对称异质接触晶体硅太阳电池的研究进度, 本文对其发展现状进行了综述, 着重讨论了过渡金属氧化物(TMO)载流子选择性运输的基本原理、制备技术以及空穴传输层、电子传输层和钝化层对基于TMO构建的免掺杂、非对称异质接触(DASH)太阳电池性能的影响, 以期对电池的工作机理、材料选择有更深刻的认识, 为新型高效的DASH太阳电池制备提供指导.
-
关键词:
- 免掺杂、非对称异质接触 /
- 空穴传输 /
- 电子传输 /
- 过渡金属氧化物
Due to the rapid development of dopant free asymmetric heterogeneous contacts in recent years, the theoretical conversion efficiency can reach 28%, which has large room for development and has attracted one’s attention. With the expectation of low cost and green pollution-free solar cell, the traditional crystalline silicon solar cell has many limitations due to its high equipment cost and flammable and explosive raw materials. It greatly increases the necessity of research and development of new solar cells with no doping and asymmetric heterogeneous contacts. The new solar cell is safe and environmental friendly due to the multi-faceted advantages of dopant-free asymmetric heterogeneous contact (DASH) solar cells constructed by transition metal oxide (TMO): the TMO has been widely studied as an alternative option, because of its wide band gap, little parasitic absorption, as well as repressed auger recombination, and conducing to the increase of the short-circuit current density of the solar cells; the DASH solar cell has high efficiency potential, its theoretical efficiency has reached 28%, and it can be produced by low-cost technology such as thermal evaporation or solution method; it always avoids using flammable, explosive and toxic gases in the manufacturing process. Our group proposed using MoOx as a hole selective contact and ZnO as an electron selective contact to construct a new and efficient DASH solar cell. It has achieved a conversion efficiency of 16.6%. Another device, in which MoOx is used as the hole selective contact and n-nc-Si:H as the electron selective, was fabricated, and its efficiency has reached 14.4%. In order to further speed up the research progress of the dopant-free asymmetric heterogeneous contact crystalline silicon solar cell, the development status is reviewed, and the basic principle and preparation technology of selective transport of transition metal oxide (TMO) carriers are discussed. And the effect of the hole transport layer, the electron transport layer and the passivation layer on the performance of the TMO dopant-free asymmetric heterogeneous contact (DASH) solar cells are discussed in order to have an in-depth understanding of the working mechanism and material selection of the battery, thereby providing guidance in preparing new and efficient DASH solar cells.-
Keywords:
- dopant-free asymmetric heterocontacts /
- hole-selective contacts /
- electron-selective contacts /
