搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

200 km沙漠链路高精度光纤时频传递关键技术研究

应康 桂有珍 孙延光 程楠 熊晓锋 王家亮 杨飞 蔡海文

引用本文:
Citation:

200 km沙漠链路高精度光纤时频传递关键技术研究

应康, 桂有珍, 孙延光, 程楠, 熊晓锋, 王家亮, 杨飞, 蔡海文

Key technology of high-precision time frequency transfer via 200 km desert urban fiber link

Ying Kang, Gui You-Zhen, Sun Yan-Guang, Cheng Nan, Xiong Xiao-Feng, Wang Jia-Liang, Yang Fei, Cai Hai-Wen
PDF
HTML
导出引用
  • 针对沙漠环境实地链路存在的温度变化大、室外风力、地表振动等多种复杂噪声来源, 通过对系统反馈补偿带宽、反馈补偿强度、光功率等时频传递系统关键参数的优化配置, 研究了不同反馈补偿参数下复杂链路噪声的有效抑制技术. 全链路的频率传递稳定度8 × 10–14@1 s, 1 × 10–16@1000 s, 千秒尺度下时间信号传递的时间方差仅为1.2 ps. 实现了氢钟信号在200 km量级沙漠环境实地链路的无损传输. 该验证实验在基于短基线干涉测量的卫星测轨系统中发挥了重要作用.
    The precise time and frequency signal dissemination has significant applications in scientific research such as baseline interferometry, deep space network and metrology. Aside from satellite based systems, optical fiber has become an attractive alternative medium for transferring time and frequency signals, offering much improved accuracy. For the urban fiber link in the desert environment, there are many complex noise sources, such as temperature change, outdoor wind and ground vibration. Therefore, a systematical study on the noise source and on the noise reduction method in the dessert environment have practical significance. In this paper, we demonstrate a time (1 pps) and frequency signal dissemination and time synchronization system through a 200 km urban fiber in dessert environment. The noise source of the urban fiber under dessert environment is analyzed and studied in detail; the results show that the vibration and temperature shift are the major influencing factors. The vibration of urban fiber can induce the noise in the high Fourier frequency, and the temperature shift of urban fiber can induce the noise at a low Fourier frequency. An optical compensation setup is used, including the optical delay line with temperature controlled and piezoelectric ceramics driving. The phase fluctuation of frequency signal is detected and used to control the feedback of the optical compensating setup. In order to compensate for the fiber loss in a long range, a special bi-directional erbium-doped fiber amplifier is used to regenerate optical signals to achieve the long distance transmission. Then, we study the effective link noise suppression technology under different feedback compensation parameters. The systematic feedback parameters are optimized through using the different system feedback bandwidths, feedback intensities, optical power and other key parameters. The optimized systematic feedback parameters are obtained via the careful experimental observation and discussion. With the optimized systematic feedback parameters, experimental results show that the frequency stabilities are up to 8 × 10–14 at 1 s and 1 × 10–16 at 1000 s, and time stabilities are up to 1.2 ps in an average time of 103 s. The phase stabilized transmission of hydrogen clock signal in the 200 km level desert environment urban fiber link is realized. The verification experiment plays an important role in measuring the satellite orbit based on a connected elements’ interferometry. The relevant study result is of significance for improving the precision of time and frequency signal dissemination in the dessert environmental urban fiber.
      通信作者: 孙延光, ygsun@siom.ac.cn
    • 基金项目: 中国科学院战略性先导科技专项(B类)(批准号: XDB21030200)、上海市青年科技英才扬帆计划(批准号: 18YF1426100)和上海市自然科学基金(批准号: 18ZR1444300)资助的课题.
      Corresponding author: Sun Yan-Guang, ygsun@siom.ac.cn
    • Funds: Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB21030200), the Shanghai Sailing Program, China (Grant No. 18YF1426100), and the Natural Science Foundation of Shanghai, China (Grant No. 18ZR1444300).
    [1]

    Jiang Y Y, Ludlow A D, Lemke N D, Fox R W, Sherman J A, Ma L S, Oates C W 2011 Nat. Photon. 5 158Google Scholar

    [2]

    Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L, Ye J 2014 Nature 506 71Google Scholar

    [3]

    董功勋, 林锦达, 张松, 邓见辽, 王育竹 2017 光学学报 37 0702001

    Dong G X, Lin J D, Zhang S, Deng J L, Wang Y Z 2017 Acta Opt. Sin. 37 0702001

    [4]

    Kippenberg T J, Holzwarth R, Diddams S A 2011 Science 332 555Google Scholar

    [5]

    Udem T, Holzwarth R, Hänsch T W 2002 Nature 416 233Google Scholar

    [6]

