搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于金属光栅实现石墨烯三通道光吸收增强

江孝伟 武华 袁寿财

引用本文:
Citation:

基于金属光栅实现石墨烯三通道光吸收增强

江孝伟, 武华, 袁寿财

Enhancement of graphene three-channel optical absorption based on metal grating

Jiang Xiao-Wei, Wu Hua, Yuan Shou-Cai
PDF
HTML
导出引用
  • 为了增强单层石墨烯在可见光和近红外波段的吸收效率并实现多通道光吸收. 本文利用石墨烯-金属光栅-介质层-金属衬底混合结构在λ1 = 0.553 μm、λ2 = 0.769 μm、λ3 = 1.130 μm三通道上提高了石墨烯吸收效率, 石墨烯吸收效率最高可达41%. 对3个光吸收增强通道的磁场分布分析可得它们分别源于表面等离子体激元共振、法布里-帕罗干涉腔共振、磁激元共振. 经过模拟分析可知, 通过调节金属光栅宽度、介质层厚度可以调谐混合结构的共振峰波长和吸收效率, 而石墨烯化学势仅能对共振峰λ3的吸收效率有影响. 最后优化结构参数, 在最优结构参数下混合结构在3个光吸收增强通道的光吸收效率可达0.97以上, 这可以作为超材料吸收器.
    As an emerging new material, graphene has aroused the great research interest. How to improve its absorption efficiency is one of the hot research topics. However, currently most of the studies concentrate in THz band or middle-to-far-infrared region: the research in the visible and near-infrared regions is rare, which greatly limits the applications of graphene in opto-electric fields. In order to improve the absorption efficiency of single-layered graphene in visible and near-infrared band and realize multi-channel optical absorption enhancement, we propose a hybrid structure consisting of graphene-metal grating-dielectric layer-metal substrate. The proposed structure can realize three-channel light absorption enhancement at wavelengths λ1 = 0.553 μm, λ2 = 0.769 μm, and λ3 = 1.130 μm. The maximum absorption efficiency of graphene is 41%, which is 17.82 times that of single-layered graphene. The magnetic field distributions of the hybrid structure at three resonance wavelengths are calculated respectively. It can be found that for the resonance peak λ1, the energy of light field is distributed mainly on the surface of metal grating, which is the characteristic of surface plasmon polariton (SPP) resonance. Therefore, it can be judged that the enhancement of graphene absorption in this channel is due to the SPP resonance stimulated by metal grating. For the resonance peak λ2, the energy of the optical field is mainly confined into the metal grating groove, which is the remarkable resonance characteristic of the Fabry-Pérot (FP) cavity, it can be concluded that the enhancement of the optical absorption of graphene at the resonance peak λ2 is due to the resonance of the FP cavity. When the resonance peak is λ3, the energy of the light field mainly concentrates on the upper and lower edges of the metal grating and permeates into the SiO2 layer, and it can be observed that there are energy concentration points (reddish) at the left end and the right end of the metal grating edge, which is a typical magnetic polariton (MP) resonance feature. Therefore, the enhancement of absorption of graphene at the resonance peak λ3 is caused by the MP resonance induced by the metal grating. We also analyze the absorption characteristic (resonance wavelength and absorption efficiency) dependence on structure parameters by using the finite-difference time-domain (FDTD) simulation. Our study reveals that by increasing grating width, all the three resonance wavelengths are red-shifted, and the absorption efficiency at λ2 and λ3 are both enhanced whereas the absorption efficiency at λ1 almost keeps unchanged. By increasing dielectric layer thickness, λ2 will be red-shifted and λ3 will be blue-shifted, whereas the absorption efficiency at the three resonance wavelengths all remain constant. By increasing graphene chemical potential, none of the wavelengths of the three absorption peaks is shifted, and the absorption efficiency at λ3 decreases. According to our findings, we optimize structure parameters and achieve the light absorption efficiency larger than 97% at the three channels simultaneously, which can make metamaterial absorbers.
      通信作者: 武华, wh1125@126.com
    • 基金项目: 国家自然科学基金(批准号: 61575008, 61650404)、浙江省教育厅一般科研项目(批准号: Y201738091, Y201839950)、江西省自然科学基金(批准号: 20171BAB202037)、江西省教育厅科技项目(批准号: GJJ170819)、衢州市科技计划项目(批准号: 2017G16)、智能制造工业与工业大数据技术应用创新团队(批准号: QZCX1801)和赣南师范大学招标课题(批准号: 16zb04)资助的课题.
      Corresponding author: Wu Hua, wh1125@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61575008, 61650404), the General Research Projects of Zhejiang Provincial Education Department, China (Grant Nos. Y201738091, Y201839950), the Jiangxi Natural Science Foundation, China (Grant No. 20171BAB202037), the Technology Project of Jiangxi Provincial Education Department, China (Grant No. GJJ170819), the Quzhou Science and Technology Project, China (Grant No. 2017G16), Intelligent Manufacturing Industry and Industrial Big Data Technology Application Innovation Team, China(Grant No. QZCX1801), and the Science and the Bidding for Gannan Normal University, China (Grant No. 16zb04).
    [1]