- transition metal oxide
[1] 沈文忠, 李正平 2014 硅基异质结太阳电池物理与器件 (北京: 科学出版社)第2—4页
Shen W Z, Li Z P 2014 Physics and Devices of Silicon Heterojunction Solar Cells (Beijing: Science Press) pp2–4 (in Chinese)
[2] Yoshikawa K, Kawasaki H, Yoshida W, Irie T, Konishi K, Nakano K, Uto T, Adachi D, Kanematsu M, Uzu H 2017 Nature Energy 2 17032Google Scholar
[3] 肖友鹏, 高超, 王涛, 周浪 2017 物理学报 66 158801Google Scholar
Xiao Y P, Gao C, Wang T, Zhou L 2017 Acta Phys. Sin. 66 158801Google Scholar
[4] Feldmann F, Simon M, Bivour M, Reichel C 2014 Appl. Phys. Lett. 104 1184
[5] Richter A, Benick J, Feldmann F, Fell A, Hermle M, Glunz S W 2019 Sol. Energy Mater. Sol. Cells (in Press)
[6] Gao P, Yang Z, He J, Yu J, Liu P, Zhu J, Ge Z, Ye J 2018 Adv. Sci. 5
[7] Melskens J, Loo B W H V D, Macco B, Black L E, Smit S, Kessels W M M 2018 IEEE J. Photovoltaics 8 373Google Scholar
[8] Bullock J, Hettick M, Geissbühler J, Ong A J, Allen T, Sutterfella C M, Chen T, Ota H, Schaler E W, Wolf S D 2016 Nature Energy 1 15031Google Scholar
[9] Imran H, Abdolkader T M, Butt N Z 2016 IEEE Trans. Electron Devices 63 3584Google Scholar
[10] Um H D, Kim N, Lee K, Hwang I, Seo J H, Seo K 2016 Nano Lett. 16 981Google Scholar
[11] Wu W, Lin W, Bao J, Liu Z, Liu B, Qiu K, Chen Y, Shen H 2017 RSC Adv. 7 23851Google Scholar
[12] Masmitjà G, Gerling L G, Ortega P, Puigdollers J, Martín I, Voz C, Alcubilla R 2017 J. Mater. Chem. A 5 9182Google Scholar
[13] Cuevas A, Allen T, Bullock J, Wan Y, Zhang X 2014 Photovoltaic Specialist Conference pp1–6
[14] Würfel U, Cuevas A, Würfel P 2014 IEEE J. Photovoltaics 5 461
[15] Gerling L G, Mahato S, Morales-Vilches A, Masmitja G, Ortega P, Voz C, Alcubilla R, Puigdollers J 2016 Sol. Energy Mater. Sol. Cells 145 109Google Scholar
[16] Battaglia C, Yin X, Zheng M, Sharp I D, Chen T, Mcdonnell S, Azcatl A, Carraro C, Ma B, Maboudian R 2014 Nano Lett. 14 967Google Scholar
[17] Battaglia C, Nicolás S M D, Wolf S D, Yin X, Zheng M, Ballif C, Javey A 2014 Appl. Phys. Lett. 104 1
[18] Sun T, Wang R, Liu R, Wu C, Zhong Y, Liu Y, Wang Y, Han Y, Xia Z, Zou Y 2017 Phys. Status Solidi RRL 1700107
[19] Yang X, Bi Q, Ali H, Davis K, Schoenfeld W V, Weber K 2016 Adv. Mater. 28 5891Google Scholar
[20] Greiner M T, Helander M G, Tang W M, Wang Z B, Qiu J, Lu Z H 2012 Nature Mater. 11 76Google Scholar
[21] Vijayan R A, Essig S, Wolf S D, Ramanathan B G, Löper P, Ballif C, Varadharajaperumal M 2018 IEEE J. Photovoltaics 8 473Google Scholar
[22] Messmer C, Bivour M, Schön J, Glunz S W, Hermle M 2018 IEEE J. Photovoltaics 1
[23] Neusel L, Bivour M, Hermle M 2017 Energy Procedia 124 425Google Scholar
