-
量子技术, 比如量子通信、量子计算, 具有经典技术所不具有的优势. 但是, 作为量子技术基本元素的量子态往往极为脆弱, 很容易受到外界环境的影响而丢失, 而且量子态的制造和量子操作往往是概率性的. 这种概率性使得远距离量子通信和大规模的量子计算很难实现, 除非有量子存储器将这些随机产生的量子态缓存并同步起来. 在过去的十几年中, 量子存储在各种各样的存储方案中得到了研究, 而且已经从最初的原理性演示逐步发展到了如今的近乎可实用化. 现如今, 量子存储领域追求的是可实用化, 而判断一个存储器是否可以实用化的基本标准是: 高存储效率、低噪音、长寿命(或者大的时间带宽积)和室温条件下运行. 通过介绍多个具有代表性的存储方案, 本文给出了量子存储领域的研究现状和发展趋势. 其中基于室温原子系综的宽带量子存储因其装置简单、实用性更强而广受关注. 但是由于噪音问题, 直到最近才在实验室中实现可工作在室温环境中的宽带FORD (far off-resonance Duan-Lukin-Cirac-Zoller)量子存储和梯形量子存储. 本文对多种存储方案的工作原理、优缺点进行了介绍, 对FORD方案之所以能够成功进行了分析, 还对量子存储的降噪方法进行了总结.
-
关键词:
- 量子存储 /
- 量子信息 /
- 远失谐Duan-Lukin-Cirac-Zoller方案 /
- 室温原子
Quantum technologies, for example, quantum communication and quantum computation, promise spectacular quantum enhanced advantages beyond what can be done classically. However, quantum states, as the element of quantum technologies, are very fragile and easily get lost to the environment, and meanwhile, their generation and quantum operations are mostly probabilistic. These problems make it exponentially hard to build long-distance quantum channels for quantum communication and large quantum systems for quantum computing. Quantum memory allows quantum states to be stored and retrieved in a programmable fashion, therefore providing an elegant solution to the probabilistic nature and associated limitation by coordinating asynchronous events. In the past decades, enormous advances in quantum memory have been made by developing various storage protocols and their physical implementations, and the quantum memory has gradually evolved from the initial conceptual demonstration to a nearly practical one. Aiming at being practicable for efficient synchronisation and physical scalability, an ideal quantum memory should meet several key features known as high efficiency, low noise level, large time bandwidth product (lifetime divided by pulse duration) and operating at room temperature. Here, we present the research status and development trends of this field by introducing some typical storage protocols. Among these protocols, a room-temperature broadband quantum memory is the most attractive due to its simplicity and practicability. However, at room temperature, noise becomes dominant and is a bottleneck problem that has impeded the realization of a real room-temperature broadband quantum memory in the last decades. Recently, the noise problem has been solved in two memory protocols, i.e. FORD (far off-resonance Duan-Lukin-Cirac-Zoller) protocol and ORCA (off-resonant cascaded absorption) protocol. In this paper, the working principles, the merits and demerits of various quantum memory protocols are illustrated. Furthermore, the approaches to eliminating noise and the applications of quantum memory are summarized.-
Keywords:
- quantum memory /
- quantum information /
- far off-resonance Duan-Lukin-Cirac-Zoller protocol /
- room-temperature atoms
[1] Zoller P, Beth Th, Binosi D, Blatt R, Briegel H, Bruss D, Calarco T, Cirac J I, Deutsch D, Eisert J, Ekert A, Fabre C, Gisin N, Grangiere P, Grass M, Haroche S, Imamoglu A, Karlson A, Kempe J, Kouwenhoven L, Kröll S, Leuchs G, Lewenstein M, Loss D, Lütkenhaus N, Massar S, Mooij J E, Plenio M B, Polzik E, Popescu S, Rempe G, Sergienko A, Suter D, Twamley J, Wendin G, Werner R, Winter A, Wrachtrup J, Zeilinger A 2005 Eur. Phys. J. D 36 203Google Scholar
[2] O'Brien J L, Furusawa A, Vučković J 2009 Nat. Photon. 3 687Google Scholar
[3] Jin X M, Ren J G, Yang B, Yi Z H, Zhou F, Xu X F, Wang S K, Yang D, Hu Y F, Jiang S, Yang T, Yin H, Chen K, Peng C Z, Pan J W 2010 Nat. Photon. 4 376Google Scholar
[4] Gisin N, Thew R 2007 Nat. Photon. 1 165Google Scholar