    Zhao B, Zhao J M, Zhang Z M 2014 Appl. Phys. Lett. 105 031905

    [2]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385Google Scholar

    [3]

    Du X, Skachko I, Barker A, Andrei E Y 2008 Nature Nanotechnol. 3 491Google Scholar

    [4]

    梁振江, 刘海霞, 牛燕雄, 尹贻恒 2016 物理学报 65 138501Google Scholar

    Liang Z J, Liu H X, Niu Y X, Yin Y H 2016 Acta Phys. Sin. 65 138501Google Scholar

    [5]

    Sukosin T, Frank H L K, Javier G D A 2012 Phys. Rev. Lett. 108 47401Google Scholar

    [6]

    Zhao Z, Li G, Yu F, Yang H, Chen X, Lu W 2018 Plasmonics 13 2267

    [7]

    梁振江, 刘海霞, 牛燕雄, 刘凯铭, 尹贻恒 2016 物理学报 65 168101Google Scholar

    Liang Z J, Liu H X, Niu Y X, Liu K M,Yin Y H 2016 Acta Phys. Sin. 65 168101Google Scholar

    [8]

    Gao Y, Zhou G, Zhao N, Tsang H K, Shu C 2018 Opt. Lett. 43 1399Google Scholar

    [9]

    Ferrari A, Ferrante C, Virga A, Benfatto L, Martinati M, Fazio D D 2018 Nat. Commun. 9 308Google Scholar

    [10]

    Sun Z, Hasan T, Torrisi F, Popa D, Privitera G, Wang F 2010 Acs Nano 4 803Google Scholar

    [11]

    Qiu J, Shang Y, Chen X, Li S, Ma W, Wan X 2018 J. Mater. Sci. Technol. 34 2197

    [12]

    Zhang L, Ding Z C, Tong T, Liu J 2017 Nanoscale 9 3524Google Scholar

    [13]

    Hsiao T J, Eyassu T, Henderson K, Kim T, Lin C T 2013 Nanotechnology 24 395401Google Scholar

    [14]

    Lu H, Cumming B P, Gu M 2015 Opt. Lett. 40 3647Google Scholar

    [15]

    Fang Z Y, Wang Y M, Schlather A E, Liu Z, Ajayan P M 2014 Nano Lett. 14 299Google Scholar

    [16]

    张会云, 黄晓燕, 陈琦, 丁春峰, 李彤彤 吕欢欢 徐世林 张晓 张玉萍 姚建铨 2016 物理学报 65 018101Google Scholar

    Zhang H Y, Huang X Y, Chen Q, Ding C F, Li T T, Lü H H, Xu S L, Zhang X, Zhang Y P, Yao J 2016 Acta Phys. Sin. 65 018101Google Scholar

    [17]

    Sang T, Wang R, Li J L, Zhou J Y, Wang Y K 2018 Opt. Commun. 413 255Google Scholar

    [18]

    Wang B, Qin C, Huang H, Long H, Wang K, Lu P 2014 Opt. Express 22 25324Google Scholar

    [19]

    Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J 2008 Science 320 1308Google Scholar

    [20]

    Liu Y, Chadha A, Zhao D, Piper J R 2014 Appl. Phys. Lett. 105 181105Google Scholar

    [21]

    Furchi M, Urich A, Pospischil A, Lilley G, Unterrainer K 2012 Nano Lett. 12 2273

    [22]

    Liu J T, Liu N H, Li J, Li X J, Huang J H 2012 Appl. Phys. Lett. 101 052104Google Scholar

    [23]

    Zhang L, Tang L, Wei W, Cheng X, Wang W, Zhang H 2016 Opt. Express 24 20002Google Scholar

    [24]

    Fang Z, Wang Y, Zheng L, Schlather A, Ajayan P M 2012 Acs Nano 6 10222Google Scholar

    [25]

    Xia S X, Zhai X, Huang Y, Liu J Q, Wang L L, Wen S C 2017 Opt. Lett. 42 3052Google Scholar

