搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超薄柔性透射型超构材料吸收器

杨鹏 秦晋 徐进 韩天成

引用本文:
Citation:

超薄柔性透射型超构材料吸收器

杨鹏, 秦晋, 徐进, 韩天成

Ultrathin flexible transmission metamaterial absorber

Yang Peng, Qin Jin, Xu Jin, Han Tian-Cheng
PDF
HTML
导出引用
  • 设计并加工了一种超薄柔性透射型吸收器, 总体厚度为0.288 mm, 可实现柔性弯曲, 容易做到与曲面目标共形. 该吸收器由三层结构组成, 底层是金属光栅, 中间为介质层, 表面单元由两条平行放置的尺寸不同的金属线组成. 仿真和实验结果表明, 对横电波在5和7 GHz的吸收分别达到97.5%和96.0%, 对横磁波在3.0―6.5 GHz都能保持90%以上的透射率. 两个吸收频点可分别独立调节, 增加了设计的灵活性. 另外, 当入射角增大到60° 时, 该吸收器的性能基本不受影响, 表现出良好的广角特性.
    As an important branch of metamaterial-based devices, metamaterial absorber (MA) has aroused great interest and made great progress in the past several years. By manipulating the magnetic resonance and the electric resonance simultaneously, the effective impedance of MA will match the free space impedance, thus resulting in a perfect absorption of incident waves. Due to the advantages of thin thickness, high efficiency and tunable property, MA has been widely concerned in energy-harvesting and electromagnetic stealth. Since the first demonstration of MA in 2008, many MAs have been extensively studied in different regions, such as microwave frequency, THz, infrared frequency and optical frequency. At the same time, the absorber has been extended from the single-band to the dual-band, triple-band, multiple-band and broadband. In recent years, the dual-band absorber has received significant attention and has been widely studied. So far, however, most of MAs are composed of a bottom continuous metallic layer, which prevents electromagnetic waves from penetrating and makes electromagnetic waves absorbed or reflected. In this paper, an ultrathin flexible transmission absorber with a total thickness of 0.288 mm is designed and fabricated, which can be conformally integrated on an object with a curved surface. The absorber consists of three layers of structure: the bottom is a one-dimensional grating type metal line, the middle is the medium layer, and the surface metal layer is composed of two different sizes metal lines in parallel. Simulation and experimental results show that the absorptions of TE wave are 97.5% and 96.0% respectively at the two frequency points of 5 GHz and 7 GHz. The transmission of the TM wave above 90% is maintained from 3 GHz to 6.5 GHz. We also simulate the spatial electric field distribution and magnetic field distribution at two resonant frequencies, and explain the electromagnetic absorption mechanism of the proposed structure for TE wave. Secondly, when the incident angle increases to 60 degrees, the performance of the absorber is substantially unaffected, exhibiting good wide-angle characteristics. In addition, through the analysis of structural parameters, two absorption peaks of the proposed absorber can be independently adjusted, resulting in a flexible design. In conclusion, we propose both theoretically and experimentally a polarization-controlled transmission-type dual-band metamaterial absorber that can absorb the TE waves and transmit the TM wave efficiently, which has important applications in the case requiring bidirectional communication.
      通信作者: 韩天成, tchan123@swu.edu.cn
    • 基金项目: 重庆市自然科学基金(批准号:cstc2018jcyjA0572)和国家级大学生创新创业训练计划(批准号:201810635040)资助的课题.
      Corresponding author: Han Tian-Cheng, tchan123@swu.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Chongqing, China (Grant No. cstc2018jcyjA0572) and the Undergraduate Science and Technology Innovation Fund, China (Grant No. 201810635040).
    [1]

    Almoneef T S, Ramahi O M 2015 Appl. Phys. Lett. 106 153902Google Scholar

    [2]

    Ishikawa A, Tanaka T 2015 Sci. Rep. 5 12570Google Scholar

    [3]

    Xie Y, Fan X, Chen Y, Wilson J, Simons R N, Xiao J 2017 Sci. Rep. 7 40490Google Scholar

    [4]

    Liu X, Tyler T, Starr T, Starr A F, Jokerst N M, Padilla W J 2011 Phys. Rev. Lett. 107 045901Google Scholar

    [5]

    Li W, Valentine J 2014 Nano Lett. 14 3510Google Scholar

    [6]

