搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于随机场照射的最优微波成像

周天益

引用本文:
Citation:

基于随机场照射的最优微波成像

周天益

Optimal microwave imaging with random field illuminations

Zhou Tian-Yi
PDF
HTML
导出引用
  • 近年来, 电磁计算成像的理论和技术得到了广泛的研究和发展, 其中基于随机场照射的微波成像引起了诸多关注. 与传统成像方法的连续波照射不同, 基于随机场照射的成像方法以随机照射的方式获取多组非相关的目标散射测量值, 经过反演计算就能提取散射目标体的轮廓和形状等信息. 基于阵列天线理论, 本文理论分析并实验验证了一种最优的二维微波成像系统, 能够使用最少的天线单元实现随机照射, 通过最少的测量次数完成矩阵求逆并得到重建图像. 该系统主要有以下两个创新点: 完全随机照射的获取和成像系统最优参数的选取. 与基于超材料的成像系统相比, 本文通过对1 bit相位调制器随机相位调制的方式获取随机场照射, 使得每个天线单元都处于工作状态, 因此整个系统的能量效率更高. 此外, 所述单频成像系统还具有频谱效率高、结构简单、成本低等优点, 在安检、室内定位等不同场景中具有潜在的应用价值.
    In the recent years, the theory and technologies of electromagnetic computational imaging have been well developed and several novel imaging methods have been proposed, one of which is known as the microwave imaging under random field illumination. In order to solve the matrix equation of imaging model, the key of such an imaging system is to generate the random electromagnetic radiation field distribution, implementing the independent measurements under random field illuminations. In this work, an optimal microwave imaging system for the desired imaging region and resolution is theoretically analyzed and experimentally implemented. In the randomness analysis, the correlation between different measurements is evaluated by the singular value decomposition, which is also adopted as a criterion for choosing the optimal parameters of the imaging system. Based on random field illuminations generated by the least number of antenna elements, a full-rank matrix equation can be used to reconstruct the object by direct matrix inversion, which can be completed in nearly real-time once the system calibration is implemented in advance. The numerical simulation and experimental investigation are performed, and the results prove the effectiveness of the proposed optimal imaging system. By using the traditional array theory, it is found that for an N-element phase array, N illuminations with each element excited by a single frequency, equal amplitude and randomized 0 or ${\text{π}}$ phase signal will result in N independent measurements. Theoretically, any additional measurement under random illumination will be correlated with the previous N measurements. Since the random field illumination is obtained by array antennas with 1-bit random phase modulation, the power radiated by each transmitting element is not sacrificed, resulting in an optimal power efficiency of the imaging system compared with those of earlier metasurface-based imaging systems. Besides, a single frequency signal source is used in the system, which also realizes the optimal spectrum efficiency. In conclusion, there are two major innovations of the proposed imaging system: 1) the completely random field illuminations based on 1-bit phase modulation; 2) the approach to optimizing the system on desired demand. The compact and low-cost imaging system promises to have various imaging applications, such as public security and indoor localization.
      通信作者: 周天益, zhoutianyi@nbu.edu.cn
    • 基金项目: 宁波大学学科项目(批准号: XKL14D2058, XYL15008)和宁波大学王宽诚幸福基金资助的课题.
      Corresponding author: Zhou Tian-Yi, zhoutianyi@nbu.edu.cn
    • Funds: Project supported by Ningbo University Discipline Project, China (Grant Nos. XKL14D2058, XYL15008) and the K. C. Wong Magna Fund in Ningbo University, China.
    [1]

    Nikolova N 2017 Introduction to Microwave Imaging (Cambridge: Cambridge University Press) pp1–20

    [2]

    Elsdon M, Smith D, Leach M, Foti S 2005 Microw. Opt. Techn. Lett. 47 536

    [3]

    Ahmed S S, Schiessl A, Gumbmann F, Tiebout M, Methfessel S, Schmidt L P 2012 IEEE Microw. Mag. 13 26

    [4]

    Laviada J, Wu B, Ghasr M T, Zoughi R 2018 IEEE Trans. Instrum. Meas. 99 1

    [5]

    Di Meo S, Espín-López P F, Martellosio A, Pasian M, Matrone G, Bozzi M, Magenes G, Mazzanti A, Perregrini L, Svelto F, Summers P E, Renne G, Preda L, Bellomi M 2017 IEEE Trans. Microw. Theory Techn. 65 1795Google Scholar