    Li Y, Lin Y G, Wang Q, Yang T, Sun Z, Zang E J, Fang Z J 2018 Chin. Opt. Lett. 16 051402Google Scholar

    [7]

    Fu X H, Fang S, Zhao R C, Zhang Y, Huang J C, Sun J F, Xu Z, Wang Y Z 2018 Chin. Opt. Lett. 16 060202Google Scholar

    [8]

    Masao T, Hong F L, Ryoichi H, Hidetoshi K 2005 Nature 435 321Google Scholar

    [9]

    Tseng W, Lin S, Feng K, Fujieda M, Maeno H 2010 IEEE Trans. Ultrason. Ferr. 57 161Google Scholar

    [10]

    Tal D, Octavio MP, Lev T, Jeff H 2010 Nature 463 326Google Scholar

    [11]

    Lewandowski W, Azoubib J, Klepczynski W J 1999 Proc. IEEE 87 163Google Scholar

    [12]

    王义遒 2004 宇航计测技术 24 1Google Scholar

    Wang Y Q. 2004 J. Astron. Metrol. Meas. 24 1Google Scholar

    [13]

    Krehlik P, Sliwczynski L, Buczek L, Lipinski M 2012 IEEE Trans. Instrum. Meas. 61 2844Google Scholar

    [14]

    Lopez O, Haboucha A, Chanteau B, Chardonnet C, Amy-Klein A, Santarelli G 2012 Opt. Express 20 23518Google Scholar

    [15]

    Droste S, Ozimek F, Udem T, Predehl K, Hansch T W, Schnatz H, Grosche G, Holzwarth R 2013 Phys. Rev. Lett. 111 110801Google Scholar

    [16]

    Liu Q, Han S L, Wang J L, Feng Z T, Chen W, Cheng N, Gui Y Z, Cai H W, Han S S 2016 Chin. Opt. Lett. 14 070602

    [17]

    刘琴, 韩圣龙, 王家亮, 冯子桐, 陈炜, 程楠, 桂有珍, 蔡海文, 韩申生 2016 中国激光 43 0906001

    Liu Q, Han S L, Wang J L, Feng Z T, Chen W, Cheng N, Gui Y Z, Cai H W, Han S S 2016 Chin. J. Lasers 43 0906001

    [18]

    Wang B, Gao C, Chen W L, Miao J, Zhu X, Bai Y, Zhang J W, Feng Y Y, Li T C, Wang L J 2012 Sci. Rep. 2 556Google Scholar

    [19]

    陈炜, 程楠, 刘琴, 王家亮, 冯子桐, 杨飞, 韩圣龙, 桂有珍, 蔡海文 2016 中国激光 43 0706001

    Chen W, Cheng N, Liu Q, Wang J L, Feng Z T, Yang F, Han S L, Gui Y Z, Cai H W 2016 Chin. J. Lasers 43 0706001

    [20]

    Foreman S M, Holman K W, Hudson D D, Jones D J, Ye J 2007 Rev. Sci. Instrum. 78 021101Google Scholar

  • 图 1  实地光纤链路铺设情况

    Fig. 1.  Schematic of urban fiber link.

    图 2  高精度光纤时频传递系统

    Fig. 2.  Schematic diagram of the frequency transfer and time synchronization system.

    图 3  (a)环境温度波动测量结果; (b)频率相位快速抖动噪声

    Fig. 3.  (a) Environmental temperature vibration; (b) fast frequency phase jitter noise.

    图 4  (a)温控延迟线构造示意图; (b) 5 km温控延迟线性能测试结果

    Fig. 4.  (a) Construction of fiber delay line; (b) test result of fiber delay line.

    图 5  (a)不同延时线工作电流下的相位抖动; (b)不同延时线工作电流下的阿伦方差

    Fig. 5.  (a) Phase jitter for different delay line’s working current; (b) the Allan deviation for different delay line’s working current.

    图 6  (a)不同反馈带宽下的相位抖动噪声; (b)不同反馈带宽下的噪声阿伦方差; (c)不同情况下的链路相噪测试结果

    Fig. 6.  (a) Phase jitter in different feedback bandwidth; (b) the Allan deviation in in different feedback bandwidth; (c) phase noise in different conditions.

    图 7  (a)不同链路光功率下的的相位抖动噪声; (b)不同链路光功率下的噪声阿伦方差

    Fig. 7.  (a) Phase jitter in different link optical powers; (b) the Allan deviation in in different link optical powers.

    图 8  (a)反馈补偿前后的相位噪声阿伦方差; (b)反馈补偿前后的时延抖动偏差

    Fig. 8.  (a) The Allan deviation in free running and compensated conditions; (b) time deviation (TEDV) in free running and compensated conditions.

