搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

同心椭圆柱-纳米管结构的双重Fano共振研究

张兴坊 刘凤收 闫昕 梁兰菊 韦德全

引用本文:
Citation:

同心椭圆柱-纳米管结构的双重Fano共振研究

张兴坊, 刘凤收, 闫昕, 梁兰菊, 韦德全

Double Fano resonance in gold nanotube embedded with a concentric elliptical cylinder

Zhang Xing-Fang, Liu Feng-Shou, Yan Xin, Liang Lan-Ju, Wei De-Quan
PDF
HTML
导出引用
  • 提出了一种同心椭圆柱-纳米管复合结构, 该结构由金纳米管中内嵌椭圆形金柱构成, 利用时域有限差分法分析了尺寸参数、周围环境及纳米管内核材料对该结构光学性质的影响. 结果表明, 调节椭圆柱芯的旋转角度可产生双重偶极-偶极Fano共振, 其主要是由椭圆柱芯的纵向或横向偶极共振模式与纳米管的偶极成键和反成键模式杂化形成的超辐射成键模式和亚辐射成键模式之间的相互作用产生的, 且共振特性可通过调节复合结构的尺寸参数控制, 随椭圆柱长轴或短轴的增大而红移, 随纳米管外径的增大或整体尺寸的减小而蓝移, 当纳米管内径增大时高频Fano共振随着红移, 而低频Fano共振先蓝移再红移, 同时其对外界环境的变化不敏感, 但对纳米管内核材料变化有着较好的响应. 利用等离激元杂化理论对该现象进行了解释. 这些结果可为构造其他类型的多波段Fano共振二维或三维纳米结构提供一种新的方式.
    Optical properties of the concentric composite nanostructure composed of gold nanotube around the center gold elliptical core are investigated based on the finite difference time domain method. According to the simulated absorption and scattering spectra, electric field distributions and charge distributions, we can generate double dipole-dipole Fano resonances by adjusting the angle between the elliptical cylinder core and the linearly polarized excitation light, which is due mainly to the interference between the subradiant dipole mode and the superradiant dipole mode. The narrow, low-energy subradiant mode originates from the symmetric hybrization between the longitudinal or transverse dipole mode of the elliptical cylinder core and the dipole bonding mode of the nanotube, and the broad, high-energy superradiant mode originates from the symmetric hybrization between the core’s dipole mode and the nanotube’s dipole antibonding mode. Moreover, the intensities and spectral positions of the two Fano resonances can be manipulated by modifying the geometric parameters of the composite structure. By increasing the semiminor axis of elliptical core, the high-energy Fano resonance red-shifts faster than the low-energy Fano resonance due to the increase of the interaction coupling between the transverse dipole mode of the core and the dipole mode of the nanotube, and becomes weaker in the scattering spectrum because of the reduced radiation intensity of the superradiant dipole mode. When the semimajor axis is changed, a similar phenomenon occurs in the low-energy Fano resonance. In addition, the two Fano resonances red-shift when outer radius of the nanotube increases, but the shift of low-frequency and high-frequency Fano resonance are inconsistent as the inner radius of the nanotube changes. The high-frequency Fano resonance red-shifts monotonically while the low-frequency Fano resonance first blue-shifts and then red-shifts with the increase of inner radius of nanotube because the red shift of the dipole bonding nanotube mode competes with the spectral shifts induced by the diminishing hybridization between elliptical core and nanotube mode. It can also be concluded that the dipole-dipole Fano resonances become apparent and higher order Fano resonance occurs when the composite nanostructure is scaled to a larger size due to the increased radiative damping. With the core and nanotube size fixed, Fano resonance is insensitive to the change of the external environment, but has a good response to the nuclear material of the nanotube.
      通信作者: 张兴坊, zxf4114@126.com
    • 基金项目: 国家自然科学基金(批准号: 61701434)、山东省自然基金(批准号: ZR2017MF005, ZR2018LF001)、山东省高等学校科技计划(批准号: J17KA087)和枣庄市光电信息功能材料与微纳器件重点实验室资助的课题.
      Corresponding author: Zhang Xing-Fang, zxf4114@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61701434), the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2017MF005, ZR2018LF001), the Project of Shandong Province Higher Education Science and Technology Program, China (Grant No. J17KA087), and the Key Laboratory of Optoelectronic Information Functional Materials and Micronano Devices in Zaozhuang, China.
    [1]