    [6]

    BaranoskiE J 2008 J. Franklin Inst. 345 556Google Scholar

    [7]

    Bertero M, Boccacci P 1998 Introduction to Inverse Problems in Imaging (Bristol: Institute of Physics Pub.) pp1–11

    [8]

    Wang Y M, Chew W C 1989 Int. J. Imaging Syst. Technol. 1 100Google Scholar

    [9]

    van den Berg P M, Kleinman R E 1997 Inv. Prob. 13 1607Google Scholar

    [10]

    Benedetti M, Franceschini G, Azaro R, Massa A 2007 Antennas Wirel. Propag. Lett. 6 271Google Scholar

    [11]

    Mojabi P, Lovetri J, Shafai L 2011 IEEE Trans. Antennas Propag. 59 4790Google Scholar

    [12]

    Chen X 2010 IEEE Trans. Geosci. Remote Sens. 48 42Google Scholar

    [13]

    Palmeri P, Martina B, Lorenzo C, Tommaso I, Loreto D 2017 IEEE Trans. Antennas Propag. 65 829Google Scholar

    [14]

    Xu K, Zhong Y, Chen X, Lesselier D 2018 IEEE Trans. Antennas Propag. 66 4228Google Scholar

    [15]

    Pastorino M 2010 Microwave Imaging (Hoboken N J: John Wiley) pp20–53

    [16]

    Yurduseven O, Gollub J N, Marks D L, Smith D R 2016 Opt. Express 24 8907Google Scholar

    [17]

    Yurduseven O, Gowda V R, Gollub J N, Smith D R 2016 IEEE Microw. Compon. Lett. 26 367Google Scholar

    [18]

    Hunt J, Driscoll T, Mrozack A, Lipworth G, Reynolds M, Brady D, Smith D R 2013 Science 339 310Google Scholar

    [19]

    Lipworth G, Mrozack A, Hunt J, Marks D L, Driscoll T, Brady D, Smith D R 2013 J. Opt. Soc. Am. A 30 1603Google Scholar

    [20]

    Hunt J, Gollub J, Driscoll T, Lipworth G, Mrozack A, Reynolds M, Brady D, Smith D R 2014 J. Opt. Soc. Am. A 31 2109

    [21]

    Sleasman T, Imani M F, Gollub J N, Smith D R 2015 Appl. Phys. Lett. 107 204104Google Scholar

    [22]

    Sleasman T, Boyarsk M, Imani M F, Gollub J N, Smith D R 2016 J. Opt. Soc. Am. B 33 1098Google Scholar

    [23]

    Sleasman T, Boyarsky M, Pulido-Mancera L, Fromenteze T, Imani M F, Reynolds M S, Smith D R 2017 IEEE Trans. Antennas Propag. 65 6864Google Scholar

    [24]

    Li Y, Li L, Xu, B, Wu W, Wu R, Wan X, Cheng Q, Cui T 2016 Sci. Rep. 6 23731

    [25]

    Kong J A 1986 Theory of Electromagnetic Waves (New York: Wiley) pp225–229

    [26]

    Donoho D L 2006 IEEE Trans. Inf. Theory 52 1289

    [27]

    Massa A, Rocca P, Oliveri G 2015 IEEE Antennas Propag. Mag. 57 224Google Scholar

    [28]

    Hua Y, Sarkar T K 1991 IEEE Trans. Signal Process. 39 892Google Scholar

    [29]

    Fan T, Ma C, Gu Z, Lv Q, Chen J, Ye D, Huangfu J, Sun Y, Li C, Ran L 2016 IEEE Trans. Microw. Theory Techn. 64 4012Google Scholar

  • 图 1  基于随机场照射的成像系统示意图

    Fig. 1.  Schematic diagram of the imaging system based on randomized field illuminations.

    图 2  基于1 bit随机相位调制的成像系统框图

    Fig. 2.  System-level diagram of the imaging system based on 1-bit randomizedphase modulation.

    图 3  不同1 bit随机相位分布对应的H矩阵随机性分析

    Fig. 3.  Randomness analysis of the H matrix for different 1-bit phase.