[24] Bivour M, Zähringer F, Ndione P, Hermle M, Bivour M, Zähringer F, Ndione P, Hermle M 2017 Energy Procedia 124 400Google Scholar
[25] Bivour M, Temmler J, Steinkemper H, Hermle M 2015 Sol. Energy Mater. Sol. Cells 142 34Google Scholar
[26] Geissbühler J, Werner J, Nicolas S M D, Barraud L, Hesslerwyser A, Despeisse M, Nicolay S, Tomasi A, Niesen B, Wolf S D 2015 Appl. Phys. Lett. 107 1433
[27] Wu W, Bao J, Jia X, Liu Z, Cai L, Liu B, Song J, Shen H 2016 Phys. Status Solidi RRL 10 662Google Scholar
[28] Menchini F, Grilli M L, Dikonimos T, Mittiga A, Serenelli L, Salza E, Chierchia R, Tucci M 2016 Phys. Status Solidi 13
[29] Yin X, Yao Z, Luo Q, Dai X, Zhou Y, Zhang Y, Zhou Y, Luo S, Li J, Wang N 2017 ACS Appl. Mater. Interfaces 9 2439Google Scholar
[30] Chen W, Wu Y, Yue Y, Liu J, Zhang W, Yang X, Chen H, Bi E, Ashraful I, Grätzel M 2015 Science 350 944Google Scholar
[31] Yang X, Weber K, Hameiri Z, De Wolf S 2017 Prog. Photovoltaics Res. Appl. 25
[32] Bullock J, Wan Y, Xu Z, Essig S, Hettick M, Wang H, Ji W, Boccard M, Cuevas A, Ballif C 2018 ACS Energy Lett. 3
[33] Liu Y, Zhang J, Wu H, Cui W, Wang R, Ding K, Lee S T, Sun B 2017 Nano Energy 34 257Google Scholar
[34] Khan F, Baek S H, Kim J H 2015 Nanoscale 8 1007
[35] Tong J, Wan Y, Cui J, Lim S, Song N, Lennon A 2017 Appl. Surface Science 423
[36] Vosgueritchian M, Lipomi D J, Bao Z 2012 Adv. Funct. Mater. 22 421Google Scholar
[37] Zhang C, Zhang Y, Guo H, Jiang Q, Dong P, Zhang C 2018 Energies 11
[38] He L, Jiang C, Wang H, Lai D, Rusli 2012 Appl. Phys. Lett. 100 12344
[39] Zielke D, Niehaves C, Lövenich W, Elschner A, Hörteis M, Schmidt J 2015 Energy Procedia 77 331Google Scholar
[40] Ling Z, He J, He X, Liao M, Liu P, Yang Z, Ye J, Gao P 2017 IEEE J. Photovoltaics 1
[41] Tong H, Yang Z, Wang X, Liu Z, Chen Z, Ke X, Sui M, Tang J, Yu T, Ge Z 2018 Adv. Energy Mater. 1702921
[42] Bao J, Wu W, Liu Z, Shen H 2016 AIP Adv. 6 96
[43] Bullock J, Yan D, Cuevas A, Wan Y, Samundsett C 2015 Energy Procedia 77 446Google Scholar
[44] Yang X, Weber K Photovoltaic Specialist Conference pp1-4
[45] Yang X, Zheng P, Bi Q, Weber K 2016 Sol. Energy Mater. Sol. ar Cells 150 32Google Scholar
[46] Wan Y, Samundsett C, Bullock J, Hettick M, Allen T, Yan D, Peng J, Wu Y, Cui J, Javey A 2017 Adv. Energy Mater. 7
[47] Wang F, Zhao S, Liu B, Li Y, Ren Q, Du R, Wang N, Wei C, Chen X, Wang G 2017 Nano Energy 39
[48] Kamei K, Miyachi M, Tanaka K 2015 Phys. Chem. Chem. Phys. 17 27409Google Scholar
[49] Macco B 2016 Ph. D. Dissertation (Eindhoven: Eindhoven University of Technology)
[50] Greiner M T, Chai L, Helander M G, Tang W M, Lu Z H 2012 Adv. Funct. Mater. 22 4557Google Scholar
[51] Boccard M, Ding L, Koswatta P, Bertoni M, Holman Z Photovoltaic Specialist Conference pp1-3