    [26]

    Thareja V, Kang J H, Yuan H, Milaninia K M, Hwang H Y, Cui Y 2015 Nano Lett. 15 1570Google Scholar

    [27]

    高健, 桑田, 李俊浪, 王啦 2018 物理学报 67 184210Google Scholar

    Gao J, Sang T, Li J L, Wang L 2018 Acta Phys. Sin. 67 184210Google Scholar

    [28]

    Liu B, Tang C, Chen J Pei M, Wang Q 2017 Opt. Express 25 12061Google Scholar

    [29]

    陈浩, 张晓霞, 王鸿, 姬月华 2018 物理学报 67 118101Google Scholar

    Chen H, Zhang X X, Wang H, Ji Y H. 2018 Acta Phys. Sin. 67 118101Google Scholar

    [30]

    Bao Q, Zhang H, Wang B, Ni Z, Wang Y 2011 Nature Photo. 5 411Google Scholar

    [31]

    Zhao B, Zhao J M, Zhang Z M 2015 J. Opt. Soc. Am. B 32 1176Google Scholar

    [32]

    Wang L P, Zhang Z M 2009 Appl. Phys. Lett. 95 111904Google Scholar

    [33]

    Garciavidal F J, Sanchezdehesa J, Dechelette A 2002 J. Lightwave Technol. 11 2191

    [34]

    叶胜威 2018 博士学位论文(成都: 电子科技大学)

    Ye S W 2018 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China)(in Chinese)

    [35]

    Su Z, Yin J, Zhao X 2015 Opt. Express 23 1679Google Scholar

    [36]

    Luo C, Ling F, Yao G 2016 Opt. Express 24 1518Google Scholar

  • 图 1  石墨烯-金属光栅-绝缘层-金属衬底混合结构

    Fig. 1.  Graphene-metal grating-insulating layer-metal substrate hybrid structure.

    图 2  有和没有石墨烯层混合结构的吸收率

    Fig. 2.  Absorption efficiency of hybrid structure with and without a graphene layer.

    图 3  混合结构在共振波长处的磁场分布

    Fig. 3.  Magnetic field distribution of hybrid structure at resonance wavelength.

    图 4  光栅宽度对混合结构吸特性的影响

    Fig. 4.  Influence of the width of the grating on the absorption characteristics of the hybrid structure.

    图 5  混合结构RLC等效电路

    Fig. 5.  RLC equivalent circuit of hybrid structure.

    图 6  SiO2层厚度d对混合结构吸特性的影响

    Fig. 6.  Influence of the thickness of the SiO2 layer on the absorption characteristics of the hybrid structure.

    图 7  化学势对混合结构吸收特性的影响

    Fig. 7.  Influence of the chemical potential on the absorption characteristics of the hybrid structure.

    图 8  不同共振波长下化学势对石墨烯介电常数虚部的影响

    Fig. 8.  Influence of the chemical potential on the imaginary part of dielectric constant of graphene at different Resonance wavelength.

    图 9  最优参数下混合结构的吸收效率

    Fig. 9.  Absorption efficiency of optimal mixed structures.

  • [1]

    Zhao B, Zhao J M, Zhang Z M 2014 Appl. Phys. Lett. 105 031905

    [2]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385Google Scholar

    [3]

    Du X, Skachko I, Barker A, Andrei E Y 2008 Nature Nanotechnol. 3 491Google Scholar

    [4]

    梁振江, 刘海霞, 牛燕雄, 尹贻恒 2016 物理学报 65 138501Google Scholar

    Liang Z J, Liu H X, Niu Y X, Yin Y H 2016 Acta Phys. Sin. 65 138501Google Scholar

    [5]

    Sukosin T, Frank H L K, Javier G D A 2012 Phys. Rev. Lett. 108 47401Google Scholar

    [6]

    Zhao Z, Li G, Yu F, Yang H, Chen X, Lu W 2018 Plasmonics 13 2267

    [7]

    梁振江, 刘海霞, 牛燕雄, 刘凯铭, 尹贻恒 2016 物理学报 65 168101Google Scholar

    Liang Z J, Liu H X, Niu Y X, Liu K M,Yin Y H 2016 Acta Phys. Sin. 65 168101Google Scholar

    [8]

    Gao Y, Zhou G, Zhao N, Tsang H K, Shu C 2018 Opt. Lett. 43 1399Google Scholar

    [9]

    Ferrari A, Ferrante C, Virga A, Benfatto L, Martinati M, Fazio D D 2018 Nat. Commun. 9 308Google Scholar

    [10]