    马晓亮, 李雄, 郭迎辉, 赵泽宇, 罗先刚 2017 物理学报 66 147802Google Scholar

    Ma X L, Li X, Guo Y H, Zhao Z Y, Luo X G 2017 Acta Phys. Sin. 66 147802Google Scholar

    [7]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402Google Scholar

    [8]

    Khuyen B X, Tung B S, Yoo Y J, Kim Y J, Lam V D, Yang J, Lee Y 2016 Curr. Appl. Phys. 16 1009Google Scholar

    [9]

    Khuyen B X, Tung B S, Yoo Y J, Kim Y J, Kim K W, Chen L, Lam V D, Lee Y 2017 Sci. Rep. 7 45151Google Scholar

    [10]

    Ding F, Cui Y, Ge X, Jin Y, He S 2012 Appl. Phys. Lett. 100 103506Google Scholar

    [11]

    Zhang Y, Duan J, Zhang B, Zhang W, Wang W 2017 J. Alloys Compd. 705 262Google Scholar

    [12]

    Tao H, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer D, Landy N I, Fan K, Zhang X, Padilla W J, Averitt R D 2008 Phys. Rev. B 78 241103Google Scholar

    [13]

    Wang W, Wang K, Yang Z, Liu J 2017 J. Phys. D: Appl. Phys. 50 135108Google Scholar

    [14]

    张玉萍, 李彤彤, 吕欢欢, 黄晓燕, 张会云 2015 物理学报 64 117801Google Scholar

    Zhang Y P, Li T T, Lü H H, Huang X Y, Zhang H Y 2015 Acta Phys. Sin. 64 117801Google Scholar

    [15]

    Chen J, Li J, Liu Q H 2017 IEEE Trans. Microwave Theory Tech. 65 3689Google Scholar

    [16]

    Chen J, Li J, Liu Q H 2017 IEEE Trans. Microwave Theory Tech. 65 1896

    [17]

    Liu X, Starr T, Starr A F, Padilla W J 2010 Phys. Rev. Lett 104 207403Google Scholar

    [18]

    Hasan D, Pitchappa P, Wang J, Wang T, Yang B, Ho C P, Lee C 2017 ACS Photonics 4 302Google Scholar

    [19]

    Hao J, Wang J, Liu X, Padilla W J, Zhou L, Qiu M 2010 Appl. Phys. Lett 96 251104Google Scholar

    [20]

    Wang W, Qu Y, Du K, Bai S, Tian J, Pan M, Ye H, Qiu M, Li Q 2017 Appl. Phys. Lett 110 101101Google Scholar

    [21]

    Wen Q, Zhang H, Xie Y, Yang Q, Liu Y 2009 Appl. Phys. Lett. 95 241111Google Scholar

    [22]

    Xu H, Wang G, Qi M, Liang J, Gong J, Xu Z 2012 Phys. Rev. B 86 205104Google Scholar

    [23]

    Wang B, Wang G, Sang T, Wang L 2017 Sci. Rep 7 41373Google Scholar

    [24]

    Xie J, Zhu W, Rukhlenko I D, Xiao F, He C, Geng J, Liang X, Jin R, Premaratne M 2018 Opt. Express 26 5052Google Scholar

    [25]

    Ma Y, Chen Q, Grant J, Saha S C, Khalid A, Cumming D R S 2011 Opt. Lett 36 945Google Scholar

    [26]

    Chen K, Adato R, Altug H 2012 ACS Nano 6 7998Google Scholar

    [27]

    Tao H, Bingham C M, Pilon D, Fan K, Strikwerda A C, Shrekenhamer D, Padilla W J, Zhang X, Averitt R D 2010 J. Phys. D: Appl. Phys. 43 225102Google Scholar

    [28]

    Singh P K, Korolev K A, Afsar M N, Sonkusale S 2011 Appl. Phys. Lett. 99 264101Google Scholar

    [29]

    Feng R, Ding W Q, Liu L H, Chen L X, Qiu J, Chen G Q 2014 Opt. Express 22 A335Google Scholar

    [30]

    Liu X, Lan C, Li B, Zhao Q, Zhou J 2016 Sci. Rep. 6 28906Google Scholar

    [31]