[5] Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C, O’Brien J L 2010 Nature 464 45Google Scholar
[6] Aspuru-Guzik A, Walther P 2012 Nat. Phys. 8 285Google Scholar
[7] Hau L V, Harris S E, Dutton Z, Behroozi C H 1999 Nature 397 594Google Scholar
[8] Liu C, Dutton Z, Behroozi C H, Hau L V 2001 Nature 409 490Google Scholar
[9] Phillips D F, Fleischhauer A, Mair A, Walsworth R L 2001 Phys. Rev. Lett. 86 783Google Scholar
[10] Wang L J, Kuzmich A, Dogariu A 2000 Nature 406 277Google Scholar
[11] Lvovsky A I, Sanders B C, Tittel W 2009 Nat. Photon. 3 706Google Scholar
[12] Hua Y L, Zhou Z Q, Li C F, Guo G C 2018 Chin. Phys. B 27 020303Google Scholar
[13] Chanelière T, Matsukevich D N, Jenkins S D, Lan S Y, Kennedy T A B, Kuzmich A 2005 Nature 438 833Google Scholar
[14] Eisaman M D, André A, Massou F, Fleischhauer M, Zibrov A S, Lukin M D 2005 Nature 438 837Google Scholar
[15] Zhang H, Jin X M, Yang J, Dai H N, Yang S J, Zhao T M, Rui J, He Y, Jiang X, Yang F, Pan G S, Yuan Z S, Deng Y J, Chen Z B, Bao X H, Chen S, Zhao B, Pan J W 2011 Nature Photon. 5 628Google Scholar
[16] Duan L M, Lukin M D, Cirac J I, Zoller P 2001 Nature 414 413Google Scholar
[17] Kuzmich A, Bowen W P, Boozer A D, Boca A, Chou C W, Duan L M, Kimble H J 2003 Nature 423 731Google Scholar
[18] Yang S J, Wang X J, Bao X H, Pan J W 2016 Nat. Photon. 10 381Google Scholar
[19] Chrapkiewicz R, Dᶐbrowski M, Wasilewski W 2017 Phys. Rev. Lett. 118 063603Google Scholar
[20] Julsgaard B, Kozhekin A, Polzik E S 2001 Nature 413 400Google Scholar
[21] Julsgaard B, Sherson J, Cirac J I, Fiuŕašek J, Polzik E S 2004 Nature 432 482Google Scholar
[22] Moiseev S A, Kröll S 2001 Phys. Rev. Lett. 87 173601Google Scholar
[23] Alexander A L, Longdell J J, Sellars M J, Manson N B 2006 Phys. Rev. Lett. 96 043602Google Scholar
[24] Afzelius M, Simon C, de Riedmatten H, Gisin N 2009 Phys. Rev. A 79 052329Google Scholar
[25] Reim K F, Nunn J, Jin X M, Michelberger P S, Champion T F M, England D G, Lee K C, Kolthammer W S, Langford N K, Walmsley I A 2012 Phys. Rev. Lett. 108 263602Google Scholar
[26] Ding D S, Zhang W, Zhou Z Y, Shi S, Shi B S, Guo G C 2015 Nat. Photon. 9 332Google Scholar
[27] Kaczmarek K T, Ledingham P M, Brecht B, Thomas S E, Thekkadath G S, Lazo-Arjona O, Munns J H D, Poem E, Feizpour A, Saunders D J, Nunn J, Walmsley I A 2018 Phys. Rev. A 97 042316Google Scholar
[28] Finkelstein R, Poem E, Michel O, Lahad O, Firstenberg O 2018 Sci. Adv. 4 8598Google Scholar
[29] Lee K C, Sprague M R, Sussman B J, Nunn J, Langford N K, Jin X M, Champion T, Michelberger P, Reim K F, England D, Jaksch D, Walmsley I A 2011 Science 334 1253Google Scholar
[30] England D G, Fisher K A G, MacLean J P W, Bustard P J, Lausten R, Resch K J, Sussman B J 2015 Phys. Rev. Lett. 114 053602Google Scholar
[31] Maurer P C, Kucsko G, Latta C, Jiang L, Yao N Y, Bennett S D, Pastawski F, Hunger D, Chisholm N, Markham M, Twitchen D J, Cirac J I, Lukin M D 2012 Science 336 1283Google Scholar
[32] Ghobadi R, Wein S, KavianiH, Barclay P, Simon C 2017 arXiv: 1711.02027 [quant-ph]
[33] Zhong M, Hedges M P, Ahlefeldt R L, Bartholomew J G, Beavan S E, Wittig S M, Longdell J J, Sellars M J 2015 Nature 517 177Google Scholar
[34] Yano R, Mitsunaga M, Uesugi N 1991 Opt. Lett. 16 1884Google Scholar
[35] Tang J S, Zhou Z Q, Wang Y T, Li Y L, Liu X, Hua Y L, Zou Y, Wang S, He D Y, Chen G, Sun Y N, Yu Y, Li M F, Zha G W, Ni H Q, Niu Z C, Li C F, Guo G C 2015 Nature Commun. 6 8652Google Scholar
[36] Kaneda F, Xu F, Chapman J, Kwiat P G 2017 Optica 4 1034Google Scholar
[37] Pang X L, Yang A L, Dou J P, Li H, Zhang C N, Poem E, Saunders D J, Tang H, Nunn J, Walmsley I A, Jin X M 2018 arXiv: 1803.07122 [quant-ph]