    Sun Z, Hasan T, Torrisi F, Popa D, Privitera G, Wang F 2010 Acs Nano 4 803Google Scholar

    [11]

    Qiu J, Shang Y, Chen X, Li S, Ma W, Wan X 2018 J. Mater. Sci. Technol. 34 2197

    [12]

    Zhang L, Ding Z C, Tong T, Liu J 2017 Nanoscale 9 3524Google Scholar

    [13]

    Hsiao T J, Eyassu T, Henderson K, Kim T, Lin C T 2013 Nanotechnology 24 395401Google Scholar

    [14]

    Lu H, Cumming B P, Gu M 2015 Opt. Lett. 40 3647Google Scholar

    [15]

    Fang Z Y, Wang Y M, Schlather A E, Liu Z, Ajayan P M 2014 Nano Lett. 14 299Google Scholar

    [16]

    张会云, 黄晓燕, 陈琦, 丁春峰, 李彤彤 吕欢欢 徐世林 张晓 张玉萍 姚建铨 2016 物理学报 65 018101Google Scholar

    Zhang H Y, Huang X Y, Chen Q, Ding C F, Li T T, Lü H H, Xu S L, Zhang X, Zhang Y P, Yao J 2016 Acta Phys. Sin. 65 018101Google Scholar

    [17]

    Sang T, Wang R, Li J L, Zhou J Y, Wang Y K 2018 Opt. Commun. 413 255Google Scholar

    [18]

    Wang B, Qin C, Huang H, Long H, Wang K, Lu P 2014 Opt. Express 22 25324Google Scholar

    [19]

    Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J 2008 Science 320 1308Google Scholar

    [20]

    Liu Y, Chadha A, Zhao D, Piper J R 2014 Appl. Phys. Lett. 105 181105Google Scholar

    [21]

    Furchi M, Urich A, Pospischil A, Lilley G, Unterrainer K 2012 Nano Lett. 12 2273

    [22]

    Liu J T, Liu N H, Li J, Li X J, Huang J H 2012 Appl. Phys. Lett. 101 052104Google Scholar

    [23]

    Zhang L, Tang L, Wei W, Cheng X, Wang W, Zhang H 2016 Opt. Express 24 20002Google Scholar

    [24]

    Fang Z, Wang Y, Zheng L, Schlather A, Ajayan P M 2012 Acs Nano 6 10222Google Scholar

    [25]

    Xia S X, Zhai X, Huang Y, Liu J Q, Wang L L, Wen S C 2017 Opt. Lett. 42 3052Google Scholar

    [26]

    Thareja V, Kang J H, Yuan H, Milaninia K M, Hwang H Y, Cui Y 2015 Nano Lett. 15 1570Google Scholar

    [27]

    高健, 桑田, 李俊浪, 王啦 2018 物理学报 67 184210Google Scholar

    Gao J, Sang T, Li J L, Wang L 2018 Acta Phys. Sin. 67 184210Google Scholar

    [28]

    Liu B, Tang C, Chen J Pei M, Wang Q 2017 Opt. Express 25 12061Google Scholar

    [29]

    陈浩, 张晓霞, 王鸿, 姬月华 2018 物理学报 67 118101Google Scholar

    Chen H, Zhang X X, Wang H, Ji Y H. 2018 Acta Phys. Sin. 67 118101Google Scholar

    [30]

    Bao Q, Zhang H, Wang B, Ni Z, Wang Y 2011 Nature Photo. 5 411Google Scholar

    [31]

    Zhao B, Zhao J M, Zhang Z M 2015 J. Opt. Soc. Am. B 32 1176Google Scholar

    [32]

    Wang L P, Zhang Z M 2009 Appl. Phys. Lett. 95 111904Google Scholar

    [33]

    Garciavidal F J, Sanchezdehesa J, Dechelette A 2002 J. Lightwave Technol. 11 2191

    [34]

    叶胜威 2018 博士学位论文(成都: 电子科技大学)

    Ye S W 2018 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China)(in Chinese)

    [35]

    Su Z, Yin J, Zhao X 2015 Opt. Express 23 1679Google Scholar

    [36]