[52] Xie F, Choy W C, Wang C, Li X, Zhang S, Hou J 2013 Adv. Mater. 25 2051Google Scholar
[53] Soultati A, Douvas A M, Georgiadou D G, Palilis L C, Bein T, Feckl J M, Gardelis S, Fakis M, Kennou S, Falaras P 2014 Adv. Energy Mater. 4 1441
[54] Mews M, Lemaire A, Korte L 2017 IEEE J. Photovoltaics 1
[55] Meyer J, Hamwi S, Kröger M, Kowalsky W, Riedl T, Kahn A 2012 Adv. Mater. 24 5408Google Scholar
[56] Mcdonnell S, Azcatl A, Addou R, Gong C, Battaglia C, Chuang S, Cho K, Javey A, Wallace R M 2014 ACS Nano 8 6265Google Scholar
[57] Liu R, Tan M, Zhang X, Xu L, Chen J, Chen Y, Tang X, Wan L 2018 Sol. Energy Mater. Sol. Cells 174 584Google Scholar
[58] Kim A, Won Y, Woo K, Jeong S, Moon J 2014 Adv. Funct. Mater. 24 2462Google Scholar
[59] De S, Higgins T M, Lyons P E, Doherty E M, Nirmalraj P N, Blau W J, Boland J J, Coleman J N 2009 ACS Nano 3 1767Google Scholar
[60] Stegemann B, Gad K M, Balamou P, Sixtensson D, Vössing D, Kasemann M, Angermann H 2017 Appl. Surface Science 395 78Google Scholar
[61] Feldmann F, Reichel C, Müller R, Hermle M 2017 Sol. Energy Mater. Sol. Cells 159 265Google Scholar
[62] Tong J, Wang X, Ouyang Z, Lennon A 2015 Energy Procedia 77 840Google Scholar
[63] Jiang S, Jia R, Tao K, Hou C X, Sun H C, Yu Z Y, Li Y T 2017 Chin. Phys. B 26 481
[64] Yang J H, Kang S J, Hong Y, Lim K S 2014 IEEE Electron Device Lett. 35 96Google Scholar
[65] Hu J, Cheng Q, Fan R, Zhou H 2017 Solar RRL 1
[66] Bush K A, Palmstrom A F, Yu Z J, Boccard M, Cheacharoen R, Mailoa J P, Mcmeekin D P, Hoye R L Z, Bailie C D, Leijtens T 2017 Nature Energy 2 17009Google Scholar
[67] Albrecht S, Saliba M, Baena J P C, Lang F, Kegelmann L, Mews M, Steier L, Abate A, Rappich J, Korte L 2015 Energy & Environ. Sci. 9 81
[68] Zhu S, Yao X, Ren Q, Zheng C C, Li S, Tong Y, Shi B, Guo S, Fan L, Ren H 2017 Nano Energy 45
-
图 10 (a)在c-Si上沉积MoOx薄膜的横截面图像; (b)MoOx和c-Si的交界处图像; (c)EDS线扫描区域的横截面STEM图像; (d)使用EDS线测量每个元素的组成分布, 显示在MoOx和c-Si之间形成薄的SiOx层[35]
Fig. 10. (a) The image of an as-deposited MoOx film on c-Si; (b) the image of the MoOx and c-Si interface; (c) cross-sectional STEM image for the region of the EDS line scan; (d) compositional distribution of each element measured using the EDS line scan showing a thinSiOx layer formed between the MoOx and the c-Si[35].
表 1 基于TMO载流子选择性接触的硅异质结太阳电池研究现状
Table 1. Summary of Silicon Heterojunction Solar Cells Based on TMO Carrier Selective Contact.
