搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于有效介质理论的物理性能计算模型的软件实现

孙楠楠 施展 丁琪 许伟伟 沈洋 南策文

引用本文:
Citation:

基于有效介质理论的物理性能计算模型的软件实现

孙楠楠, 施展, 丁琪, 许伟伟, 沈洋, 南策文

Software realization of physical property calculation model based on effective medium theory

Sun Nan-Nan, Shi Zhan, Ding Qi, Xu Wei-Wei, Shen Yang, Nan Ce-Wen
PDF
HTML
导出引用
  • 在改进的有效介质理论的基础上采用C++/Qt混合编程, 设计并开发出一套复合材料物理性能模拟计算软件—Composite Studio. 该软件通过格林函数对本构方程进行求解, 计算体积分数、颗粒长径比、取向分布、宏观位向对复合材料有效性能的影响. 目前软件开发了弹性模量和介电常数两个模块, 提供了友好的人机界面, 能够构建多个显微结构参数的大量组合, 对结果进行作图分析. 该软件可以作为一种通用的计算软件, 用作高性能复合材料的材料设计.
    In this paper, a composite physical property calculation software—Composite Studio is developed based on the modified effective medium theory. The computing kernel of the software is written in C++ language and its GUI is designed by Qt. With the development of the computation technique, the material genome project is proposed, which tries to shorten the period of the material design by high-throughput computation, data mining and property database establishment. On a mesoscopic scale, there are several kinds of the models to calculate the physical properties of the composite materials. However, these models usually have the formula in quite a lot of kinds of forms. A general commercial software for physical property calculation on a mesoscopic scale is still leaking. The software uses Green’s function to solve the constitutive equations. It calculates the effects of microstructural factors on physical properties. These factors include volume fraction, aspect ratio of reinforce particles, orientation distribution, and macroscopic orientation. It can obtain more than 10000 composites by freely combining four microstructure factors. The operation process of software includes 5 steps. The first step is to choose the materials of matrix and reinforcement. The second step is to select the shape type of reinforcement. The third step is to set the range of values for the microstructure factors of the composite materials. The fourth step is to choose the calculation model and start calculations. The last step is to plot and analyze the results. In addition, researchers can directly have the calculation results through the single point analysis module of the software. We use several two-dimensional line plots to display multi-dimensional calculation results. This is convenient and efficient for researchers to observe and analyze the results. Until now, two calculation modules were developed in Composite Studio, i.e. the elastic modulus calculation module and the dielectric constant calculation module. The software can be applied to different computer systems. In the future, the Composite Studio can be used as a general-purpose calculation tool embedded into an server platform for popular composite design.
      通信作者: 施展, shizhan@xmu.edu.cn ; 许伟伟, wwxu306@xmu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2017YFB0701603)、福建省自然科学基金(批准号: 2016J01256)、国家自然科学基金青年科学基金(批准号: 51601161)和中央高校基本科研业务费专项资金(批准号: 20720170048)资助的课题.
      Corresponding author: Shi Zhan, shizhan@xmu.edu.cn ; Xu Wei-Wei, wwxu306@xmu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFB0701603), the Natural Science Foundation of Fujian Province, China (Grant No. 2016J01256), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 51601161), and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. 20720170048).
    [1]

    Nan C W 1993 Prog. Mater. Sci. 37 1Google Scholar

    [2]

    南策文 2005 非均质材料物理: 显微结构-性能关联 (北京: 科学出版社) 第1−72页

    Nan C W 2005 Heterogeneous Material Physics: Microstructure-performance Correlation (Beijing: Science Press) pp1−72 (in Chinese)

    [3]

    O'Callaghan C, da Rocha C G D, Manning H G, Boland J J, Ferreira M S 2016 Phys. Chem. Chem. Phys. 18 27564Google Scholar

    [4]

    Rabari R, Mahmud S, Dutta A 2015 Int. J. Heat Mass Transfer 91 190Google Scholar

    [5]

    Monsalve-Bravo G M, Bhatia S K 2017 J. Membr. Sci. 531 148Google Scholar

    [6]

    刘晓辉, 陈默涵, 李鹏飞, 沈瑜, 任新国, 郭光灿, 何力新 2015 物理学报 64 187104Google Scholar

    Liu X H, Chen M H, Li P F, Shen Y, Ren X G, Guo G C, He L X 2015 Acta Phys. Sin. 64 187104Google Scholar

    [7]

