搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

日光强度涨落自关联消湍流成像

李明飞 阎璐 杨然 寇军 刘院省

引用本文:
Citation:

日光强度涨落自关联消湍流成像

李明飞, 阎璐, 杨然, 寇军, 刘院省

Turbulence-free intensity fluctuation self-correlation imaging with sunlight

Li Ming-Fei, Yan Lu, Yang Ran, Kou Jun, Liu Yuan-Xing
PDF
HTML
导出引用
  • 从关联成像理论出发, 提出了日光场在实际大气湍流环境中强度点对点自关联成像理论, 并进行了实验验证, 分析了太阳光强度二阶自关联成像和强度点对点二阶自关联成像的区别. 研究结果表明, 太阳光场的点对点四阶自关联, 即强度的二阶点对点自关联, 可实现消大气湍流成像. 为验证理论有效性, 利用外场实验进行了验证, 获得优于17 km距离的消湍流成像结果. 理论和实验均表明, 太阳光强度涨落的点对点自关联可实现消大气湍流成像. 相比于相机直接成像, 本文成像方法消除了大气湍流影响, 同时该方案极大提升了关联成像技术的实用性, 可直接用于远距离消大气湍流的高质量成像, 增加图像识别率. 理论表明, 任何成像过程中波前受相位扰动影响的波段, 如红外、紫外等, 均可利用本文方法消除影响, 成果具有较大实用价值.
    Since its first experimental demonstration in 1995, ghost imaging has attracted a great deal of attention due to its potential applications. In Yanhua Shih’s paper (Meyers R E, Deacon K S, Shih Y H 2011 Appl. Phys. Lett. 98 111115; Meyers R E, Deacon K S, Shih Y H 2012 Appl. Phys. Lett. 100 131114), he pointed out that " one of the useful features is the turbulence insensitivity of thermal light ghost imaging, i.e., atmospheric turbulence would not have any influence on the ghost images of sunlight”. However, in Jeffrey H. Shapiro’s view (Shapiro J H 2012 arXiv:1201.4513 [quant-ph]), lens-less pseudo-thermal ghost imaging is not immune to spatial resolution loss from the presence of atmospheric turbulence along the propagation paths, unless the source diameter is less than the source-plane turbulence coherence length. In the present paper, we find that the second order self-correlation of sunlight intensity is the case that can be satisfied with both theories of Shih and Shapiro. In this paper, the second order self-correlation of sunlight intensity (the intensity variance of the images acquired by the CCD camera), rather than the total intensity correlation between images and bucket detector signals (the traditional ghost imaging method), is calculated to recover the high-quality images in turbulent atmosphere under a few hundred measurements. Inspired by Boyd’s paper, titled " thermal ghost imaging with averaged speckle patterns” (Zerom P, Shi Z, O’Sullivan M N, Chan K W C, Krogstad M, Shapiro J H, Boyd R W 2012 Phys. Rev. A 86 063817), turbulence insensitivity of sunlight ghost imaging is demonstrated both theoretically and experimentally in this article. It is found that thermal ghost imaging system whose coherence time need not to be controlled to match the speed of the detectors, ghost imaging with sunlight, which has always been considered intriguing and highly desirable, now is realizable. We present theoretical and experimental results showing that a sunlight self-correlation ghost imaging system can produce high-quality images even when it uses an slow detector and passes through the turbulence near ground, as long as the signal variation is predominantly caused by the fluctuation of the sunlight intensity rather than other noise sources. Our scheme can also be used to improve the image quality in other wave bands such as infrared and ultraviolet, in the case where an poor image quality results from the turbulence or other random disturbances on the wavefront.
      通信作者: 李明飞, mf_li@sina.cn
    • 基金项目: 国防基础科学研究计划(批准号: JCKY2016601C005)和国家自然科学基金(批准号: 61805006)资助的课题.
      Corresponding author: Li Ming-Fei, mf_li@sina.cn
    • Funds: Project supported by the National Defense Basic Scientific Research Program of China (Grant No. JCKY2016601C005) and the National Natural Science Foundation of China (Grant No. 61805006).
    [1]

    Cheng J 2009 Opt. Express 17 7916Google Scholar

    [2]

    Li C, Wang T, Pu J, Zhu W, Rao R 2010 Appl. Phys. B 99 599Google Scholar

    [3]

    Zhang P L, Gong W L, Han S S 2010 Phys. Rev. A 82 033817Google Scholar

    [4]