[38] Fleischhauer M, Lukin M D 2000 Phys. Rev. Lett. 84 5094Google Scholar
[39] Hsiao Y F, Tsai P J, Chen H S, Lin S X, Hung C C, Lee C H, Chen Y H, Chen Y F, Yu I A, Chen Y C 2018 Phys. Rev. Lett. 120 183602Google Scholar
[40] Li J F, Wang Y F, Zhang S C, He J Y, Cheng A Q, Yan H, Zhu S L 2017 arXiv:1706.01404 [quant-ph]
[41] Grosshans F, Grangier P 2001 Phys. Rev. A 64 010301Google Scholar
[42] Manz S, Fernholz T, Schmiedmayer J, Pan J W 2007 Phys. Rev. A 75 040101Google Scholar
[43] Alkali D Line Data, Steck D A http://steck.us/alkalidata [2018-12-03]
[44] Hétet G, Hosseini M, Sparkes B M, Oblak D, Lam P K, Buchler B C 2008 Opt. Lett. 33 2323Google Scholar
[45] Hosseini M, Sparkes B M, Hétet G, Longdell J J, Lam P K, Buchler B C 2009 Nature 461 241Google Scholar
[46] Cho Y W, Campbell G T, Everett J L, Bernu J, Higginbottom D B, Cao M T, Geng J, Robins N P, Lam P K, Buchler B C 2016 Optica 3 100Google Scholar
[47] Bashkansky M, Fatemi F K, Vurgaftman I 2012 Opt. Lett. 37 142Google Scholar
[48] Reim K F, Nunn J, Lorenz V O, Sussman B J, Lee K C, Langford N K, Jaksch D, Walmsley I A 2010 Nat. Photon. 4 218Google Scholar
[49] Sprague M R, Michelberger P S, Champion T F M, England D G, Nunn J, Jin X M, Kolthammer W S, Abdolvand A, Russell P St J, Walmsley I A 2014 Nat. Photon. 8 287Google Scholar
[50] Guo J X, Feng X T, Yang P Y, Yu Z F, Chen L Q, Yuan C H, Zhang W P 2019 Nat. Commun. 10 148Google Scholar
[51] Dou J P, Yang A L, Du M Y, Lao D, Gao J, Qiao L F, Li H, Pang X L, Feng Z, Tang H, Jin X M 2018 Commun. Phys. 1 55Google Scholar
[52] de Riedmatten H, Laurat J, Chou C W, Schomburg E W, Felinto D, Kimble H J 2006 Phys. Rev. Lett. 97 113603Google Scholar
[53] Chen S, Chen Y A, Zhao B, Yuan Z S, Schmiedmayer J, Pan J W 2007 Phys. Rev. Lett. 99 180505Google Scholar
[54] Bao X H, Reingruber A, Dietrich P, Rui J, Dück A, Strassel T, Li L, Liu N H, Zhao B, Pan J W 2012 Nat. Phys. 8 517Google Scholar
[55] Dou J P, Yang A L, Du M Y, Lao D, Li H, Pang X L, Gao J, Qiao L F, Tang H, Jin X M 2018 npj Quantum Information 4 31Google Scholar
[56] Zhao B, Chen Y A, Bao X H, Strassel T, Chuu C S, Jin X M, Schmiedmayer J, Yuan Z S, Chen S, Pan J W 2009 Nat. Phys. 5 95Google Scholar
[57] Novikova I, Phillips N B, Gorshkov A V 2008 Phys. Rev. A 78 021802Google Scholar
[58] Nunn J, Thomas S, Munns J H D, Kaczmarek K T, Qiu C, Feizpour A, Poem E, Brecht B, Saunders D J, Ledingham P M, Reddy D V, Raymer M G, Walmsley I A 2017 Phys. Rev. A 96 012338Google Scholar
[59] Saunders D J, Munns J H D, Champion T F M, Qiu C, Kaczmarek K T, Poem E, Ledingham P M, Walmsley I A, Nunn J 2016 Phys. Rev. Lett. 116 090501Google Scholar
[60] Guo J X, Chen L Q, Yang P Y, Li Z J, Wu Y, Feng X T, Yuan C H, Ou Z Y, Zhang W P 2017 Opt. Lett. 42 1752Google Scholar
[61] Radnaev A G, Dudin Y O, Zhao R, Jen H H, Jenkins S D, Kuzmich A, Kennedy T A B A 2010 Nat. Phys. 6 894Google Scholar
[62] Dudin Y O, Li L, Kuzmich A 2013 Phys. Rev. A 87 031801Google Scholar
[63] Heinze G, Hubrich C, Halfmann T 2013 Phys. Rev. Lett. 111 033601Google Scholar
[64] Balabas M V, Karaulanov T, Ledbetter M P, Budker D 2010 Phys. Rev. Lett. 105 070801Google Scholar
[65] Zugenmaier M, Dideriksen K B, Spørensen A S, Albrecht B, Polzik E S 2018 Commun. Phys. 1 76Google Scholar
[66] Katz O, Firstenberg O 2018 Nat. Commun. 9 2074Google Scholar
[67] Nunn J, Langford N K, Kolthammer W S, Champion T F M, Sprague M R, Michelberger P S, Jin X M, England D G, Walmsley I A 2013 Phys. Rev. Lett. 110 133601Google Scholar
[68] Chen S, Chen Y A, Strassel T, Yuan Z S, Zhao B, Schmiedmayer J, Pan J W 2006 Phys. Rev. Lett. 97 173004Google Scholar