  • [1]

    Jiang Y Y, Ludlow A D, Lemke N D, Fox R W, Sherman J A, Ma L S, Oates C W 2011 Nat. Photon. 5 158Google Scholar

    [2]

    Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L, Ye J 2014 Nature 506 71Google Scholar

    [3]

    董功勋, 林锦达, 张松, 邓见辽, 王育竹 2017 光学学报 37 0702001

    Dong G X, Lin J D, Zhang S, Deng J L, Wang Y Z 2017 Acta Opt. Sin. 37 0702001

    [4]

    Kippenberg T J, Holzwarth R, Diddams S A 2011 Science 332 555Google Scholar

    [5]

    Udem T, Holzwarth R, Hänsch T W 2002 Nature 416 233Google Scholar

    [6]

    Li Y, Lin Y G, Wang Q, Yang T, Sun Z, Zang E J, Fang Z J 2018 Chin. Opt. Lett. 16 051402Google Scholar

    [7]

    Fu X H, Fang S, Zhao R C, Zhang Y, Huang J C, Sun J F, Xu Z, Wang Y Z 2018 Chin. Opt. Lett. 16 060202Google Scholar

    [8]

    Masao T, Hong F L, Ryoichi H, Hidetoshi K 2005 Nature 435 321Google Scholar

    [9]

    Tseng W, Lin S, Feng K, Fujieda M, Maeno H 2010 IEEE Trans. Ultrason. Ferr. 57 161Google Scholar

    [10]

    Tal D, Octavio MP, Lev T, Jeff H 2010 Nature 463 326Google Scholar

    [11]

    Lewandowski W, Azoubib J, Klepczynski W J 1999 Proc. IEEE 87 163Google Scholar

    [12]

    王义遒 2004 宇航计测技术 24 1Google Scholar

    Wang Y Q. 2004 J. Astron. Metrol. Meas. 24 1Google Scholar

    [13]

    Krehlik P, Sliwczynski L, Buczek L, Lipinski M 2012 IEEE Trans. Instrum. Meas. 61 2844Google Scholar

    [14]

    Lopez O, Haboucha A, Chanteau B, Chardonnet C, Amy-Klein A, Santarelli G 2012 Opt. Express 20 23518Google Scholar

    [15]

    Droste S, Ozimek F, Udem T, Predehl K, Hansch T W, Schnatz H, Grosche G, Holzwarth R 2013 Phys. Rev. Lett. 111 110801Google Scholar

    [16]

    Liu Q, Han S L, Wang J L, Feng Z T, Chen W, Cheng N, Gui Y Z, Cai H W, Han S S 2016 Chin. Opt. Lett. 14 070602

    [17]

    刘琴, 韩圣龙, 王家亮, 冯子桐, 陈炜, 程楠, 桂有珍, 蔡海文, 韩申生 2016 中国激光 43 0906001

    Liu Q, Han S L, Wang J L, Feng Z T, Chen W, Cheng N, Gui Y Z, Cai H W, Han S S 2016 Chin. J. Lasers 43 0906001

    [18]

    Wang B, Gao C, Chen W L, Miao J, Zhu X, Bai Y, Zhang J W, Feng Y Y, Li T C, Wang L J 2012 Sci. Rep. 2 556Google Scholar

    [19]

    陈炜, 程楠, 刘琴, 王家亮, 冯子桐, 杨飞, 韩圣龙, 桂有珍, 蔡海文 2016 中国激光 43 0706001

    Chen W, Cheng N, Liu Q, Wang J L, Feng Z T, Yang F, Han S L, Gui Y Z, Cai H W 2016 Chin. J. Lasers 43 0706001

    [20]

    Foreman S M, Holman K W, Hudson D D, Jones D J, Ye J 2007 Rev. Sci. Instrum. 78 021101Google Scholar