    Liang H Y, Wei H, Xu H X 2016 Front. Phys. 11 117301Google Scholar

    [2]

    Chen W, Hu H, Jiang W, Xu Y, Zhang S, Xu H 2018 Chin. Phys. B 27 107403Google Scholar

    [3]

    Halas N J, Lal S, Chang W S, Nordlander P 2011 Chem. Rev. 111 3913Google Scholar

    [4]

    Hao F, Nordlander P, Sonnefraud Y, Dorpe P V, Maier S A 2009 ACS Nano 3 643Google Scholar

    [5]

    Li J, Liu T, Zheng H, Dong J, He E, Gao W, Han Q, Wang C, Wu Y 2014 Plasmonics 9 1439Google Scholar

    [6]

    Sonnefraud Y, Verellen N, Sobhani H, Vandenbosch G A E, Dorpe P, Nordlander P, Moshchalkov V V, Maier S A 2010 ACS Nano 4 1664Google Scholar

    [7]

    Sanchoparramon J, Jelovina D 2014 Nanoscale 6 13555Google Scholar

    [8]

    Ho J F, Boris L, Zhang J B 2012 Appl. Phys. A 107 133Google Scholar

    [9]

    Pena-Rodriguez O, Rivera A, Campoy-Quiles M, Pal U 2012 Nanoscale 5 209

    [10]

    Zhou H, Gao D, Gao L 2018 Plasmonics 13 623Google Scholar

    [11]

    Shao L, Fang C, Chen H, Man Y C, Wang J, Lin H Q 2012 Nano Lett. 12 1424Google Scholar

    [12]

    Li J, Gu Y, Gong Q 2010 Opt. Express 18 17684Google Scholar

    [13]

    Ci X, Wu B, Song M, Liu Y, Chen G, Wu E, Zeng H 2014 Appl. Phys. A 117 955Google Scholar

    [14]

    Yang Z J, Hao Z H, Lin H Q, Wang Q Q 2014 Nanoscale 6 4985Google Scholar

    [15]

    Cui Y, Zhou J, Tamma V A, Park W 2012 ACS Nano 6 2385Google Scholar

    [16]

    Fang Z, Cai J, Yan Z, Nordlander P, Halas N J, Zhu X 2011 Nano Lett. 11 4475Google Scholar

    [17]

    Zhang S, Bao K, Halas N J, Xu H, Nordlander P 2011 Nano Lett. 11 1657Google Scholar

    [18]

    Velichko E A, Nosich A I 2013 Opt. Lett. 38 4978Google Scholar

    [19]

    Yu H Q, Jiang S M, Wu D J 2015 J. Appl. Phys. 117 153101Google Scholar

    [20]

    丛超, 吴大建, 刘晓峻 2011 物理学报 60 046102Google Scholar

    Cong C, Wu D J, Liu X J 2011 Acta Phys. Sin. 60 046102Google Scholar

    [21]

    Xu H, Li H, Liu Z, Xie S, Fu S, Zhou X 2012 Opt. Commun. 285 3202Google Scholar

    [22]

    Zhu J, Li J J, Zhao J W 2013 J. Phys. Chem. C 117 584Google Scholar

    [23]

    Zhang J, Zayats A 2013 Opt. Express 21 8426Google Scholar

    [24]

    Wu D J, Yu H Q, Jiang S M, Wu X W, Liu X J 2014 Sci. China 57 1063Google Scholar

    [25]

    Wu D, Jiang S, Cheng Y 2012 Opt. Express 20 26559Google Scholar

    [26]

    Chen H L, Gao L 2013 Opt. Express 21 23619Google Scholar

    [27]

    Gao D, Gao L, Novitsky A, Novitsky A, Chen H, Boris L 2015 Opt. Lett. 40 4162Google Scholar

    [28]

    Taflove A, Hagness S 2000 Computational Electrodynamics: the Finite-Difference Time-Domain Method (Vol.2)(Boston: Artech House) pp75−85