[69] Sangouard N, Simon C, de Riedmatten H, Gisin N 2011 Rev. Mod. Phys. 83 33Google Scholar
[70] Chen B, Qiu C, Chen S Y, Guo J X, Chen L Q, Ou Z Y, Zhang W P 2015 Phys. Rev. Lett. 115 043602Google Scholar
[71] Pan J W, Bouwmeester D, Weinfurter H, Zeilinger A 1998 Phys. Rev. Lett. 80 3891Google Scholar
[72] Cabrillo C, Cirac J I, García-Fernández P, Zoller P 1999 Phys. Rev. A 59 1025Google Scholar
[73] Duan L M, Cirac J I, Zoller P 2002 Phys. Rev. A 66 023818Google Scholar
[74] Gujarati T P, Wu Y K, Duan L M 2018 Phys. Rev. A 97 033826Google Scholar
[75] Xu Z X, Wu Y L, Tian L, Chen L R, Zhang Z Y, Yan Z H, Li S J, Wang H, Xie C D, Peng K C 2013 Phys. Rev. Lett. 111 240503Google Scholar
[76] Yuan Z S, Chen Y A, Zhao B, Chen S, Schmiedmayer J, Pan J W 2008 Nature 454 1098Google Scholar
[77] Bernien H, Hensen B, Pfaff W, Koolstra G, Blok M S, Robledo L, Taminiau T H, Markham M, Twitchen D J, Childress L, Hanson R 2013 Nature 497 86Google Scholar
[78] Jing B, Wang X J, Yu Y, Sun P F, Jiang Y, Yang S J, Jiang W H, Luo X Y, Zhang J, Jiang X, Bao X H, Pan J W 2019 Nat. Photon. 10.1038/s41566-018-0342-x
[79] Pu Y F, Wu Y K, Jiang N, Chang W, Li C, Zhang S, Duan L M 2018 Sci. Adv. 4 3931Google Scholar
[80] Fröwis F, Strassmann P C, Tiranov A, Gut C, Lavoie J, Brunner N, Bussières F, Afzelius M, Gisin N 2017 Nat. Commun. 8 907Google Scholar
[81] Campbell G, Hosseini M, Sparkes B M, Lam P K, Buchler B C 2012 New J. Phys. 14 033022Google Scholar
[82] Wasilewski W, Jensen K, Krauter H, Renema J J, Balabas M V, Polzik E S 2010 Phys. Rev. Lett. 104 133601Google Scholar
[83] Biedermann G W, McGuinness H J, Rakholia A V, Jau Y Y, Wheeler D R, Sterk J D, Burns G R 2017 Phys. Rev. Lett. 118 163601Google Scholar
[84] Pezzè L, Smerzi A, Oberthaler M K, Schmied R, Treutlein P 2018 Rev. Mod. Phys. 90 035005Google Scholar
-
图 2 基于冷原子EIT的量子存储(第一个磁光阱(MOT1)囚禁的雪茄型铷原子系综用来产生双光子对, 第二个磁光阱(MOT2)囚禁的铷原子系综作为量子存储器, 用来存储来自于MOT1的anti-Stokes光子)[40]
Fig. 2. EIT quantum memory based on cold atoms[40]. The rubidium atomic ensemble in the first cigar-shaped magneto-optical trap (MOT1) is used to generate photon pairs. The rubidium atomic ensemble in MOT2 acts as a quantum memory, and is used to store the anti-Stokes photons from MOT1.
图 3 磁场GEM的原理图[45] (a) 三能级系统; (b) 沿z方向线性频移的原子系综; (c) 光脉冲将要存入频移了的原子系综; (d) 在
$\tau $ 时刻, 频率梯度反转, 在2$\tau $ 时刻出现光子回波; (e) 主要光路; (f) 施加的梯度磁场BzFig. 3. GEM schematic[45]: (a) A three-level system; (b) an ensemble of atoms with linearly varying frequency shift in the z direction; (c) a pulse of light is stored in the frequency-shifted ensemble; (d) after reversal of the frequency gradient at time
$\tau $ , a photon echo emerges at time 2$\tau $ ; (e) the optical layout; (f) the applied magnetic field, Bz.图 4 远失谐拉曼存储 (a) 实验原理[48]; (b) Λ型能级结构, 强的控制光(蓝线)激发出虚能级(黑色虚线), 并将信号光子(红线)耦合进铯原子系综或者将存储的信号光子读取出来[48]; (c) 在空心光子晶体光纤中实现单光子量级的宽带光存储[49]
Fig. 4. Far off-resonance Raman memory: (a) Principle of experiment[48]; (b)
$\Lambda $ -type energy level; the strong control light (blue line) induces a virtual energy level (black dashed line), and couples (retrieve) the signal photons (read lines) into (from) the caesium atomic ensemble[48]; (c) broadband single-photon-level memory in a hollow-core photonic crystal fibre[49].图 5 基于非共振梯形吸收的量子存储[27] (a) 信号光子(蓝线)和控制光(橙线)反向传播; (b) 具体采用的铯原子能级, 其中6D5/2是存储态; (c) 实验装置图
Fig. 5. Quantum memory protocol based on off-resonant cascaded absorption (ORCA)[27]: (a) The weak input signal pulse (blue line) and strong control pulse (orange line) are counter-propagating; (b) the relevant caesium atomic levels, where the storage state is 6D5/2; (c) the experimental setup.