Device Architecture Jsc/mA·cm-2 Voc/mV FF Efficiency/% Reference(Year) MoOx/nc-Si/n a-Si:H 37.8 580 65 14.3 Battaglia et al.[16](2014) MoOx/i a-Si:H/c-Si/i a-Si:H/n a-Si:H 38.6 725.4 80.36 22.5 Jonas et al.[26](2015) p+-Si/p-c-Si/MoOx 37 616 72 16.4 Bullock et al.[43](2015) p+-Si/n-c-Si/TiO2 39.2 639 79.1 19.8 Yang et al.[44](2015) MoOx/a-Si:H(i)/c-Si/a-Si:H(i)/LiFx 37.07 716.4 73.15 19.42 Bullock et al.[8](2016) MoOx/ia-Si:H/nc-Si/ia-Si:H/n a-Si:H 39.4 711 67.2 18.8 Battaglia et al.[17](2016) V2Ox/c-Si/ n a-Si:H 34.4 606 75.3 15.7 Gerling et al.[15](2016) MoOx/c-Si/ n a-Si:H 34.1 581 68.8 13.6 Gerling et al.[15](2016) WOx/c-Si/ n a-Si:H 33.3 577 65 12.5 Gerling et al.[15](2016) p+-Si/n-c-Si/SiO2/TiO2 39.5 650 80 20.5 Yang et al.[45](2016) V2Ox /Au /V2Ox 38.7 651 75.49 19.02 Wu et al.[11](2017) p+-Si/n-c-Si/MgOx 39.5 628 80.6 20 Wan et al.[46](2017) MoOx/i a-Si:H/c-Si/i a-Si:H/BZO 38.1 599 72.7 16.6 Wang et al.[47](2017) MoOx/a-Si:H(i)/c-Si/a-Si:H(i)/TiOx/LiF 38.4 706 76.2 20.7 Bullock et al.[32](2018) -
[1] 沈文忠, 李正平 2014 硅基异质结太阳电池物理与器件 (北京: 科学出版社)第2—4页
Shen W Z, Li Z P 2014 Physics and Devices of Silicon Heterojunction Solar Cells (Beijing: Science Press) pp2–4 (in Chinese)
[2] Yoshikawa K, Kawasaki H, Yoshida W, Irie T, Konishi K, Nakano K, Uto T, Adachi D, Kanematsu M, Uzu H 2017 Nature Energy 2 17032Google Scholar
[3] 肖友鹏, 高超, 王涛, 周浪 2017 物理学报 66 158801Google Scholar
Xiao Y P, Gao C, Wang T, Zhou L 2017 Acta Phys. Sin. 66 158801Google Scholar
[4] Feldmann F, Simon M, Bivour M, Reichel C 2014 Appl. Phys. Lett. 104 1184
[5] Richter A, Benick J, Feldmann F, Fell A, Hermle M, Glunz S W 2019 Sol. Energy Mater. Sol. Cells (in Press)
[6] Gao P, Yang Z, He J, Yu J, Liu P, Zhu J, Ge Z, Ye J 2018 Adv. Sci. 5
[7] Melskens J, Loo B W H V D, Macco B, Black L E, Smit S, Kessels W M M 2018 IEEE J. Photovoltaics 8 373Google Scholar
[8] Bullock J, Hettick M, Geissbühler J, Ong A J, Allen T, Sutterfella C M, Chen T, Ota H, Schaler E W, Wolf S D 2016 Nature Energy 1 15031Google Scholar
[9] Imran H, Abdolkader T M, Butt N Z 2016 IEEE Trans. Electron Devices 63 3584Google Scholar
[10] Um H D, Kim N, Lee K, Hwang I, Seo J H, Seo K 2016 Nano Lett. 16 981Google Scholar
[11] Wu W, Lin W, Bao J, Liu Z, Liu B, Qiu K, Chen Y, Shen H 2017 RSC Adv. 7 23851Google Scholar
[12] Masmitjà G, Gerling L G, Ortega P, Puigdollers J, Martín I, Voz C, Alcubilla R 2017 J. Mater. Chem. A 5 9182Google Scholar
[13] Cuevas A, Allen T, Bullock J, Wan Y, Zhang X 2014 Photovoltaic Specialist Conference pp1–6
[14] Würfel U, Cuevas A, Würfel P 2014 IEEE J. Photovoltaics 5 461
[15] Gerling L G, Mahato S, Morales-Vilches A, Masmitja G, Ortega P, Voz C, Alcubilla R, Puigdollers J 2016 Sol. Energy Mater. Sol. Cells 145 109Google Scholar
[16] Battaglia C, Yin X, Zheng M, Sharp I D, Chen T, Mcdonnell S, Azcatl A, Carraro C, Ma B, Maboudian R 2014 Nano Lett. 14 967Google Scholar