    [29]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370Google Scholar

    [30]

    Mukherjee S, Sobhani H, Lassiter J B, Bardhan R, Nordlander P, Halas N J 2010 Nano Lett. 10 2694Google Scholar

    [31]

    潘庭婷, 曹文, 邓彩松, 王鸣, 夏巍, 郝辉 2018 物理学报 67 157301Google Scholar

    Pan T T, Cao W, Deng C S, Wang M, Xia W, Hao H 2018 Acta Phys. Sin. 67 157301Google Scholar

  • 图 1  椭圆柱芯-纳米管同心复合结构模型示意图

    Fig. 1.  Geometrical structure of Au elliptical cylinder-nanotube concentric nanostructure.

    图 2  金纳米管复合结构的吸收(虚线)、散射(实线)光谱与椭圆柱芯旋转角度的关系

    Fig. 2.  Relationship between absorption (dotted line) and scattering (solid line) spectra of gold nanotube composite structure and rotation direction of the elliptical cylinder core.

    图 3  金纳米管复合结构的等离激元共振杂化示意图 (a) SiO2核-金壳; (b)复合结构; (c)金椭圆柱分别在θ = 0°和90°时的散射光谱; 插图为共振时各个结构的电荷分布图

    Fig. 3.  Plasmon hybridization in a nanotube composite structure. Scattering spectra for (a) SiO2-core Au-shell nanotube in vacuum, (b) composite structure and (c) Au elliptical cylinder embedded in SiO2. Inset shows the surface charge distributions at the corresponding resonance energies.

    图 4  复合结构的散射谱随椭圆芯长轴的变化(内插图为复合结构在峰值波长的电场分布)

    Fig. 4.  Scattering spectra of nanotube composite structure as a function of the semimajor axis a. Inset shows electric field distributions corresponding to each peak in the scattering spectra, the numbers in white indicate the maximum electric field enhancements.

    图 5  金纳米管复合结构的散射谱随椭圆芯短轴的变化(内插图为b = 35, 50 nm时复合结构在峰值波长的电场分布)

    Fig. 5.  Scattering spectra of nanotube composite structure as a function of the semiminor axis b. Inset shows electric field distributions corresponding to scattering spectral peak for b = 35 and 50 nm.

    图 6  散射谱随纳米管(a)外径和(b)内径的变化

    Fig. 6.  Scattering spectra of composite structure with different (a) R and (b) r.

    图 7  金纳米管复合结构的散射谱随整体尺寸的变化

    Fig. 7.  Scattering spectra of nanotube composite structure scaled to different sizes.

    图 8  散射谱随(a)外界环境$\scriptstyle {\varepsilon _4}$和(b)纳米管内核材料$\scriptstyle {\varepsilon _2}$的变化

    Fig. 8.  Scattering spectra of composite structure with different (a) $\scriptstyle {\varepsilon _4}$ and (b) $ \scriptstyle{\varepsilon _2}$.

  • [1]

    Liang H Y, Wei H, Xu H X 2016 Front. Phys. 11 117301Google Scholar

    [2]

    Chen W, Hu H, Jiang W, Xu Y, Zhang S, Xu H 2018 Chin. Phys. B 27 107403Google Scholar

    [3]

    Halas N J, Lal S, Chang W S, Nordlander P 2011 Chem. Rev. 111 3913Google Scholar

    [4]

    Hao F, Nordlander P, Sonnefraud Y, Dorpe P V, Maier S A 2009 ACS Nano 3 643Google Scholar

    [5]

    Li J, Liu T, Zheng H, Dong J, He E, Gao W, Han Q, Wang C, Wu Y 2014 Plasmonics 9 1439Google Scholar

    [6]

    Sonnefraud Y, Verellen N, Sobhani H, Vandenbosch G A E, Dorpe P, Nordlander P, Moshchalkov V V, Maier S A 2010 ACS Nano 4 1664Google Scholar

    [7]

    Sanchoparramon J, Jelovina D 2014 Nanoscale 6 13555Google Scholar

    [8]

    Ho J F, Boris L, Zhang J B 2012 Appl. Phys. A 107 133Google Scholar

    [9]