    Meyers R E, Deacon K S, Shih Y H 2011 Appl. Phys. Lett. 98 111115Google Scholar

    [5]

    Meyers R E, Deacon K S, Shih Y H 2012 Appl. Phys. Lett. 100 131114Google Scholar

    [6]

    Shapiro J H 2012 arXiv:1201.4513 [quant-ph]

    [7]

    Gong W L, Han S S 2009 arXiv:0911.4750[quant-ph]

    [8]

    Chen M L, Li E R, Gong W L, Xu X Y, Zhao C Q, Shen X, Xu W D, Han S S 2013 Opt. Photon. J. 3 83Google Scholar

    [9]

    Wang C L, Mei X, Pan L, Wang P, Li W, Gao X, Bo Z, Chen M L, Gong W, Han S S 2018 Remote Sens. 10 732Google Scholar

    [10]

    Zerom P, Shi Z, O’Sullivan M N, Chan K W C, Krogstad M, Shapiro J H, Robert W, Boyd 2012 Phys. Rev. A 86 063817Google Scholar

    [11]

    顾德曼 J W 著 (陈家璧, 秦克诚, 曹其智 译) 2018 统计光学(第二版) (科学出版社) 第326页

    Goodman J W (translated by Chen J B, Qing K C, Cao Q Z) 2000 Statistical Optics (2nd Ed.) (Beijing: Science Press) p326 (in Chinese)

    [12]

    陈玉良 1991 广播与电视技术 1 30

    Chen Y L 1991 Radio TV Broadcast Eng. 1 30

    [13]

    翁宁泉, 曾宗泳, 肖黎明, 马成胜, 龚知本 1999 强激光与粒子束 11 673

    Weng N Q, Zeng Z Y, Xiao L M, Ma C S, Gong Z B 1999 High Power Laser and Particle Beams 11 673

    [14]

    Smith T A, Shih Y 2018 Phys. Rev. Lett. 120 063606Google Scholar

    [15]

    Baykal Y, Plonus M A 1983 J. Opt. Soc. Am. 73 831Google Scholar

    [16]

    Baykal Y, Plonus M A 1985 J. Opt. Soc. Am. A 2 2124Google Scholar

    [17]

    李明飞, 莫小范, 张安宁 2016 导航与控制 5 1Google Scholar

    Li M F, Mo X F, Zhang A N 2016 Navigtion and Control 5 1Google Scholar

    [18]

    李明飞, 莫小范, 赵连洁, 霍娟, 杨然, 李凯, 张安宁 2015 物理学报 65 064201Google Scholar

    Li M F, Mo X F, Zhao L J, Huo J, Yang R, Li K, Zhang A N 2015 Acta Phys. Sin. 65 064201Google Scholar

    [19]

    Welsh S S, Edgar M P, Bowman R, Jonathan P, Sun B Q, Padgett M J 2013 Opt. Express 21 23068Google Scholar

    [20]

    Huynh-Thu Q, Ghanbari M 2008 Electron. Lett. 44 800Google Scholar

    [21]

    Li D, Mersereau R M, Simske S 2007 IEEE Geosci. Remote Sens. Lett. 4 340Google Scholar

  • 图 1  实验原理示意图

    Fig. 1.  Schematic diagram of the experimental setup.

    图 2  目标物体(成像目标: 北京中央广播电视塔, 200 m附近拍摄图像, 放大区域为成像区域; 在数字地图GPS定位下目标与实验地点距离$L=L_{2}=17.2\ \rm{km}$)

    Fig. 2.  Target photo is taken from about 200 m. The object is the Beijing Central Radio and TV Tower with the distance from our experimental location is about L = $L_{2}=17.2\ \rm{km}$ measured by GPS in digital map.

    图 3  实验系统中CCD相机拍摄图像 (a), (b), (c)和(d)为不同时间连续拍摄获得

    Fig. 3.  Images snapped by CCD camera: (a), (b), (c) and (d) are four snapped images with 100 μs exposure time.

    图 4  实验测试结果 (a) CCD单次曝光成像; (b)测量次数$M=500$累加平均图像; (c) 传统强度涨落关联成像; (d)强度自关联成像, 或强度方差成像

    Fig. 4.  Experimental results: (a) Single shot image; (b) image averaged by 500 frames; (c) intensity fluctuation correlated imaging; (d) second order sunlight intensity self-correlation imaging.