    李刚, 邓力, 张宝印, 李瑞, 史敦福, 上官丹骅, 胡泽华, 付元光, 马彦 2016 物理学报 65 052801Google Scholar

    Li G, Deng L, Zhang B Y, Li R, Shi D F, Shangguan D H, Hu Z H, Fu Y G, Ma Y 2016 Acta Phys. Sin. 65 052801Google Scholar

    [8]

    施展, 南策文 2004 物理学报 53 2766Google Scholar

    Shi Z, Nan C W 2004 Acta Phys. Sin. 53 2766Google Scholar

    [9]

    忻隽, 郑燕青, 施尔畏 2007 无机材料学报 22 193Google Scholar

    Xin J, Zheng Y Q, Shi E W 2007 J. Inorg. Mater. 22 193Google Scholar

    [10]

    王彦成, 邱吴劼, 杨宏亮, 席丽丽, 杨炯, 张文清 2018 物理学报 67 016301Google Scholar

    Wang Y C, Qiu W J, Yang H L, Xi L L, Yang J, Zhang W Q 2018 Acta Phys. Sin. 67 016301Google Scholar

    [11]

    Bensoussan A, Lions J L, Papanicolaou G 1978 Asymptotic Analysis for Periodic Structures (Amsterdam: North-Holland) p392

    [12]

    Nemat-Nasser S, Lori M, Datta S K 1996 J. Appl. Mech. 63 561Google Scholar

    [13]

    张研, 张子明 2008 材料细观力学(北京: 科学出版社) 第20−81页

    Zhang Y, Zhang Z M 2008 Mesomechanics of Materials (Beijing: Science Press) pp20−81 (in Chinese)

    [14]

    Eshelby J D 1957 Proc. R. Soc. London, Ser. A 241 376Google Scholar

    [15]

    Choy T C 2015 Effective Medium Theory: Principles and Applications (Oxford: Oxford University Press) pp1−26

    [16]

    Bergman D J, Stroud D 1992 Solid State Phys. 46 147Google Scholar

    [17]

    Gubernatis J E, Krumhansl J A 1975 J. Appl. Phys. 46 1875Google Scholar

    [18]

    Nan C W, Jin F S 1993 Phys. Rev. B: Condens. Matter 48 8578Google Scholar

    [19]

    Liu Z Y, Chan C T, Sheng P 2005 Phys. Rev. B 71 014103Google Scholar

    [20]

    Mei J, Liu Z Y, Wen W,Sheng P 2006 Phys. Rev. Lett. 96 024301Google Scholar

    [21]

    Mei J, Liu Z Y, Wen W, Sheng P 2007 Phys. Rev. B 76 134205Google Scholar

    [22]

    Mei J, Wu Y, Liu Z Y 2012 Europhys. Lett. 98 54001Google Scholar

    [23]

    Fang X Q, Tian J Y 2018 Int. J. Eng. Sci. 130 1Google Scholar

    [24]

    Marur P R 2004 Mater. Lett. 58 3971Google Scholar

    [25]

    Petrovsky V, Jasinski P, Dogan F 2012 J. Electroceram. 28 185Google Scholar

    [26]

    Chýlek, Petr, Srivastava V 1984 Phys. Rev. B: Condens. Matter. 30 1008Google Scholar

    [27]

    Lakhtakia A, Weiglhofer W S 1993 Acta Crystallogr. Sect. A: Found. Crystallogr. A49 266

    [28]

    Merrill W M, Diaz R E, Lore M M, Squires M C, Alexopoulos N G 1999 IEEE T. Antenn. Propag. 47 142Google Scholar

  • 图 1  θcutoff规分布纤维的截止取向分布角

    Fig. 1.  Cut-off orientation distribution angle of randomly distributed fibers

    图 2  材料库输入界面

    Fig. 2.  Input interface of the material library

    图 3  计算流程图

    Fig. 3.  Flow chart of the calculation

    图 4  显微结构参数输入界面

    Fig. 4.  Input interface of microstructure parameters

    图 5  Composite Studio物理性能计算软件计算结果—弹性模量

    Fig. 5.  Calculation results of physical performance calculation software Composite Studio—elastic modulus

    图 6  Composite Studio物理性能计算软件计算结果—介电常数

    Fig. 6.  Calculation results of physical performance calculation software Composite Studio—dielectric constant

  • [1]

    Nan C W 1993 Prog. Mater. Sci. 37 1Google Scholar

    [2]

    南策文 2005 非均质材料物理: 显微结构-性能关联 (北京: 科学出版社) 第1−72页

    Nan C W 2005 Heterogeneous Material Physics: Microstructure-performance Correlation (Beijing: Science Press) pp1−72 (in Chinese)

    [3]