    Pena-Rodriguez O, Rivera A, Campoy-Quiles M, Pal U 2012 Nanoscale 5 209

    [10]

    Zhou H, Gao D, Gao L 2018 Plasmonics 13 623Google Scholar

    [11]

    Shao L, Fang C, Chen H, Man Y C, Wang J, Lin H Q 2012 Nano Lett. 12 1424Google Scholar

    [12]

    Li J, Gu Y, Gong Q 2010 Opt. Express 18 17684Google Scholar

    [13]

    Ci X, Wu B, Song M, Liu Y, Chen G, Wu E, Zeng H 2014 Appl. Phys. A 117 955Google Scholar

    [14]

    Yang Z J, Hao Z H, Lin H Q, Wang Q Q 2014 Nanoscale 6 4985Google Scholar

    [15]

    Cui Y, Zhou J, Tamma V A, Park W 2012 ACS Nano 6 2385Google Scholar

    [16]

    Fang Z, Cai J, Yan Z, Nordlander P, Halas N J, Zhu X 2011 Nano Lett. 11 4475Google Scholar

    [17]

    Zhang S, Bao K, Halas N J, Xu H, Nordlander P 2011 Nano Lett. 11 1657Google Scholar

    [18]

    Velichko E A, Nosich A I 2013 Opt. Lett. 38 4978Google Scholar

    [19]

    Yu H Q, Jiang S M, Wu D J 2015 J. Appl. Phys. 117 153101Google Scholar

    [20]

    丛超, 吴大建, 刘晓峻 2011 物理学报 60 046102Google Scholar

    Cong C, Wu D J, Liu X J 2011 Acta Phys. Sin. 60 046102Google Scholar

    [21]

    Xu H, Li H, Liu Z, Xie S, Fu S, Zhou X 2012 Opt. Commun. 285 3202Google Scholar

    [22]

    Zhu J, Li J J, Zhao J W 2013 J. Phys. Chem. C 117 584Google Scholar

    [23]

    Zhang J, Zayats A 2013 Opt. Express 21 8426Google Scholar

    [24]

    Wu D J, Yu H Q, Jiang S M, Wu X W, Liu X J 2014 Sci. China 57 1063Google Scholar

    [25]

    Wu D, Jiang S, Cheng Y 2012 Opt. Express 20 26559Google Scholar

    [26]

    Chen H L, Gao L 2013 Opt. Express 21 23619Google Scholar

    [27]

    Gao D, Gao L, Novitsky A, Novitsky A, Chen H, Boris L 2015 Opt. Lett. 40 4162Google Scholar

    [28]

    Taflove A, Hagness S 2000 Computational Electrodynamics: the Finite-Difference Time-Domain Method (Vol.2)(Boston: Artech House) pp75−85

    [29]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370Google Scholar

    [30]

    Mukherjee S, Sobhani H, Lassiter J B, Bardhan R, Nordlander P, Halas N J 2010 Nano Lett. 10 2694Google Scholar

    [31]

    潘庭婷, 曹文, 邓彩松, 王鸣, 夏巍, 郝辉 2018 物理学报 67 157301Google Scholar

    Pan T T, Cao W, Deng C S, Wang M, Xia W, Hao H 2018 Acta Phys. Sin. 67 157301Google Scholar