图 6 在实现宽带量子存储的历程中, 基于原子系综的量子存储的代表性工作[51], 其中冷原子实验用黑色方块表示; 热原子实验用红色方块表示; ORCA表示梯形量子存储; FORD表示远失谐DLCZ量子存储
Fig. 6. Milestone works of quantum memory towards broadband and quantum regime in atomic ensemble[51]. The quantum memory experiments in cold atoms are shown in black diamond. The quantum memory experiments in room-temperature atoms are shown in red diamond. ORCA: Quantum memory based on off-resonant cascaded absorption. FORD: Quantum memory based on far off-resonance DLCZ protocol.
图 7 FORD存储方案的原理图[51] (a) 实验装置图, 其中铯池置于3层磁屏蔽筒内并被加热到61.3 ℃, WP代表沃拉斯顿棱镜; QWP代表四分之一波片; HWP代表二分之一波片; PBS为偏振分束器; (b) FORD存储的写过程; (c) 读过程
Fig. 7. Experimental principle[51]. (a) Experimental setup. The caesium cell is packed in a three-layer magnetic shielding and is heated up to 61.3 ℃. WP, Wollaston prism; QWP, quarter-wave plate; HWP, half-wave plate; PBS, polarization beam splitter. (b) The write process of FORD quantum memory. (c) The read process.
图 8 基于DLCZ方案建立纠缠的原理 (a) 一开始, 原子被制备在初态
$\left| g \right\rangle $ 上, 然后写光与原子相互作用, 并以百分之几的概率产生Stokes光子; (b) 探测器1 (记为D1)和探测器2 (记为D2)探测到的光子有可能是来自于原子池A也有可能来自于原子池B, 在不能分辨Stokes光子是来源于原子池A还是B的前提下, 如果D1和D2两个探测器只有一个探测到光子且只探测到一个光子, 则原子池A和B之间存在纠缠; BS,光束分束器, 这里用的分束比是50 : 50; (c) 杨氏双缝干涉, 我们不能确定光子会从哪个狭缝通过Fig. 8. Generation of entanglement based on DLCZ protocol. (a) Initially, the atoms are prepared in state
$\left| g \right\rangle $ . Then a write light interacts with atoms and generates a Stokes photon with a probability of a few percent. (b) The photons detected by the detector 1 (denoted by D1) and detector 2 (denoted by D2) may come from either the cell A or the cell B. If the two detectors (D1 and D2) detect only one photon, and one cannot distinguish whether the photon is from the cell A or cell B, then the entanglement between the cell A and cell B is established. BS: beam spliter with a splitting ratio of 50 : 50. (c) Young’s double slit experiment. We can not distinguish which slit the photon passes through.图 9 基于DLCZ 方案的纠缠交换 (a) 读取过程, 读光将存储态
$\left| s \right\rangle $ 读出为anti-Stokes光子; (b) 纠缠交换, 一开始, 原子池A和B存在纠缠, 原子池C和D存在纠缠, 原子池B和C在读光作用下有一定概率产生anti-Stokes光子, 在不能分辨光子是来源于原子池B还是C的前提下, 如果 D1和D2两个探测器只有一个探测到光子且只探测到一个光子, 则原子池A和D之间会产生纠缠; 以此类推, 便可在距离很远的两个原子系综之间建立纠缠Fig. 9. Entanglement swapping based on DLCZ protocol. The retrieval process. The read light retrieves the storage state
$\left| s \right\rangle $ out as an anti-Stokes photon. (b) Entanglement swapping. Initially, cell A and B are entangled, cell C and D are entangled. Under the influence of read light, both the cell B and C will emit anti-Stokes photons with a certain probability. If the two detectors (D1 and D2) detect only one photon, and one can not distinguish whether the photon is from cell B or cell C, then the cell A and D are entangled. By analogy, one can establish an entanglement between two atomic ensembles separated by great distance.图 10 基于DLCZ方案的多光子同步, 其中在写光作用下, N个原子池随机产生Stokes光子(绿色圆)和与Stokes光子对应的集体激发态; 对每个原子池反复进行写操作, 直到产生Stokes光子为止; 当所有原子池都成功存储了集体激发态, 用读光将所有原子池内的集体激发态同时读取, 以产生N个时间上同步的anti-Stokes光子(蓝色圆)
Fig. 10. Multiphoton synchronization based on DLCZ protocol. N cells interacting with write light can stochastically generate Stokes photons (green circles) and collective excitations. Repeatedly write the cell until a Stokes photon is generated. When each of the cells successfully stores a collective excitation, turn on the read light and retrieve all of the collective excitations out as N synchronous anti-Stokes photons (blue circles).
表 1 各种基于原子系综的具有代表性的量子存储器及其重要参数[51]
Table 1. Milestone works on quantum memory in atomic ensemble and key figures of merit[51].