    O'Callaghan C, da Rocha C G D, Manning H G, Boland J J, Ferreira M S 2016 Phys. Chem. Chem. Phys. 18 27564Google Scholar

    [4]

    Rabari R, Mahmud S, Dutta A 2015 Int. J. Heat Mass Transfer 91 190Google Scholar

    [5]

    Monsalve-Bravo G M, Bhatia S K 2017 J. Membr. Sci. 531 148Google Scholar

    [6]

    刘晓辉, 陈默涵, 李鹏飞, 沈瑜, 任新国, 郭光灿, 何力新 2015 物理学报 64 187104Google Scholar

    Liu X H, Chen M H, Li P F, Shen Y, Ren X G, Guo G C, He L X 2015 Acta Phys. Sin. 64 187104Google Scholar

    [7]

    李刚, 邓力, 张宝印, 李瑞, 史敦福, 上官丹骅, 胡泽华, 付元光, 马彦 2016 物理学报 65 052801Google Scholar

    Li G, Deng L, Zhang B Y, Li R, Shi D F, Shangguan D H, Hu Z H, Fu Y G, Ma Y 2016 Acta Phys. Sin. 65 052801Google Scholar

    [8]

    施展, 南策文 2004 物理学报 53 2766Google Scholar

    Shi Z, Nan C W 2004 Acta Phys. Sin. 53 2766Google Scholar

    [9]

    忻隽, 郑燕青, 施尔畏 2007 无机材料学报 22 193Google Scholar

    Xin J, Zheng Y Q, Shi E W 2007 J. Inorg. Mater. 22 193Google Scholar

    [10]

    王彦成, 邱吴劼, 杨宏亮, 席丽丽, 杨炯, 张文清 2018 物理学报 67 016301Google Scholar

    Wang Y C, Qiu W J, Yang H L, Xi L L, Yang J, Zhang W Q 2018 Acta Phys. Sin. 67 016301Google Scholar

    [11]

    Bensoussan A, Lions J L, Papanicolaou G 1978 Asymptotic Analysis for Periodic Structures (Amsterdam: North-Holland) p392

    [12]

    Nemat-Nasser S, Lori M, Datta S K 1996 J. Appl. Mech. 63 561Google Scholar

    [13]

    张研, 张子明 2008 材料细观力学(北京: 科学出版社) 第20−81页

    Zhang Y, Zhang Z M 2008 Mesomechanics of Materials (Beijing: Science Press) pp20−81 (in Chinese)

    [14]

    Eshelby J D 1957 Proc. R. Soc. London, Ser. A 241 376Google Scholar

    [15]

    Choy T C 2015 Effective Medium Theory: Principles and Applications (Oxford: Oxford University Press) pp1−26

    [16]

    Bergman D J, Stroud D 1992 Solid State Phys. 46 147Google Scholar

    [17]

    Gubernatis J E, Krumhansl J A 1975 J. Appl. Phys. 46 1875Google Scholar

    [18]

    Nan C W, Jin F S 1993 Phys. Rev. B: Condens. Matter 48 8578Google Scholar

    [19]

    Liu Z Y, Chan C T, Sheng P 2005 Phys. Rev. B 71 014103Google Scholar

    [20]

    Mei J, Liu Z Y, Wen W,Sheng P 2006 Phys. Rev. Lett. 96 024301Google Scholar

    [21]

    Mei J, Liu Z Y, Wen W, Sheng P 2007 Phys. Rev. B 76 134205Google Scholar

    [22]

    Mei J, Wu Y, Liu Z Y 2012 Europhys. Lett. 98 54001Google Scholar

    [23]

    Fang X Q, Tian J Y 2018 Int. J. Eng. Sci. 130 1Google Scholar

    [24]

    Marur P R 2004 Mater. Lett. 58 3971Google Scholar

    [25]

    Petrovsky V, Jasinski P, Dogan F 2012 J. Electroceram. 28 185Google Scholar

    [26]

    Chýlek, Petr, Srivastava V 1984 Phys. Rev. B: Condens. Matter. 30 1008Google Scholar

    [27]

    Lakhtakia A, Weiglhofer W S 1993 Acta Crystallogr. Sect. A: Found. Crystallogr. A49 266

    [28]

    Merrill W M, Diaz R E, Lore M M, Squires M C, Alexopoulos N G 1999 IEEE T. Antenn. Propag. 47 142Google Scholar