  • [1] 陈召, 马昕新, 李童, 王艺霖. 耦合谐振系统中基于Fano共振的光学压力传感器. 物理学报, 2024, 73(8): 084205. doi: 10.7498/aps.73.20232025
    [2] 杨其利, 张兴坊, 刘凤收, 闫昕, 梁兰菊. 劈裂环-盘二聚体结构的多重Fano共振. 物理学报, 2022, 71(2): 027802. doi: 10.7498/aps.71.20210855
    [3] 韩迪仪, 顾阳, 胡涛政, 董雯, 倪亚贤. 双金属/TiO2纳米管复合结构中增强的光电流. 物理学报, 2021, 70(3): 038103. doi: 10.7498/aps.70.20201134
    [4] 熊磊. 银纳米粒子阵列中衍射诱导高品质因子的四偶极晶格等离子体共振. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211629
    [5] 鹿利单, 祝连庆, 曾周末, 崔一平, 张东亮, 袁配. 基于硅基光子器件的Fano共振研究进展. 物理学报, 2021, 70(3): 034204. doi: 10.7498/aps.70.20200550
    [6] 胡宝晶, 黄铭, 黎鹏, 杨晶晶. 基于black phosphorus纳米棒耦合的等离激元诱导透明. 物理学报, 2021, 70(4): 044201. doi: 10.7498/aps.70.20201331
    [7] 杨其利, 张兴坊. 劈裂环-盘二聚体结构的多重Fano共振研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20210855
    [8] 胡宝晶, 黄铭, 黎鹏, 杨成福. 基于纳米盘棒耦合的多频段等离激元诱导透明研究. 物理学报, 2020, 69(13): 134202. doi: 10.7498/aps.69.20200093
    [9] 胡宝晶, 黄铭, 黎鹏, 杨晶晶. 基于纳米金属-石墨烯耦合的多频段等离激元诱导透明. 物理学报, 2020, 69(17): 174201. doi: 10.7498/aps.69.20200200
    [10] 陈颖, 曹景刚, 谢进朝, 高新贝, 许扬眉, 李少华. 含双挡板金属-电介质-金属波导耦合方形腔的独立调谐双重Fano共振特性. 物理学报, 2019, 68(10): 107302. doi: 10.7498/aps.68.20181985
    [11] 李爱云, 张兴坊, 刘凤收, 闫昕, 梁兰菊. 对称纳米棒三聚体结构的Fano共振特性研究. 物理学报, 2019, 68(19): 197801. doi: 10.7498/aps.68.20190978
    [12] 徐天宁, 李翔, 贾文旺, 隋成华, 吴惠桢. 五边形截面的Ag纳米线局域表面等离子体共振模式. 物理学报, 2015, 64(24): 245201. doi: 10.7498/aps.64.245201
    [13] 张文平, 马忠元, 徐骏, 徐岭, 李伟, 陈坤基, 黄信凡, 冯端. 纳米银六角阵列在掺氧氮化硅中的局域表面等离激元共振特性仿真. 物理学报, 2015, 64(17): 177301. doi: 10.7498/aps.64.177301
    [14] 朱小敏, 任新成, 郭立新. 指数型粗糙地面与上方矩形截面柱宽带电磁散射的时域有限差分法研究. 物理学报, 2014, 63(5): 054101. doi: 10.7498/aps.63.054101
    [15] 刘建晓, 张郡亮, 苏明敏. 基于时域有限差分法的各向异性铁氧体圆柱电磁散射分析. 物理学报, 2014, 63(13): 137501. doi: 10.7498/aps.63.137501
    [16] 张志东, 高思敏, 王辉, 王红艳. 三角缺口正三角形纳米结构的共振模式. 物理学报, 2014, 63(12): 127301. doi: 10.7498/aps.63.127301
    [17] 王培培, 杨超杰, 李洁, 唐鹏, 林峰, 朱星. 金膜上亚波长小孔阵列表面等离激元颜色滤波器偏振性质. 物理学报, 2013, 62(16): 167302. doi: 10.7498/aps.62.167302
    [18] 任新成, 郭立新, 焦永昌. 雪层覆盖的粗糙地面与上方矩形截面柱复合电磁散射的时域有限差分法研究. 物理学报, 2012, 61(14): 144101. doi: 10.7498/aps.61.144101
    [19] 张国英, 张 辉, 魏 丹, 何君琦. 碳纳米管增强铝基复合材料电子理论研究. 物理学报, 2007, 56(3): 1581-1584. doi: 10.7498/aps.56.1581
    [20] 王 宇, 王秀喜, 倪向贵, 吴恒安. 单壁碳纳米管轴向压缩变形的研究. 物理学报, 2003, 52(12): 3120-3124. doi: 10.7498/aps.52.3120
计量
  • 文章访问数:  7618
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-22
  • 修回日期:  2019-01-16
  • 上网日期:  2019-03-01
  • 刊出日期:  2019-03-20

/

返回文章
返回