[17] Battaglia C, Nicolás S M D, Wolf S D, Yin X, Zheng M, Ballif C, Javey A 2014 Appl. Phys. Lett. 104 1
[18] Sun T, Wang R, Liu R, Wu C, Zhong Y, Liu Y, Wang Y, Han Y, Xia Z, Zou Y 2017 Phys. Status Solidi RRL 1700107
[19] Yang X, Bi Q, Ali H, Davis K, Schoenfeld W V, Weber K 2016 Adv. Mater. 28 5891Google Scholar
[20] Greiner M T, Helander M G, Tang W M, Wang Z B, Qiu J, Lu Z H 2012 Nature Mater. 11 76Google Scholar
[21] Vijayan R A, Essig S, Wolf S D, Ramanathan B G, Löper P, Ballif C, Varadharajaperumal M 2018 IEEE J. Photovoltaics 8 473Google Scholar
[22] Messmer C, Bivour M, Schön J, Glunz S W, Hermle M 2018 IEEE J. Photovoltaics 1
[23] Neusel L, Bivour M, Hermle M 2017 Energy Procedia 124 425Google Scholar
[24] Bivour M, Zähringer F, Ndione P, Hermle M, Bivour M, Zähringer F, Ndione P, Hermle M 2017 Energy Procedia 124 400Google Scholar
[25] Bivour M, Temmler J, Steinkemper H, Hermle M 2015 Sol. Energy Mater. Sol. Cells 142 34Google Scholar
[26] Geissbühler J, Werner J, Nicolas S M D, Barraud L, Hesslerwyser A, Despeisse M, Nicolay S, Tomasi A, Niesen B, Wolf S D 2015 Appl. Phys. Lett. 107 1433
[27] Wu W, Bao J, Jia X, Liu Z, Cai L, Liu B, Song J, Shen H 2016 Phys. Status Solidi RRL 10 662Google Scholar
[28] Menchini F, Grilli M L, Dikonimos T, Mittiga A, Serenelli L, Salza E, Chierchia R, Tucci M 2016 Phys. Status Solidi 13
[29] Yin X, Yao Z, Luo Q, Dai X, Zhou Y, Zhang Y, Zhou Y, Luo S, Li J, Wang N 2017 ACS Appl. Mater. Interfaces 9 2439Google Scholar
[30] Chen W, Wu Y, Yue Y, Liu J, Zhang W, Yang X, Chen H, Bi E, Ashraful I, Grätzel M 2015 Science 350 944Google Scholar
[31] Yang X, Weber K, Hameiri Z, De Wolf S 2017 Prog. Photovoltaics Res. Appl. 25
[32] Bullock J, Wan Y, Xu Z, Essig S, Hettick M, Wang H, Ji W, Boccard M, Cuevas A, Ballif C 2018 ACS Energy Lett. 3
[33] Liu Y, Zhang J, Wu H, Cui W, Wang R, Ding K, Lee S T, Sun B 2017 Nano Energy 34 257Google Scholar
[34] Khan F, Baek S H, Kim J H 2015 Nanoscale 8 1007
[35] Tong J, Wan Y, Cui J, Lim S, Song N, Lennon A 2017 Appl. Surface Science 423
[36] Vosgueritchian M, Lipomi D J, Bao Z 2012 Adv. Funct. Mater. 22 421Google Scholar
[37] Zhang C, Zhang Y, Guo H, Jiang Q, Dong P, Zhang C 2018 Energies 11
[38] He L, Jiang C, Wang H, Lai D, Rusli 2012 Appl. Phys. Lett. 100 12344
[39] Zielke D, Niehaves C, Lövenich W, Elschner A, Hörteis M, Schmidt J 2015 Energy Procedia 77 331Google Scholar
[40] Ling Z, He J, He X, Liao M, Liu P, Yang Z, Ye J, Gao P 2017 IEEE J. Photovoltaics 1
[41] Tong H, Yang Z, Wang X, Liu Z, Chen Z, Ke X, Sui M, Tang J, Yu T, Ge Z 2018 Adv. Energy Mater. 1702921
[42] Bao J, Wu W, Liu Z, Shen H 2016 AIP Adv. 6 96