    图 5  成像系统参数之间关系 (a)最优成像距离R与组阵间距Δ r、分辨率Δ r′之间的变化关系; (b)最优成像距离R与天线单元数量N、分辨率Δ r′之间的变化关系

    Fig. 5.  Dependence analysis: (a) Dependence of the optimal imaging distance with respect to Δ r and Δ r′; (b) dependence of the optimal imaging distance with respect to Δ r′ and N when Δ r = 0.5$\lambda $.

    图 4  随测量次数和成像距离变化的H矩阵奇异值分布曲线(a)以及25测量处的二维剖面(b)

    Fig. 4.  (a) Dependence of the normalized singular value with respect to the measurement times M and the imaging distance R; (b) profiles of Fig. 4(a) for M = 25.

    图 6  仿真设置 (a) “T”形目标; (b), (c)任意两次随机照射; (d) H矩阵的归一化奇异值

    Fig. 6.  Simulation setup: (a) T-shaped object; (b), (c) randomized illuminations; (d) singular values of the H matrix.

    图 7  基于信噪比15 dB的仿真数据反演得到不同成像距离处的重建图像 (a) R = 5$\lambda $的重建图像; (b) R = 10$\lambda $的重建图像; (c) R = 15$\lambda $的重建图像; (d)重建图像误差随成像距离的变化曲线

    Fig. 7.  Reconstructed images based on simulated data with a 15 dB SNR. Reconstructed images for imaging distances of 5$\lambda $ (a), 10$\lambda $ (b) and 15$\lambda $ (c), respectively; (d) NRMSE analysis of images reconstructed with different imaging distances.

    图 8  基于仿真数据反演得到不同信噪比下的重建图像 (a) SNR = 5 dB; (b) SNR = 10 dB; (c) SNR = 20 dB; (d) SNR = 25 dB; (e) SNR = 30 dB; (f) NRMSE分析

    Fig. 8.  Reconstructed images based on simulated data with different SNRs. Reconstructed images with SNR values of 5 dB (a), 10 dB (b), 20 dB (c), 25 dB (d) and 30 dB (e), respectively; (f) NRMSE analysis.

    图 9  1 bit相位调制器 (a)电路拓扑结构和测试板照片; (b)两种切换状态下实测幅度和相位

    Fig. 9.  1-bit phase modulator: (a) Topology and test board; (b) measured amplitude and phase difference.

    图 10  成像实验系统的集成电路板照片

    Fig. 10.  Photo of the board-integrated imaging system.

    图 11  实测H矩阵的归一化奇异值

    Fig. 11.  Normalized singular values of the H matrix using the measured data.

    图 12  基于随机多波束照射的微波成像实验系统

    Fig. 12.  Experimental setup of the imaging system based on random field illuminations.

    图 14  在最优成像距离处的成像实验结果 (a)原始目标; (b)重建图像

    Fig. 14.  Imaging results at the optimal distance using experimental data: (a) The original objects; (b) reconstructed images.

    图 13  不同成像距离处的成像实验结果 (a)离散点目标和倒“L”形状目标在不同成像距离R的重建图像; (b)重建图像误差随成像距离R的变化曲线

    Fig. 13.  Experimental results with different R: (a) Reconstructed imageof two discrete objectsand inverted L-shape objectat 7$\lambda $, 10$\lambda $, and 13$\lambda $ distances, respectively; (b) NRMSE analysis.

  • [1]

    Nikolova N 2017 Introduction to Microwave Imaging (Cambridge: Cambridge University Press) pp1–20

    [2]

    Elsdon M, Smith D, Leach M, Foti S 2005 Microw. Opt. Techn. Lett. 47 536

    [3]

    Ahmed S S, Schiessl A, Gumbmann F, Tiebout M, Methfessel S, Schmidt L P 2012 IEEE Microw. Mag. 13 26

    [4]

    Laviada J, Wu B, Ghasr M T, Zoughi R 2018 IEEE Trans. Instrum. Meas. 99 1

    [5]

    Di Meo S, Espín-López P F, Martellosio A, Pasian M, Matrone G, Bozzi M, Magenes G, Mazzanti A, Perregrini L, Svelto F, Summers P E, Renne G, Preda L, Bellomi M 2017 IEEE Trans. Microw. Theory Techn. 65 1795Google Scholar

    [6]

    BaranoskiE J 2008 J. Franklin Inst. 345 556Google Scholar

    [7]

    Bertero M, Boccacci P 1998 Introduction to Inverse Problems in Imaging (Bristol: Institute of Physics Pub.) pp1–11

    [8]