    Tung B S, Khuyen B X, Kim Y J, Lam V D, Kim K W, Lee Y 2017 Sci. Rep. 7 11507Google Scholar

    [32]

    Yoo Y J, Kim Y J, Tuong P V, Rhee J Y, Kim K W, Jang W H, Kim Y H, Cheong H, Lee Y 2013 Opt. Express 21 32484Google Scholar

    [33]

    Yue W, Wang Z, Yang Y, Han J, Li J, Guo Z, Tan H, Zhang X 2016 Plasmonics 11 1557Google Scholar

    [34]

    Liu N, Mesch M, Weiss T, Hentschel M, Giessen H 2010 Nano Lett. 10 2342Google Scholar

  • 图 1  (a) 超薄柔性透射型双频吸收器的效果示意图; (b)基本单元结构示意图

    Fig. 1.  (a) Schematic demonstration of the proposed ultrathin flexible transmission dual-band absorber; (b) schematic diagram of the basic unit structure.

    图 2  (a) 实验装置示意图; (b)测试环境照片; (c) 加工实物照片; (d)仿真和实验结果

    Fig. 2.  (a) Schematic demonstration of experimental setup; (b) photograph of experimental setup; (c) photograph of the fabricated sample; (d) simulated and measured results.

    图 3  电场分布 (a) f = 5 GHz, (b) f = 7 GHz; 磁场分布 (c) f = 5 GHz, (d) f = 7 GHz

    Fig. 3.  The electric field distributions at (a) f = 5 GHz and (b) f = 7 GHz, respectively; the magnetic field distributions at (c) f = 5 GHz and (d) f = 7 GHz, respectively.

    图 4  (a) TM波随入射角度变化的透射谱, 插图为弯曲的加工样品覆盖在圆柱形物体表面; (b) TE波随入射角度变化的吸收谱

    Fig. 4.  (a) Transmission spectra for TM wave with the change of incident angle, the inset shows the curved sample covered on the surface of a cylindrical object; (b) the absorption spectra for TE wave with the change of incident angle.

    图 5  (a) TE波的吸收和TM波的透射随l1的变化; (b) TE波的吸收和TM波的透射随l2的变化

    Fig. 5.  (a) The absorption of TE wave and transmission of TM wave with the change of l1; (b) the absorption of TE wave and transmission of TM wave with the change of l2.

  • [1]

    Almoneef T S, Ramahi O M 2015 Appl. Phys. Lett. 106 153902Google Scholar

    [2]

    Ishikawa A, Tanaka T 2015 Sci. Rep. 5 12570Google Scholar

    [3]

    Xie Y, Fan X, Chen Y, Wilson J, Simons R N, Xiao J 2017 Sci. Rep. 7 40490Google Scholar

    [4]

    Liu X, Tyler T, Starr T, Starr A F, Jokerst N M, Padilla W J 2011 Phys. Rev. Lett. 107 045901Google Scholar

    [5]

    Li W, Valentine J 2014 Nano Lett. 14 3510Google Scholar

    [6]

    马晓亮, 李雄, 郭迎辉, 赵泽宇, 罗先刚 2017 物理学报 66 147802Google Scholar

    Ma X L, Li X, Guo Y H, Zhao Z Y, Luo X G 2017 Acta Phys. Sin. 66 147802Google Scholar

    [7]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402Google Scholar

    [8]

    Khuyen B X, Tung B S, Yoo Y J, Kim Y J, Lam V D, Yang J, Lee Y 2016 Curr. Appl. Phys. 16 1009Google Scholar

    [9]

    Khuyen B X, Tung B S, Yoo Y J, Kim Y J, Kim K W, Chen L, Lam V D, Lee Y 2017 Sci. Rep. 7 45151Google Scholar

    [10]

    Ding F, Cui Y, Ge X, Jin Y, He S 2012 Appl. Phys. Lett. 100 103506Google Scholar

    [11]

    Zhang Y, Duan J, Zhang B, Zhang W, Wang W 2017 J. Alloys Compd. 705 262Google Scholar

    [12]

    Tao H, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer D, Landy N I, Fan K, Zhang X, Padilla W J, Averitt R D 2008 Phys. Rev. B 78 241103Google Scholar

    [13]

    Wang W, Wang K, Yang Z, Liu J 2017 J. Phys. D: Appl. Phys. 50 135108Google Scholar