具有代表性的工作 存储方案 存储器温度 互关联函数g(2) 带宽 时间带宽积 1 Phys. Rev. Lett. 110 083601 (2013) EIT 300 μK ≤2 <5 MHz 74 2 Nature 438 837 (2005) EIT 303—320 K 2—3 ~1 MHz ~1 3 Nature 438 833 (2005) EIT ~100 μK 8.5 12 MHz 120 4 Nat. Photon. 5 628 (2011) EIT ~100 μK 10 5.5 MHz 13 5 Phys. Rev. A 75 040101 (2007) DLCZ 333 K 1.3 1 MHz NA 6 Nat. Phys. 5 95 (2009) DLCZ 100 μK 37 <10 MHz <10000 7 Opt. Lett. 37 142 (2012) DLCZ 310 K 4 1 MHz 5 8 Nat. Photon. 10 381 (2016) DLCZ ~100 μK ~37 <10 MHz <2200000 9 Nature 461 241 (2009) GEM 300K ≤2 1 MHz NA 10 Nat. Commun. 174 (2011) GEM 351 K ≤2 ~1 MHz ≤10 11 Optica 3 100 (2016) GEM 100 μK ≤2 <10 MHz 84 12 Nat. Photon. 4 218 (2010) Far off-resonance Raman 335.5 K ≤2 1.5 GHz 18 13 Phys. Rev. Lett. 107 053603 (2011) Far off-resonance Raman 335.5 K ≤2 1.5 GHz 2250 14 Phys. Rev. Lett. 116 090501 (2016) Far off-resonance Raman 343 K ≤2 1 GHz 95 15 Nat. Photon. 9 332 (2015) Raman memory ~100 μK 13.6 140 MHz 200 16 Nature 432 482 (2004) Off-resonant Faraday interaction 300 K ≤2 NA NA 17 Phys. Rev. A 97 042316 (2018) Off-resonant cascaded absorption (ORCA) 364 K 120 1 GHz 5 18 Commun. Phys. 1 55 (2018) Far off-resonance DLCZ (FORD) 334 K 28 537 MHz 700 -
[1] Zoller P, Beth Th, Binosi D, Blatt R, Briegel H, Bruss D, Calarco T, Cirac J I, Deutsch D, Eisert J, Ekert A, Fabre C, Gisin N, Grangiere P, Grass M, Haroche S, Imamoglu A, Karlson A, Kempe J, Kouwenhoven L, Kröll S, Leuchs G, Lewenstein M, Loss D, Lütkenhaus N, Massar S, Mooij J E, Plenio M B, Polzik E, Popescu S, Rempe G, Sergienko A, Suter D, Twamley J, Wendin G, Werner R, Winter A, Wrachtrup J, Zeilinger A 2005 Eur. Phys. J. D 36 203Google Scholar
[2] O'Brien J L, Furusawa A, Vučković J 2009 Nat. Photon. 3 687Google Scholar
[3] Jin X M, Ren J G, Yang B, Yi Z H, Zhou F, Xu X F, Wang S K, Yang D, Hu Y F, Jiang S, Yang T, Yin H, Chen K, Peng C Z, Pan J W 2010 Nat. Photon. 4 376Google Scholar
[4] Gisin N, Thew R 2007 Nat. Photon. 1 165Google Scholar
[5] Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C, O’Brien J L 2010 Nature 464 45Google Scholar
[6] Aspuru-Guzik A, Walther P 2012 Nat. Phys. 8 285Google Scholar
[7] Hau L V, Harris S E, Dutton Z, Behroozi C H 1999 Nature 397 594Google Scholar
[8] Liu C, Dutton Z, Behroozi C H, Hau L V 2001 Nature 409 490Google Scholar
[9] Phillips D F, Fleischhauer A, Mair A, Walsworth R L 2001 Phys. Rev. Lett. 86 783Google Scholar
[10] Wang L J, Kuzmich A, Dogariu A 2000 Nature 406 277Google Scholar
[11] Lvovsky A I, Sanders B C, Tittel W 2009 Nat. Photon. 3 706Google Scholar
[12] Hua Y L, Zhou Z Q, Li C F, Guo G C 2018 Chin. Phys. B 27 020303Google Scholar
[13] Chanelière T, Matsukevich D N, Jenkins S D, Lan S Y, Kennedy T A B, Kuzmich A 2005 Nature 438 833Google Scholar
[14] Eisaman M D, André A, Massou F, Fleischhauer M, Zibrov A S, Lukin M D 2005 Nature 438 837Google Scholar
[15] Zhang H, Jin X M, Yang J, Dai H N, Yang S J, Zhao T M, Rui J, He Y, Jiang X, Yang F, Pan G S, Yuan Z S, Deng Y J, Chen Z B, Bao X H, Chen S, Zhao B, Pan J W 2011 Nature Photon. 5 628Google Scholar
[16] Duan L M, Lukin M D, Cirac J I, Zoller P 2001 Nature 414 413Google Scholar
[17] Kuzmich A, Bowen W P, Boozer A D, Boca A, Chou C W, Duan L M, Kimble H J 2003 Nature 423 731Google Scholar
[18] Yang S J, Wang X J, Bao X H, Pan J W 2016 Nat. Photon. 10 381Google Scholar
[19] Chrapkiewicz R, Dᶐbrowski M, Wasilewski W 2017 Phys. Rev. Lett. 118 063603Google Scholar
[20] Julsgaard B, Kozhekin A, Polzik E S 2001 Nature 413 400Google Scholar
[21] Julsgaard B, Sherson J, Cirac J I, Fiuŕašek J, Polzik E S 2004 Nature 432 482Google Scholar