    Luo C, Ling F, Yao G 2016 Opt. Express 24 1518Google Scholar

  • [1] 关建飞, 俞潇, 丁冠天, 陈陶, 陆云清. 金属光栅覆盖分布式布拉格反射镜结构的透射增强效应. 物理学报, 2024, 73(11): 117301. doi: 10.7498/aps.73.20240357
    [2] 沈艳丽, 史冰融, 吕浩, 张帅一, 王霞. 基于石墨烯的Au纳米颗粒增强染料随机激光. 物理学报, 2022, 71(3): 034206. doi: 10.7498/aps.71.20211613
    [3] 郭晓蒙, 青芳竹, 李雪松. 石墨烯在金属表面防腐中的应用. 物理学报, 2021, 70(9): 098102. doi: 10.7498/aps.70.20210349
    [4] 江孝伟, 武华. 吸收波长和吸收效率可控的超材料吸收器. 物理学报, 2021, 70(2): 027804. doi: 10.7498/aps.70.20201173
    [5] 赵承祥, 郄媛, 余耀, 马荣荣, 秦俊飞, 刘彦. 等离激元增强的石墨烯光吸收. 物理学报, 2020, 69(6): 067801. doi: 10.7498/aps.69.20191645
    [6] 吴晨晨, 郭相东, 胡海, 杨晓霞, 戴庆. 石墨烯等离激元增强红外光谱. 物理学报, 2019, 68(14): 148103. doi: 10.7498/aps.68.20190903
    [7] 王晓, 黄生祥, 罗衡, 邓联文, 吴昊, 徐运超, 贺君, 贺龙辉. 镍层间掺杂多层石墨烯的电子结构及光吸收特性研究. 物理学报, 2019, 68(18): 187301. doi: 10.7498/aps.68.20190523
    [8] 陈浩, 张晓霞, 王鸿, 姬月华. 基于磁激元效应的石墨烯-金属纳米结构近红外吸收研究. 物理学报, 2018, 67(11): 118101. doi: 10.7498/aps.67.20180196
    [9] 高健, 桑田, 李俊浪, 王啦. 利用窄刻槽金属光栅实现石墨烯双通道吸收增强. 物理学报, 2018, 67(18): 184210. doi: 10.7498/aps.67.20180848
    [10] 王小发, 张俊红, 高子叶, 夏光琼, 吴正茂. 基于石墨烯可饱和吸收体的纳秒锁模掺铥光纤激光器. 物理学报, 2017, 66(11): 114209. doi: 10.7498/aps.66.114209
    [11] 许杰, 周丽, 黄志祥, 吴先良. 含石墨烯临界耦合谐振器的吸收特性研究. 物理学报, 2015, 64(23): 238103. doi: 10.7498/aps.64.238103
    [12] 谢凌云, 肖文波, 黄国庆, 胡爱荣, 刘江涛. 光子晶体增强石墨烯THz吸收. 物理学报, 2014, 63(5): 057803. doi: 10.7498/aps.63.057803
    [13] 于海玲, 朱嘉琦, 曹文鑫, 韩杰才. 金属催化制备石墨烯的研究进展. 物理学报, 2013, 62(2): 028201. doi: 10.7498/aps.62.028201
    [14] 王红培, 王广龙, 倪海桥, 徐应强, 牛智川, 高凤岐. 新型量子点场效应增强型单光子探测器. 物理学报, 2013, 62(19): 194205. doi: 10.7498/aps.62.194205
    [15] 冯德军, 黄文育, 姜守振, 季伟, 贾东方. 基于少数层石墨烯可饱和吸收的锁模光纤激光器. 物理学报, 2013, 62(5): 054202. doi: 10.7498/aps.62.054202
    [16] 陈英良, 冯小波, 侯德东. 单层与双层石墨烯的光学吸收性质研究. 物理学报, 2013, 62(18): 187301. doi: 10.7498/aps.62.187301
    [17] 延凤平, 刘鹏, 陶沛琳, 李琦, 彭万敬, 冯亭, 谭思宇. 双包层稀土掺杂光纤抽运吸收特性的分析. 物理学报, 2012, 61(16): 164203. doi: 10.7498/aps.61.164203
    [18] 保石, 罗春荣, 张燕萍, 赵晓鹏. 基于树枝结构单元的超材料宽带微波吸收器. 物理学报, 2010, 59(5): 3187-3191. doi: 10.7498/aps.59.3187
    [19] 刘敏敏, 张国平, 邹 明. 二元矩形金属光栅衍射增强电磁理论. 物理学报, 2006, 55(9): 4608-4612. doi: 10.7498/aps.55.4608
    [20] 谈春雷, 易永祥, 汪国平. 一维金属光栅的透射光学特性. 物理学报, 2002, 51(5): 1063-1067. doi: 10.7498/aps.51.1063
计量
  • 文章访问数:  10430
  • PDF下载量:  126
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-11
  • 修回日期:  2019-04-03
  • 上网日期:  2019-07-01
  • 刊出日期:  2019-07-05

/

返回文章
返回