    Wang Y M, Chew W C 1989 Int. J. Imaging Syst. Technol. 1 100Google Scholar

    [9]

    van den Berg P M, Kleinman R E 1997 Inv. Prob. 13 1607Google Scholar

    [10]

    Benedetti M, Franceschini G, Azaro R, Massa A 2007 Antennas Wirel. Propag. Lett. 6 271Google Scholar

    [11]

    Mojabi P, Lovetri J, Shafai L 2011 IEEE Trans. Antennas Propag. 59 4790Google Scholar

    [12]

    Chen X 2010 IEEE Trans. Geosci. Remote Sens. 48 42Google Scholar

    [13]

    Palmeri P, Martina B, Lorenzo C, Tommaso I, Loreto D 2017 IEEE Trans. Antennas Propag. 65 829Google Scholar

    [14]

    Xu K, Zhong Y, Chen X, Lesselier D 2018 IEEE Trans. Antennas Propag. 66 4228Google Scholar

    [15]

    Pastorino M 2010 Microwave Imaging (Hoboken N J: John Wiley) pp20–53

    [16]

    Yurduseven O, Gollub J N, Marks D L, Smith D R 2016 Opt. Express 24 8907Google Scholar

    [17]

    Yurduseven O, Gowda V R, Gollub J N, Smith D R 2016 IEEE Microw. Compon. Lett. 26 367Google Scholar

    [18]

    Hunt J, Driscoll T, Mrozack A, Lipworth G, Reynolds M, Brady D, Smith D R 2013 Science 339 310Google Scholar

    [19]

    Lipworth G, Mrozack A, Hunt J, Marks D L, Driscoll T, Brady D, Smith D R 2013 J. Opt. Soc. Am. A 30 1603Google Scholar

    [20]

    Hunt J, Gollub J, Driscoll T, Lipworth G, Mrozack A, Reynolds M, Brady D, Smith D R 2014 J. Opt. Soc. Am. A 31 2109

    [21]

    Sleasman T, Imani M F, Gollub J N, Smith D R 2015 Appl. Phys. Lett. 107 204104Google Scholar

    [22]

    Sleasman T, Boyarsk M, Imani M F, Gollub J N, Smith D R 2016 J. Opt. Soc. Am. B 33 1098Google Scholar

    [23]

    Sleasman T, Boyarsky M, Pulido-Mancera L, Fromenteze T, Imani M F, Reynolds M S, Smith D R 2017 IEEE Trans. Antennas Propag. 65 6864Google Scholar

    [24]

    Li Y, Li L, Xu, B, Wu W, Wu R, Wan X, Cheng Q, Cui T 2016 Sci. Rep. 6 23731

    [25]

    Kong J A 1986 Theory of Electromagnetic Waves (New York: Wiley) pp225–229

    [26]

    Donoho D L 2006 IEEE Trans. Inf. Theory 52 1289

    [27]

    Massa A, Rocca P, Oliveri G 2015 IEEE Antennas Propag. Mag. 57 224Google Scholar

    [28]

    Hua Y, Sarkar T K 1991 IEEE Trans. Signal Process. 39 892Google Scholar

    [29]

    Fan T, Ma C, Gu Z, Lv Q, Chen J, Ye D, Huangfu J, Sun Y, Li C, Ran L 2016 IEEE Trans. Microw. Theory Techn. 64 4012Google Scholar