[22] Moiseev S A, Kröll S 2001 Phys. Rev. Lett. 87 173601Google Scholar
[23] Alexander A L, Longdell J J, Sellars M J, Manson N B 2006 Phys. Rev. Lett. 96 043602Google Scholar
[24] Afzelius M, Simon C, de Riedmatten H, Gisin N 2009 Phys. Rev. A 79 052329Google Scholar
[25] Reim K F, Nunn J, Jin X M, Michelberger P S, Champion T F M, England D G, Lee K C, Kolthammer W S, Langford N K, Walmsley I A 2012 Phys. Rev. Lett. 108 263602Google Scholar
[26] Ding D S, Zhang W, Zhou Z Y, Shi S, Shi B S, Guo G C 2015 Nat. Photon. 9 332Google Scholar
[27] Kaczmarek K T, Ledingham P M, Brecht B, Thomas S E, Thekkadath G S, Lazo-Arjona O, Munns J H D, Poem E, Feizpour A, Saunders D J, Nunn J, Walmsley I A 2018 Phys. Rev. A 97 042316Google Scholar
[28] Finkelstein R, Poem E, Michel O, Lahad O, Firstenberg O 2018 Sci. Adv. 4 8598Google Scholar
[29] Lee K C, Sprague M R, Sussman B J, Nunn J, Langford N K, Jin X M, Champion T, Michelberger P, Reim K F, England D, Jaksch D, Walmsley I A 2011 Science 334 1253Google Scholar
[30] England D G, Fisher K A G, MacLean J P W, Bustard P J, Lausten R, Resch K J, Sussman B J 2015 Phys. Rev. Lett. 114 053602Google Scholar
[31] Maurer P C, Kucsko G, Latta C, Jiang L, Yao N Y, Bennett S D, Pastawski F, Hunger D, Chisholm N, Markham M, Twitchen D J, Cirac J I, Lukin M D 2012 Science 336 1283Google Scholar
[32] Ghobadi R, Wein S, KavianiH, Barclay P, Simon C 2017 arXiv: 1711.02027 [quant-ph]
[33] Zhong M, Hedges M P, Ahlefeldt R L, Bartholomew J G, Beavan S E, Wittig S M, Longdell J J, Sellars M J 2015 Nature 517 177Google Scholar
[34] Yano R, Mitsunaga M, Uesugi N 1991 Opt. Lett. 16 1884Google Scholar
[35] Tang J S, Zhou Z Q, Wang Y T, Li Y L, Liu X, Hua Y L, Zou Y, Wang S, He D Y, Chen G, Sun Y N, Yu Y, Li M F, Zha G W, Ni H Q, Niu Z C, Li C F, Guo G C 2015 Nature Commun. 6 8652Google Scholar
[36] Kaneda F, Xu F, Chapman J, Kwiat P G 2017 Optica 4 1034Google Scholar
[37] Pang X L, Yang A L, Dou J P, Li H, Zhang C N, Poem E, Saunders D J, Tang H, Nunn J, Walmsley I A, Jin X M 2018 arXiv: 1803.07122 [quant-ph]
[38] Fleischhauer M, Lukin M D 2000 Phys. Rev. Lett. 84 5094Google Scholar
[39] Hsiao Y F, Tsai P J, Chen H S, Lin S X, Hung C C, Lee C H, Chen Y H, Chen Y F, Yu I A, Chen Y C 2018 Phys. Rev. Lett. 120 183602Google Scholar
[40] Li J F, Wang Y F, Zhang S C, He J Y, Cheng A Q, Yan H, Zhu S L 2017 arXiv:1706.01404 [quant-ph]
[41] Grosshans F, Grangier P 2001 Phys. Rev. A 64 010301Google Scholar
[42] Manz S, Fernholz T, Schmiedmayer J, Pan J W 2007 Phys. Rev. A 75 040101Google Scholar
[43] Alkali D Line Data, Steck D A http://steck.us/alkalidata [2018-12-03]
[44] Hétet G, Hosseini M, Sparkes B M, Oblak D, Lam P K, Buchler B C 2008 Opt. Lett. 33 2323Google Scholar
[45] Hosseini M, Sparkes B M, Hétet G, Longdell J J, Lam P K, Buchler B C 2009 Nature 461 241Google Scholar
[46] Cho Y W, Campbell G T, Everett J L, Bernu J, Higginbottom D B, Cao M T, Geng J, Robins N P, Lam P K, Buchler B C 2016 Optica 3 100Google Scholar
[47] Bashkansky M, Fatemi F K, Vurgaftman I 2012 Opt. Lett. 37 142Google Scholar
[48] Reim K F, Nunn J, Lorenz V O, Sussman B J, Lee K C, Langford N K, Jaksch D, Walmsley I A 2010 Nat. Photon. 4 218Google Scholar
[49] Sprague M R, Michelberger P S, Champion T F M, England D G, Nunn J, Jin X M, Kolthammer W S, Abdolvand A, Russell P St J, Walmsley I A 2014 Nat. Photon. 8 287Google Scholar
[50] Guo J X, Feng X T, Yang P Y, Yu Z F, Chen L Q, Yuan C H, Zhang W P 2019 Nat. Commun. 10 148Google Scholar
[51] Dou J P, Yang A L, Du M Y, Lao D, Gao J, Qiao L F, Li H, Pang X L, Feng Z, Tang H, Jin X M 2018 Commun. Phys. 1 55Google Scholar