[43] Bullock J, Yan D, Cuevas A, Wan Y, Samundsett C 2015 Energy Procedia 77 446Google Scholar
[44] Yang X, Weber K Photovoltaic Specialist Conference pp1-4
[45] Yang X, Zheng P, Bi Q, Weber K 2016 Sol. Energy Mater. Sol. ar Cells 150 32Google Scholar
[46] Wan Y, Samundsett C, Bullock J, Hettick M, Allen T, Yan D, Peng J, Wu Y, Cui J, Javey A 2017 Adv. Energy Mater. 7
[47] Wang F, Zhao S, Liu B, Li Y, Ren Q, Du R, Wang N, Wei C, Chen X, Wang G 2017 Nano Energy 39
[48] Kamei K, Miyachi M, Tanaka K 2015 Phys. Chem. Chem. Phys. 17 27409Google Scholar
[49] Macco B 2016 Ph. D. Dissertation (Eindhoven: Eindhoven University of Technology)
[50] Greiner M T, Chai L, Helander M G, Tang W M, Lu Z H 2012 Adv. Funct. Mater. 22 4557Google Scholar
[51] Boccard M, Ding L, Koswatta P, Bertoni M, Holman Z Photovoltaic Specialist Conference pp1-3
[52] Xie F, Choy W C, Wang C, Li X, Zhang S, Hou J 2013 Adv. Mater. 25 2051Google Scholar
[53] Soultati A, Douvas A M, Georgiadou D G, Palilis L C, Bein T, Feckl J M, Gardelis S, Fakis M, Kennou S, Falaras P 2014 Adv. Energy Mater. 4 1441
[54] Mews M, Lemaire A, Korte L 2017 IEEE J. Photovoltaics 1
[55] Meyer J, Hamwi S, Kröger M, Kowalsky W, Riedl T, Kahn A 2012 Adv. Mater. 24 5408Google Scholar
[56] Mcdonnell S, Azcatl A, Addou R, Gong C, Battaglia C, Chuang S, Cho K, Javey A, Wallace R M 2014 ACS Nano 8 6265Google Scholar
[57] Liu R, Tan M, Zhang X, Xu L, Chen J, Chen Y, Tang X, Wan L 2018 Sol. Energy Mater. Sol. Cells 174 584Google Scholar
[58] Kim A, Won Y, Woo K, Jeong S, Moon J 2014 Adv. Funct. Mater. 24 2462Google Scholar
[59] De S, Higgins T M, Lyons P E, Doherty E M, Nirmalraj P N, Blau W J, Boland J J, Coleman J N 2009 ACS Nano 3 1767Google Scholar
[60] Stegemann B, Gad K M, Balamou P, Sixtensson D, Vössing D, Kasemann M, Angermann H 2017 Appl. Surface Science 395 78Google Scholar
[61] Feldmann F, Reichel C, Müller R, Hermle M 2017 Sol. Energy Mater. Sol. Cells 159 265Google Scholar
[62] Tong J, Wang X, Ouyang Z, Lennon A 2015 Energy Procedia 77 840Google Scholar
[63] Jiang S, Jia R, Tao K, Hou C X, Sun H C, Yu Z Y, Li Y T 2017 Chin. Phys. B 26 481
[64] Yang J H, Kang S J, Hong Y, Lim K S 2014 IEEE Electron Device Lett. 35 96Google Scholar
[65] Hu J, Cheng Q, Fan R, Zhou H 2017 Solar RRL 1
[66] Bush K A, Palmstrom A F, Yu Z J, Boccard M, Cheacharoen R, Mailoa J P, Mcmeekin D P, Hoye R L Z, Bailie C D, Leijtens T 2017 Nature Energy 2 17009Google Scholar
[67] Albrecht S, Saliba M, Baena J P C, Lang F, Kegelmann L, Mews M, Steier L, Abate A, Rappich J, Korte L 2015 Energy & Environ. Sci. 9 81
[68] Zhu S, Yao X, Ren Q, Zheng C C, Li S, Tong Y, Shi B, Guo S, Fan L, Ren H 2017 Nano Energy 45
计量
- 文章访问数: 11494
- PDF下载量: 205
- 被引次数: 0