-
把洛仑兹破缺的标量场方程推广到弯曲时空中, 并通过Aether-like项对标量场方程进行修正, 该项所产生的效应也会影响到黑洞时空视界附近处的物理效应. 接着, 进一步在半经典近似下得到了修正的Hamilton-Jacobi方程, 然后用这一修正的Hamilton-Jacobi方程研究了史瓦西黑洞的隧穿辐射特征, 并讨论了洛仑兹破缺对黑洞霍金辐射和黑洞熵的影响. 结果表明,
${{ u}^\alpha } = {\text{δ}}_t^\alpha {u^t}, {\text{δ}}_r^\alpha {u^r}$ 形式的Aether-like项的效应可能使黑洞温度增加, 而黑洞熵降低. 该工作可以帮助我们更深刻地理解弯曲时空中的洛仑兹破缺效应的物理性质.-
关键词:
- 修正标量场方程 /
- 霍金辐射 /
- Hamilton-Jacobi方程 /
- 修正熵
In this paper, the Lorentz-violating scalar field equation is generalized in curved spacetime, and we find that the aether-like terms modify the scalar field equation, so that the effect can correct the properties near the event horizon of black hole spacetime. We then obtain the modified Hamilton-Jacobi equation by semi-classical approximation, and investigate the Hawking radiation and black hole thermodynamics in Schwarzschild black hole spacetime. The results show that the effects of aether-like terms increase the temperature of black hole, but reduce the entropy of black hole as${{ u}^\alpha } = {\text{δ}}_t^\alpha {u^t}, {\text{δ}}_r^\alpha {u^r}$ . This work can help to understand the properties of Lorentz-violating in curved spacetime.-
Keywords:
- modified scalar field equation /
- Hawking radiation /
- Hamilton-Jacobi equation /
- correctional entropy
[1] Hawking S W 1974 Nature 248 30Google Scholar
[2] Hawking S W 1975 Commun. Math. Phys. 43 199Google Scholar
[3] Robinson S P, Wilczek F 2005 Phys. Rev. Lett. 95 011303Google Scholar
[4] Damoar T, Ruffini R 1976 Phys. Rev. D 14 332Google Scholar
[5] Sannan S 1988 Gen. Relativ. Gravitation 20 239Google Scholar
[6] Kraus P, Wilczek F 1995 Nucl. Phys. B 433 403Google Scholar
[7] Parikh M K, Wilczek F 2000 Phys. Rev. Lett. 85 5042Google Scholar
[8] Hemming S, Keski-Vakkuri E 2001 Phys. Rev. D 64 044006Google Scholar
[9] Jiang Q Q, Wu S Q, Cai X 2007 Phys. Rev. D 75 064029Google Scholar
[10] Iso S, Umetsu H, Wilczek F 2006 Phys. Rev. D 74 044017Google Scholar
[11] Medved A J M 2002 Phys. Rev. D 66 124009Google Scholar
[12] Parikh M K 2006 arXiv:hep-th/0402166
[13] Zhang J Y, Zhao Z 2006 Phys. Lett. B 638 110Google Scholar
[14] Akhmedov E T, Akhmedova V, Singleton D 2006 Phys. Lett. B 642 124Google Scholar
[15] Srinivasan K, Padmanabhan T 1999 Phys. Rev. D 60 24007Google Scholar
[16] Shankaranarayanan S, Padmanabhan T, Srinivasan K 2002 Classical Quantum Gravity 19 2671Google Scholar
[17] Kerner R, Mann R B 2008 Classical Quantum Gravity 25 095014Google Scholar
[18] Kerner R, Mann R B 2008 Phys. Lett. B 665 277Google Scholar
[19] Li R, Ren J R, Wei S W 2008 Classical Quantum Gravity 25 125016Google Scholar
[20] Chen D Y, Jiang Q Q, Zu X T 2008 Classical Quantum Gravity 25 205022Google Scholar
[21] Criscienzo R D, Vanzo L 2008 Europhys. Lett. 82 60001Google Scholar
[22] Li H L, Yang S Z, Zhou T J, Lin R 2008 Europhys. Lett. 84 20003Google Scholar
[23] Jiang Q Q 2008 Phys. Lett. B 666 517Google Scholar
[24] Lin K, Yang S Z 2009 Int. J. Theor. Phys. 48 2061Google Scholar