    图 5  分离物体与背景的掩模(白色为物体区域, 黑色为背景区域)

    Fig. 5.  Mask for object and background segmentation: Pixels in the white region as object, black region as background.

  • [1]

    Cheng J 2009 Opt. Express 17 7916Google Scholar

    [2]

    Li C, Wang T, Pu J, Zhu W, Rao R 2010 Appl. Phys. B 99 599Google Scholar

    [3]

    Zhang P L, Gong W L, Han S S 2010 Phys. Rev. A 82 033817Google Scholar

    [4]

    Meyers R E, Deacon K S, Shih Y H 2011 Appl. Phys. Lett. 98 111115Google Scholar

    [5]

    Meyers R E, Deacon K S, Shih Y H 2012 Appl. Phys. Lett. 100 131114Google Scholar

    [6]

    Shapiro J H 2012 arXiv:1201.4513 [quant-ph]

    [7]

    Gong W L, Han S S 2009 arXiv:0911.4750[quant-ph]

    [8]

    Chen M L, Li E R, Gong W L, Xu X Y, Zhao C Q, Shen X, Xu W D, Han S S 2013 Opt. Photon. J. 3 83Google Scholar

    [9]

    Wang C L, Mei X, Pan L, Wang P, Li W, Gao X, Bo Z, Chen M L, Gong W, Han S S 2018 Remote Sens. 10 732Google Scholar

    [10]

    Zerom P, Shi Z, O’Sullivan M N, Chan K W C, Krogstad M, Shapiro J H, Robert W, Boyd 2012 Phys. Rev. A 86 063817Google Scholar

    [11]

    顾德曼 J W 著 (陈家璧, 秦克诚, 曹其智 译) 2018 统计光学(第二版) (科学出版社) 第326页

    Goodman J W (translated by Chen J B, Qing K C, Cao Q Z) 2000 Statistical Optics (2nd Ed.) (Beijing: Science Press) p326 (in Chinese)

    [12]

    陈玉良 1991 广播与电视技术 1 30

    Chen Y L 1991 Radio TV Broadcast Eng. 1 30

    [13]

    翁宁泉, 曾宗泳, 肖黎明, 马成胜, 龚知本 1999 强激光与粒子束 11 673

    Weng N Q, Zeng Z Y, Xiao L M, Ma C S, Gong Z B 1999 High Power Laser and Particle Beams 11 673

    [14]

    Smith T A, Shih Y 2018 Phys. Rev. Lett. 120 063606Google Scholar

    [15]

    Baykal Y, Plonus M A 1983 J. Opt. Soc. Am. 73 831Google Scholar

    [16]

    Baykal Y, Plonus M A 1985 J. Opt. Soc. Am. A 2 2124Google Scholar

    [17]

    李明飞, 莫小范, 张安宁 2016 导航与控制 5 1Google Scholar

    Li M F, Mo X F, Zhang A N 2016 Navigtion and Control 5 1Google Scholar

    [18]

    李明飞, 莫小范, 赵连洁, 霍娟, 杨然, 李凯, 张安宁 2015 物理学报 65 064201Google Scholar

    Li M F, Mo X F, Zhao L J, Huo J, Yang R, Li K, Zhang A N 2015 Acta Phys. Sin. 65 064201Google Scholar

    [19]

    Welsh S S, Edgar M P, Bowman R, Jonathan P, Sun B Q, Padgett M J 2013 Opt. Express 21 23068Google Scholar

    [20]

    Huynh-Thu Q, Ghanbari M 2008 Electron. Lett. 44 800Google Scholar

    [21]

    Li D, Mersereau R M, Simske S 2007 IEEE Geosci. Remote Sens. Lett. 4 340Google Scholar