  • [1] 魏嘉昕, 沙鹏飞, 方旭晨, 卢增雄, 李慧, 谭芳蕊, 吴晓斌. 基于相位调制的高相干光源照明匀化方法. 物理学报, 2024, 73(15): 154101. doi: 10.7498/aps.73.20240644
    [2] 范钰婷, 朱恩旭, 赵超樱, 谭维翰. 基于电光晶体平板部分相位调制动态产生涡旋光束. 物理学报, 2022, 71(20): 207801. doi: 10.7498/aps.71.20220835
    [3] 罗文, 陈天江, 张飞舟, 邹凯, 安建祝, 张建柱. 基于阶梯相位调制的窄谱激光主动照明均匀性. 物理学报, 2021, 70(15): 154207. doi: 10.7498/aps.70.20210228
    [4] 冯奎胜, 李娜, 杨欢欢. 电磁超构表面与天线结构一体化的低RCS阵列. 物理学报, 2021, 70(19): 194101. doi: 10.7498/aps.70.20210746
    [5] 崔岸婧, 李道京, 周凯, 王宇, 洪峻. 阵列结构下的低频信号合成方法研究. 物理学报, 2020, 69(19): 194101. doi: 10.7498/aps.69.20200501
    [6] 肖鸿晶, 黄超, 唐玉龙, 徐剑秋. 基于时间透镜系统的冲击脉冲产生与特性研究. 物理学报, 2019, 68(15): 154201. doi: 10.7498/aps.68.20190246
    [7] 戴殊韬, 江涛, 吴丽霞, 吴鸿春, 林文雄. 单脉冲时间精确可控的单纵模Nd:YAG激光器. 物理学报, 2019, 68(13): 134202. doi: 10.7498/aps.68.20190393
    [8] 杜军, 杨娜, 李峻灵, 曲彦臣, 李世明, 丁云鸿, 李锐. 相位调制激光多普勒频移测量方法的改进. 物理学报, 2018, 67(6): 064204. doi: 10.7498/aps.67.20172049
    [9] 刘雅坤, 王小林, 粟荣涛, 马鹏飞, 张汉伟, 周朴, 司磊. 相位调制信号对窄线宽光纤放大器线宽特性和受激布里渊散射阈值的影响. 物理学报, 2017, 66(23): 234203. doi: 10.7498/aps.66.234203
    [10] 袁强, 赵文轩, 马睿, 张琛, 赵伟, 王爽, 冯晓强, 王凯歌, 白晋涛. 基于偏振光相位调制的超衍射极限空间结构光研究. 物理学报, 2017, 66(11): 110201. doi: 10.7498/aps.66.110201
    [11] 巴斌, 刘国春, 李韬, 林禹丞, 王瑜. 基于哈达玛积扩展子空间的到达时间和波达方向联合估计. 物理学报, 2015, 64(7): 078403. doi: 10.7498/aps.64.078403
    [12] 肖夏, 宋航, 王梁, 王宗杰, 路红. 早期乳腺肿瘤的超宽带微波稳健波束形成成像检测系统. 物理学报, 2014, 63(19): 194102. doi: 10.7498/aps.63.194102
    [13] 杜军, 赵卫疆, 曲彦臣, 陈振雷, 耿利杰. 基于相位调制器与Fabry-Perot干涉仪的激光多普勒频移测量方法. 物理学报, 2013, 62(18): 184206. doi: 10.7498/aps.62.184206
    [14] 肖夏, 徐立, 刘冰雨. 超宽带微波检测早期乳腺肿瘤三维仿真. 物理学报, 2013, 62(4): 044105. doi: 10.7498/aps.62.044105
    [15] 甘永超, 曹万强. 铁电相变中极化与介电性的随机场效应. 物理学报, 2013, 62(12): 127701. doi: 10.7498/aps.62.127701
    [16] 罗博文, 董建绩, 王晓, 黄德修, 张新亮. 基于相位调制和线性滤波的多信道多功能光学微分器. 物理学报, 2012, 61(9): 094213. doi: 10.7498/aps.61.094213
    [17] 马阎星, 王小林, 周朴, 马浩统, 赵海川, 许晓军, 司磊, 刘泽金, 赵伊君. 大气湍流对多抖动法相干合成技术中相位调制信号的影响. 物理学报, 2011, 60(9): 094211. doi: 10.7498/aps.60.094211
    [18] 黄小东, 张小民, 王建军, 许党朋, 张锐, 林宏焕, 邓颖, 耿远超, 余晓秋. 色散对高能激光光纤前端FM-AM效应的影响. 物理学报, 2010, 59(3): 1857-1862. doi: 10.7498/aps.59.1857
    [19] 蔡冬梅, 凌 宁, 姜文汉. 纯相位液晶空间光调制器拟合泽尼克像差性能分析. 物理学报, 2008, 57(2): 897-903. doi: 10.7498/aps.57.897
    [20] 朱常兴, 冯焱颖, 叶雄英, 周兆英, 周永佳, 薛洪波. 利用原子干涉仪的相位调制进行绝对转动测量. 物理学报, 2008, 57(2): 808-815. doi: 10.7498/aps.57.808
计量
  • 文章访问数:  9099
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-01
  • 修回日期:  2018-12-28
  • 上网日期:  2019-03-01
  • 刊出日期:  2019-03-05

/

返回文章
返回