[25] Lin K, Yang S Z 2009 Phys. Rev. D 79 064035Google Scholar
[26] Lin K, Yang S Z 2009 Phys. Lett. B 674 127Google Scholar
[27] Lin K, Yang S Z 2011 Chin. Phys. B 20 110403Google Scholar
[28] Gomes M, Nascimento J R, Petrov A Yu, da Silva J A 2010 Phys. Rev. D 81 045018Google Scholar
[29] Cruz M B, Bezerra de Mello E R, Petrov A Yu 2017 Phys. Rev. D 96 045019Google Scholar
[30] Cruz M B, Bezerra de Mello E R, Petrov A Yu 2018 Mod. Phys. Lett. A 33 1850115Google Scholar
[31] Borges L H C, Ferrari A F, Barone F A 2018 arXiv:1809. 08883 [hep-th]
[32] Edwards B R, Kostelecky V A 2018 Phys. Lett. B 786 319Google Scholar
-
[1] Hawking S W 1974 Nature 248 30Google Scholar
[2] Hawking S W 1975 Commun. Math. Phys. 43 199Google Scholar
[3] Robinson S P, Wilczek F 2005 Phys. Rev. Lett. 95 011303Google Scholar
[4] Damoar T, Ruffini R 1976 Phys. Rev. D 14 332Google Scholar
[5] Sannan S 1988 Gen. Relativ. Gravitation 20 239Google Scholar
[6] Kraus P, Wilczek F 1995 Nucl. Phys. B 433 403Google Scholar
[7] Parikh M K, Wilczek F 2000 Phys. Rev. Lett. 85 5042Google Scholar
[8] Hemming S, Keski-Vakkuri E 2001 Phys. Rev. D 64 044006Google Scholar
[9] Jiang Q Q, Wu S Q, Cai X 2007 Phys. Rev. D 75 064029Google Scholar
[10] Iso S, Umetsu H, Wilczek F 2006 Phys. Rev. D 74 044017Google Scholar
[11] Medved A J M 2002 Phys. Rev. D 66 124009Google Scholar
[12] Parikh M K 2006 arXiv:hep-th/0402166
[13] Zhang J Y, Zhao Z 2006 Phys. Lett. B 638 110Google Scholar
[14] Akhmedov E T, Akhmedova V, Singleton D 2006 Phys. Lett. B 642 124Google Scholar
[15] Srinivasan K, Padmanabhan T 1999 Phys. Rev. D 60 24007Google Scholar
[16] Shankaranarayanan S, Padmanabhan T, Srinivasan K 2002 Classical Quantum Gravity 19 2671Google Scholar
[17] Kerner R, Mann R B 2008 Classical Quantum Gravity 25 095014Google Scholar
[18] Kerner R, Mann R B 2008 Phys. Lett. B 665 277Google Scholar
[19] Li R, Ren J R, Wei S W 2008 Classical Quantum Gravity 25 125016Google Scholar
[20] Chen D Y, Jiang Q Q, Zu X T 2008 Classical Quantum Gravity 25 205022Google Scholar
[21] Criscienzo R D, Vanzo L 2008 Europhys. Lett. 82 60001Google Scholar
[22] Li H L, Yang S Z, Zhou T J, Lin R 2008 Europhys. Lett. 84 20003Google Scholar
[23] Jiang Q Q 2008 Phys. Lett. B 666 517Google Scholar
[24] Lin K, Yang S Z 2009 Int. J. Theor. Phys. 48 2061Google Scholar
[25] Lin K, Yang S Z 2009 Phys. Rev. D 79 064035Google Scholar
[26] Lin K, Yang S Z 2009 Phys. Lett. B 674 127Google Scholar
[27] Lin K, Yang S Z 2011 Chin. Phys. B 20 110403Google Scholar
[28] Gomes M, Nascimento J R, Petrov A Yu, da Silva J A 2010 Phys. Rev. D 81 045018Google Scholar
[29] Cruz M B, Bezerra de Mello E R, Petrov A Yu 2017 Phys. Rev. D 96 045019Google Scholar
[30] Cruz M B, Bezerra de Mello E R, Petrov A Yu 2018 Mod. Phys. Lett. A 33 1850115Google Scholar
[31] Borges L H C, Ferrari A F, Barone F A 2018 arXiv:1809. 08883 [hep-th]
[32] Edwards B R, Kostelecky V A 2018 Phys. Lett. B 786 319Google Scholar
计量
- 文章访问数: 6241
- PDF下载量: 42
- 被引次数: 0