  • [1] 常宸, 孙帅, 杜隆坤, 聂镇武, 何林贵, 张翼, 陈鹏, 鲍可, 刘伟涛. 室外环境中的关联成像研究进展. 物理学报, 2023, 72(18): 183301. doi: 10.7498/aps.72.20231245
    [2] 艾则孜姑丽·阿不都克热木, 陶志炜, 刘世韦, 李艳玲, 饶瑞中, 任益充. 大气湍流对接收光场时间相干特性的影响. 物理学报, 2022, 71(23): 234201. doi: 10.7498/aps.71.20221202
    [3] 孙艳玲, 曹瑞, 王子豪, 廖家莉, 刘其鑫, 冯俊波, 吴蓓蓓. 基于光学相控阵双周期光场的关联成像. 物理学报, 2021, 70(23): 234203. doi: 10.7498/aps.70.20211208
    [4] 闫玠霖, 韦宏艳, 蔡冬梅, 贾鹏, 乔铁柱. 大气湍流信道中聚焦涡旋光束轨道角动量串扰特性. 物理学报, 2020, 69(14): 144203. doi: 10.7498/aps.69.20200243
    [5] 徐启伟, 王佩佩, 曾镇佳, 黄泽斌, 周新星, 刘俊敏, 李瑛, 陈书青, 范滇元. 基于深度卷积神经网络的大气湍流相位提取. 物理学报, 2020, 69(1): 014209. doi: 10.7498/aps.69.20190982
    [6] 兰富洋, 罗秀娟, 樊学武, 张羽, 陈明徕, 刘辉, 贾辉. 上行链路大气波前畸变对剪切光束成像技术的影响. 物理学报, 2018, 67(20): 204201. doi: 10.7498/aps.67.20181144
    [7] 李晓庆, 王涛, 季小玲. 球差光束在大气湍流中传输特性的实验研究. 物理学报, 2014, 63(13): 134209. doi: 10.7498/aps.63.134209
    [8] 蔡冬梅, 王昆, 贾鹏, 王东, 刘建霞. 功率谱反演大气湍流随机相位屏采样方法的研究. 物理学报, 2014, 63(10): 104217. doi: 10.7498/aps.63.104217
    [9] 李成强, 张合勇, 王挺峰, 刘立生, 郭劲. 高斯-谢尔模光束在大气湍流中传输的相干特性研究. 物理学报, 2013, 62(22): 224203. doi: 10.7498/aps.62.224203
    [10] 李晓庆, 季小玲, 朱建华. 大气湍流中光束的高阶强度矩. 物理学报, 2013, 62(4): 044217. doi: 10.7498/aps.62.044217
    [11] 姚银萍, 万仁刚, 薛玉郎, 张世伟, 张同意. 基于统计光学的正负热光非定域成像. 物理学报, 2013, 62(15): 154201. doi: 10.7498/aps.62.154201
    [12] 白旭, 李永强, 赵生妹. 基于压缩感知的差分关联成像方案研究. 物理学报, 2013, 62(4): 044209. doi: 10.7498/aps.62.044209
    [13] 刘扬阳, 吕群波, 张文喜. 大气湍流畸变对空间目标清晰干涉成像仿真研究. 物理学报, 2012, 61(12): 124201. doi: 10.7498/aps.61.124201
    [14] 马阎星, 王小林, 周朴, 马浩统, 赵海川, 许晓军, 司磊, 刘泽金, 赵伊君. 大气湍流对多抖动法相干合成技术中相位调制信号的影响. 物理学报, 2011, 60(9): 094211. doi: 10.7498/aps.60.094211
    [15] 李晋红, 吕百达. 部分相干涡旋光束通过大气湍流上行和下行传输的比较研究. 物理学报, 2011, 60(7): 074205. doi: 10.7498/aps.60.074205
    [16] 刘飞, 季小玲. 双曲余弦高斯列阵光束在湍流大气中的光束传输因子. 物理学报, 2011, 60(1): 014216. doi: 10.7498/aps.60.014216
    [17] 黎芳, 唐华, 江月松, 欧军. 拉盖尔-高斯光束在湍流大气中的螺旋谱特性. 物理学报, 2011, 60(1): 014204. doi: 10.7498/aps.60.014204
    [18] 张二峰, 戴宏毅. 光的偏振对热光关联成像的影响. 物理学报, 2011, 60(6): 064209. doi: 10.7498/aps.60.064209
    [19] 季小玲. 大气湍流对径向分布高斯列阵光束扩展和方向性的影响. 物理学报, 2010, 59(1): 692-698. doi: 10.7498/aps.59.692
    [20] 陈晓文, 汤明玥, 季小玲. 大气湍流对部分相干厄米-高斯光束空间相干性的影响. 物理学报, 2008, 57(4): 2607-2613. doi: 10.7498/aps.57.2607
计量
  • 文章访问数:  8222
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-11
  • 修回日期:  2019-03-10
  • 上网日期:  2019-05-01
  • 刊出日期:  2019-05-05

/

返回文章
返回