  • [1] 邵春瑞, 李海洋, 王军, 夏国栋. 多孔结构体材料热整流效应. 物理学报, 2021, 70(23): 236501. doi: 10.7498/aps.70.20211285
    [2] 宋彤彤, 罗杰, 赖耘. 赝局域有效介质理论. 物理学报, 2020, 69(15): 154203. doi: 10.7498/aps.69.20200196
    [3] 王大为, 谷志刚, 张健. 液相外延层层浸渍组装金属-有机框架薄膜及其物理性能. 物理学报, 2020, 69(12): 126801. doi: 10.7498/aps.69.20200274
    [4] 周志刚, 宗谨, 王文广, 厚美瑛. 颗粒样品形变对声波传播影响的实验探究. 物理学报, 2017, 66(15): 154502. doi: 10.7498/aps.66.154502
    [5] 郭洪燕, 夏敏, 燕青芝, 郭立平, 陈济红, 葛昌纯. 中能高浓度氦离子注入对钨微观结构的影响. 物理学报, 2016, 65(7): 077803. doi: 10.7498/aps.65.077803
    [6] 马艳红, 仝小龙, 朱彬, 张大义, 洪杰. 金属橡胶热物理性能理论与试验研究. 物理学报, 2013, 62(4): 048101. doi: 10.7498/aps.62.048101
    [7] 朱兆平, 秦亦强. 纳米线减反层的解析设计法. 物理学报, 2013, 62(15): 157801. doi: 10.7498/aps.62.157801
    [8] 成鹏飞, 李盛涛, 李建英. ZnO压敏陶瓷的介电谱. 物理学报, 2012, 61(18): 187302. doi: 10.7498/aps.61.187302
    [9] 赵华君, 杨守良, 张东, 梁康有, 程正富, 石东平. 亚波长金属偏振分束光栅设计分析. 物理学报, 2009, 58(9): 6236-6242. doi: 10.7498/aps.58.6236
    [10] 封 伟, 高中扩. 有机光伏电池物理性能的模拟. 物理学报, 2008, 57(4): 2567-2573. doi: 10.7498/aps.57.2567
    [11] 陈顺生, 杨昌平, 邓 恒, 孙志刚. Nd0.7Sr0.3MnO3中显微结构相关电致电阻效应. 物理学报, 2008, 57(6): 3798-3802. doi: 10.7498/aps.57.3798
    [12] 王俊忠, 吉 元, 王晓冬, 刘志民, 罗俊锋, 李志国. Al互连线和Cu互连线的显微结构. 物理学报, 2007, 56(1): 371-375. doi: 10.7498/aps.56.371
    [13] 张红娣, 安玉凯, 麦振洪, 高 炬, 胡凤霞, 王 勇, 贾全杰. La0.8Ca0.2MnO3/SrTiO3薄膜厚度对其结构及磁学性能的影响. 物理学报, 2007, 56(9): 5347-5352. doi: 10.7498/aps.56.5347
    [14] 张 芸, 张波萍, 焦力实, 张海龙, 李向阳. Au/SiO2纳米多层薄膜的制备及其性质表征. 物理学报, 2006, 55(7): 3730-3735. doi: 10.7498/aps.55.3730
    [15] 郑立静, 李树索, 李焕喜, 陈昌麒, 韩雅芳, 董宝中. 7050铝合金等通道转角挤压过程中显微结构和力学性能演化的小角x射线散射研究. 物理学报, 2005, 54(4): 1665-1670. doi: 10.7498/aps.54.1665
    [16] 成问好, 李卫, 李传健. Nb含量对烧结NbFeB永磁体磁性能及显微结构的影响. 物理学报, 2001, 50(1): 139-143. doi: 10.7498/aps.50.139
    [17] 班春燕, 巴启先, 崔建忠, 路贵民, 訾炳涛. 脉冲电流作用下LY12铝合金的微观结构和合金元素分布. 物理学报, 2001, 50(10): 2028-2031. doi: 10.7498/aps.50.2028
    [18] 王刚, 刘在海, 高景芝, 张文彬. 插层化合物LiVO2的合成及物理性能的研究. 物理学报, 1990, 39(1): 138-142. doi: 10.7498/aps.39.138-2
    [19] 史引焕, 赵柏儒, 赵玉英, 李林. Bl结构MoNx薄膜的制备及物理性能研究. 物理学报, 1988, 37(7): 1089-1095. doi: 10.7498/aps.37.1089
    [20] 董碧珍, 顾本源. 实现光学变换的单个全息透镜的有效设计. 物理学报, 1986, 35(2): 235-242. doi: 10.7498/aps.35.235
计量
  • 文章访问数:  10986
  • PDF下载量:  183
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-26
  • 修回日期:  2019-05-14
  • 上网日期:  2019-08-01
  • 刊出日期:  2019-08-05

/

返回文章
返回