  • [1] 何希文, 马德岳, 张政, 王荣平, 刘继桥, 陈卫标, 周治平. 基于分段级联多模干涉的Ta2O5980/1550 nm波分复用/解复用器. 物理学报, 2025, 74(2): . doi: 10.7498/aps.74.20241243
    [2] 杨家濠, 张傲岩, 夏长明, 邓志鹏, 刘建涛, 黄卓元, 康嘉健, 曾浩然, 蒋仁杰, 莫志峰, 侯峙云, 周桂耀. 窄带空芯反谐振光纤的制备及其模式转换应用研究. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212194
    [3] 杨家濠, 张傲岩, 夏长明, 邓志鹏, 刘建涛, 黄卓元, 康嘉健, 曾浩然, 蒋仁杰, 莫志峰, 侯峙云, 周桂耀. 窄带空芯反谐振光纤的制备及其模式转换应用研究. 物理学报, 2022, 71(13): 134207. doi: 10.7498/aps.70.20212194
    [4] 桑迪, 徐明峰, 安强, 付云起. 基于拓扑优化的自由形状波分复用超光栅. 物理学报, 2022, 71(22): 224204. doi: 10.7498/aps.71.20221013
    [5] 曹若琳, 彭清轩, 王金东, 陈勇杰, 黄云飞, 於亚飞, 魏正军, 张智明. 基于单光子计数反馈的低噪声光纤信道波分复用实时偏振补偿系统. 物理学报, 2022, 71(13): 130306. doi: 10.7498/aps.71.20220120
    [6] 丁子平, 廖健飞, 曾泽楷. 基于表面等离子体共振的新型超宽带微结构光纤传感器研究. 物理学报, 2021, 70(7): 074207. doi: 10.7498/aps.70.20201477
    [7] 黄军超, 汪凌珂, 段怡菲, 黄亚峰, 刘亮, 李唐. 光纤1/f 热噪声的实验研究. 物理学报, 2019, 68(5): 054205. doi: 10.7498/aps.68.20181838
    [8] 丁伟, 汪滢莹, 高寿飞, 洪奕峰, 王璞. 高性能反谐振空芯光纤导光机理与实验制作研究进展. 物理学报, 2018, 67(12): 124201. doi: 10.7498/aps.67.20180724
    [9] 饶云江. 长距离分布式光纤传感技术研究进展. 物理学报, 2017, 66(7): 074207. doi: 10.7498/aps.66.074207
    [10] 肖亚玲, 刘艳格, 王志, 刘晓颀, 罗明明. 基于少模光纤的全光纤熔融模式选择耦合器的设计及实验研究. 物理学报, 2015, 64(20): 204207. doi: 10.7498/aps.64.204207
    [11] 侯建平, 赵晨阳, 杨楠, 郝建苹, 赵建林. 微纳光纤端面反射特性的实验测量方法. 物理学报, 2013, 62(14): 144216. doi: 10.7498/aps.62.144216
    [12] 周锐, 张菁, 忽满利, 冯忠耀, 高宏, 杨扬, 张敬花, 乔学光. 基于二阶保偏光纤Sagnac环光纤激光器的振动检测研究. 物理学报, 2012, 61(1): 014216. doi: 10.7498/aps.61.014216
    [13] 王静, 张晨芳, 康泽新, 孙将, 郑斯文, 林桢, 王春灿, 简水生. 多偏振控制高双折射光纤环形镜输出特性的理论和实验研究. 物理学报, 2011, 60(12): 124215. doi: 10.7498/aps.60.124215
    [14] 乔学光, 丁锋, 贾振安, 傅海威, 营旭东, 周锐, 宋娟. 高精度准分布式光纤光栅地震检波解调系统的研究. 物理学报, 2011, 60(7): 074221. doi: 10.7498/aps.60.074221
    [15] 叶涛, 徐旭明. 高效异质结构四波长波分复用器的设计与优化. 物理学报, 2010, 59(9): 6273-6278. doi: 10.7498/aps.59.6273
    [16] 张建忠, 王安帮, 王云才. 混沌光通信与OC-48光纤通信的波分复用. 物理学报, 2009, 58(6): 3793-3798. doi: 10.7498/aps.58.3793
    [17] 李齐良, 孙丽丽, 陈均朗, 李庆山, 唐向宏, 钱 胜, 林理彬. 周期色散管理波分复用系统中交叉相位调制边带不稳定性理论分析. 物理学报, 2007, 56(2): 805-810. doi: 10.7498/aps.56.805
    [18] 秦小芸, 黄弼勤, 陈海星, 杨立功, 顾培夫. 多周期双啁啾镜结构的空间解波分复用器. 物理学报, 2004, 53(11): 3794-3799. doi: 10.7498/aps.53.3794
    [19] 余寿绵, 余恬. 索末菲球面波公式的协变形式及其在光纤理论中的应用. 物理学报, 2001, 50(6): 1097-1102. doi: 10.7498/aps.50.1097
    [20] 余寿绵, 余恬. 光纤中的电磁对偶变换与导波的模式分析. 物理学报, 2001, 50(11): 2179-2184. doi: 10.7498/aps.50.2179
计量
  • 文章访问数:  8771
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-11
  • 修回日期:  2019-01-09
  • 上网日期:  2019-03-01
  • 刊出日期:  2019-03-20

/

返回文章
返回