    [14]

    张玉萍, 李彤彤, 吕欢欢, 黄晓燕, 张会云 2015 物理学报 64 117801Google Scholar

    Zhang Y P, Li T T, Lü H H, Huang X Y, Zhang H Y 2015 Acta Phys. Sin. 64 117801Google Scholar

    [15]

    Chen J, Li J, Liu Q H 2017 IEEE Trans. Microwave Theory Tech. 65 3689Google Scholar

    [16]

    Chen J, Li J, Liu Q H 2017 IEEE Trans. Microwave Theory Tech. 65 1896

    [17]

    Liu X, Starr T, Starr A F, Padilla W J 2010 Phys. Rev. Lett 104 207403Google Scholar

    [18]

    Hasan D, Pitchappa P, Wang J, Wang T, Yang B, Ho C P, Lee C 2017 ACS Photonics 4 302Google Scholar

    [19]

    Hao J, Wang J, Liu X, Padilla W J, Zhou L, Qiu M 2010 Appl. Phys. Lett 96 251104Google Scholar

    [20]

    Wang W, Qu Y, Du K, Bai S, Tian J, Pan M, Ye H, Qiu M, Li Q 2017 Appl. Phys. Lett 110 101101Google Scholar

    [21]

    Wen Q, Zhang H, Xie Y, Yang Q, Liu Y 2009 Appl. Phys. Lett. 95 241111Google Scholar

    [22]

    Xu H, Wang G, Qi M, Liang J, Gong J, Xu Z 2012 Phys. Rev. B 86 205104Google Scholar

    [23]

    Wang B, Wang G, Sang T, Wang L 2017 Sci. Rep 7 41373Google Scholar

    [24]

    Xie J, Zhu W, Rukhlenko I D, Xiao F, He C, Geng J, Liang X, Jin R, Premaratne M 2018 Opt. Express 26 5052Google Scholar

    [25]

    Ma Y, Chen Q, Grant J, Saha S C, Khalid A, Cumming D R S 2011 Opt. Lett 36 945Google Scholar

    [26]

    Chen K, Adato R, Altug H 2012 ACS Nano 6 7998Google Scholar

    [27]

    Tao H, Bingham C M, Pilon D, Fan K, Strikwerda A C, Shrekenhamer D, Padilla W J, Zhang X, Averitt R D 2010 J. Phys. D: Appl. Phys. 43 225102Google Scholar

    [28]

    Singh P K, Korolev K A, Afsar M N, Sonkusale S 2011 Appl. Phys. Lett. 99 264101Google Scholar

    [29]

    Feng R, Ding W Q, Liu L H, Chen L X, Qiu J, Chen G Q 2014 Opt. Express 22 A335Google Scholar

    [30]

    Liu X, Lan C, Li B, Zhao Q, Zhou J 2016 Sci. Rep. 6 28906Google Scholar

    [31]

    Tung B S, Khuyen B X, Kim Y J, Lam V D, Kim K W, Lee Y 2017 Sci. Rep. 7 11507Google Scholar

    [32]

    Yoo Y J, Kim Y J, Tuong P V, Rhee J Y, Kim K W, Jang W H, Kim Y H, Cheong H, Lee Y 2013 Opt. Express 21 32484Google Scholar

    [33]

    Yue W, Wang Z, Yang Y, Han J, Li J, Guo Z, Tan H, Zhang X 2016 Plasmonics 11 1557Google Scholar

    [34]

    Liu N, Mesch M, Weiss T, Hentschel M, Giessen H 2010 Nano Lett. 10 2342Google Scholar

  • [1] 高喜, 唐李光. 基于双层超表面的宽带、高效透射型轨道角动量发生器. 物理学报, 2021, 70(3): 038101. doi: 10.7498/aps.70.20200975
    [2] 江孝伟, 武华. 吸收波长和吸收效率可控的超材料吸收器. 物理学报, 2021, 70(2): 027804. doi: 10.7498/aps.70.20201173
    [3] 余鹏, 王保清, 吴小虎, 王文昊, 徐红星, 王志明. 蜂窝状椭圆孔洞吸收器圆二色性研究. 物理学报, 2020, 69(20): 207101. doi: 10.7498/aps.69.20200843
    [4] 陈旭生, 李九生. 缺陷组合嵌入VO2薄膜结构的可调太赫兹吸收器. 物理学报, 2020, 69(2): 027801. doi: 10.7498/aps.69.20191511
    [5] 陈俊, 杨茂生, 李亚迪, 程登科, 郭耿亮, 蒋林, 张海婷, 宋效先, 叶云霞, 任云鹏, 任旭东, 张雅婷, 姚建铨. 基于超材料的可调谐的太赫兹波宽频吸收器. 物理学报, 2019, 68(24): 247802. doi: 10.7498/aps.68.20191216
    [6] 翟世龙, 王元博, 赵晓鹏. 基于声学超材料的低频可调吸收器. 物理学报, 2019, 68(3): 034301. doi: 10.7498/aps.68.20181908
    [7] 杨鹏, 韩天成. 极化控制的双波段宽带红外吸收器研究. 物理学报, 2018, 67(10): 107801. doi: 10.7498/aps.67.20172716
    [8] 庄亚强, 王光明, 张晨新, 张小宽, 宗彬锋, 马卫东, 王亚伟. 单层高效透射型相位梯度超表面的设计及实验验证. 物理学报, 2016, 65(15): 154101. doi: 10.7498/aps.65.154101
    [9] 郭文龙, 王光明, 李海鹏, 侯海生. 单层超薄高效圆极化超表面透镜. 物理学报, 2016, 65(7): 074101. doi: 10.7498/aps.65.074101
    [10] 刘海文, 朱爽爽, 文品, 覃凤, 任宝平, 肖湘, 侯新宇. 基于发卡式开口谐振环的柔性双频带超材料. 物理学报, 2015, 64(3): 038101. doi: 10.7498/aps.64.038101
    [11] 鲁磊, 屈绍波, 施宏宇, 张安学, 夏颂, 徐卓, 张介秋. 宽带透射吸收极化无关超材料吸波体. 物理学报, 2014, 63(2): 028103. doi: 10.7498/aps.63.028103
    [12] 马岩冰, 张怀武, 李元勋. 基于科赫分形的新型超材料双频吸收器. 物理学报, 2014, 63(11): 118102. doi: 10.7498/aps.63.118102
    [13] 莫漫漫, 文岐业, 陈智, 杨青慧, 李胜, 荆玉兰, 张怀武. 基于圆台结构的超宽带极化不敏感太赫兹吸收器. 物理学报, 2013, 62(23): 237801. doi: 10.7498/aps.62.237801
    [14] 鲁磊, 屈绍波, 马华, 余斐, 夏颂, 徐卓, 柏鹏. 基于电磁谐振的极化无关透射吸收超材料吸波体. 物理学报, 2013, 62(10): 104102. doi: 10.7498/aps.62.104102
    [15] 刘亚红, 方石磊, 顾帅, 赵晓鹏. 多频与宽频超材料吸收器. 物理学报, 2013, 62(13): 134102. doi: 10.7498/aps.62.134102
    [16] 苏斌, 龚伯仪, 赵晓鹏. 树叶状红外频段完美吸收器的仿真设计. 物理学报, 2012, 61(14): 144203. doi: 10.7498/aps.61.144203
    [17] 沈晓鹏, 崔铁军, 叶建祥. 基于超材料的微波双波段吸收器. 物理学报, 2012, 61(5): 058101. doi: 10.7498/aps.61.058101
    [18] 樊京, 蔡广宇. 一种基于金属开口谐振环和杆阵列的左手材料宽带吸收器. 物理学报, 2010, 59(9): 6084-6088. doi: 10.7498/aps.59.6084
    [19] 张燕萍, 赵晓鹏, 保石, 罗春荣. 基于阻抗匹配条件的树枝状超材料吸收器. 物理学报, 2010, 59(9): 6078-6083. doi: 10.7498/aps.59.6078
    [20] 保石, 罗春荣, 张燕萍, 赵晓鹏. 基于树枝结构单元的超材料宽带微波吸收器. 物理学报, 2010, 59(5): 3187-3191. doi: 10.7498/aps.59.3187
计量
  • 文章访问数:  7479
  • PDF下载量:  174
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-18
  • 修回日期:  2019-02-24
  • 上网日期:  2019-04-01
  • 刊出日期:  2019-04-20

/

返回文章
返回