[52] de Riedmatten H, Laurat J, Chou C W, Schomburg E W, Felinto D, Kimble H J 2006 Phys. Rev. Lett. 97 113603Google Scholar
[53] Chen S, Chen Y A, Zhao B, Yuan Z S, Schmiedmayer J, Pan J W 2007 Phys. Rev. Lett. 99 180505Google Scholar
[54] Bao X H, Reingruber A, Dietrich P, Rui J, Dück A, Strassel T, Li L, Liu N H, Zhao B, Pan J W 2012 Nat. Phys. 8 517Google Scholar
[55] Dou J P, Yang A L, Du M Y, Lao D, Li H, Pang X L, Gao J, Qiao L F, Tang H, Jin X M 2018 npj Quantum Information 4 31Google Scholar
[56] Zhao B, Chen Y A, Bao X H, Strassel T, Chuu C S, Jin X M, Schmiedmayer J, Yuan Z S, Chen S, Pan J W 2009 Nat. Phys. 5 95Google Scholar
[57] Novikova I, Phillips N B, Gorshkov A V 2008 Phys. Rev. A 78 021802Google Scholar
[58] Nunn J, Thomas S, Munns J H D, Kaczmarek K T, Qiu C, Feizpour A, Poem E, Brecht B, Saunders D J, Ledingham P M, Reddy D V, Raymer M G, Walmsley I A 2017 Phys. Rev. A 96 012338Google Scholar
[59] Saunders D J, Munns J H D, Champion T F M, Qiu C, Kaczmarek K T, Poem E, Ledingham P M, Walmsley I A, Nunn J 2016 Phys. Rev. Lett. 116 090501Google Scholar
[60] Guo J X, Chen L Q, Yang P Y, Li Z J, Wu Y, Feng X T, Yuan C H, Ou Z Y, Zhang W P 2017 Opt. Lett. 42 1752Google Scholar
[61] Radnaev A G, Dudin Y O, Zhao R, Jen H H, Jenkins S D, Kuzmich A, Kennedy T A B A 2010 Nat. Phys. 6 894Google Scholar
[62] Dudin Y O, Li L, Kuzmich A 2013 Phys. Rev. A 87 031801Google Scholar
[63] Heinze G, Hubrich C, Halfmann T 2013 Phys. Rev. Lett. 111 033601Google Scholar
[64] Balabas M V, Karaulanov T, Ledbetter M P, Budker D 2010 Phys. Rev. Lett. 105 070801Google Scholar
[65] Zugenmaier M, Dideriksen K B, Spørensen A S, Albrecht B, Polzik E S 2018 Commun. Phys. 1 76Google Scholar
[66] Katz O, Firstenberg O 2018 Nat. Commun. 9 2074Google Scholar
[67] Nunn J, Langford N K, Kolthammer W S, Champion T F M, Sprague M R, Michelberger P S, Jin X M, England D G, Walmsley I A 2013 Phys. Rev. Lett. 110 133601Google Scholar
[68] Chen S, Chen Y A, Strassel T, Yuan Z S, Zhao B, Schmiedmayer J, Pan J W 2006 Phys. Rev. Lett. 97 173004Google Scholar
[69] Sangouard N, Simon C, de Riedmatten H, Gisin N 2011 Rev. Mod. Phys. 83 33Google Scholar
[70] Chen B, Qiu C, Chen S Y, Guo J X, Chen L Q, Ou Z Y, Zhang W P 2015 Phys. Rev. Lett. 115 043602Google Scholar
[71] Pan J W, Bouwmeester D, Weinfurter H, Zeilinger A 1998 Phys. Rev. Lett. 80 3891Google Scholar
[72] Cabrillo C, Cirac J I, García-Fernández P, Zoller P 1999 Phys. Rev. A 59 1025Google Scholar
[73] Duan L M, Cirac J I, Zoller P 2002 Phys. Rev. A 66 023818Google Scholar
[74] Gujarati T P, Wu Y K, Duan L M 2018 Phys. Rev. A 97 033826Google Scholar
[75] Xu Z X, Wu Y L, Tian L, Chen L R, Zhang Z Y, Yan Z H, Li S J, Wang H, Xie C D, Peng K C 2013 Phys. Rev. Lett. 111 240503Google Scholar
[76] Yuan Z S, Chen Y A, Zhao B, Chen S, Schmiedmayer J, Pan J W 2008 Nature 454 1098Google Scholar
[77] Bernien H, Hensen B, Pfaff W, Koolstra G, Blok M S, Robledo L, Taminiau T H, Markham M, Twitchen D J, Childress L, Hanson R 2013 Nature 497 86Google Scholar
[78] Jing B, Wang X J, Yu Y, Sun P F, Jiang Y, Yang S J, Jiang W H, Luo X Y, Zhang J, Jiang X, Bao X H, Pan J W 2019 Nat. Photon. 10.1038/s41566-018-0342-x
[79] Pu Y F, Wu Y K, Jiang N, Chang W, Li C, Zhang S, Duan L M 2018 Sci. Adv. 4 3931Google Scholar
[80] Fröwis F, Strassmann P C, Tiranov A, Gut C, Lavoie J, Brunner N, Bussières F, Afzelius M, Gisin N 2017 Nat. Commun. 8 907Google Scholar
[81] Campbell G, Hosseini M, Sparkes B M, Lam P K, Buchler B C 2012 New J. Phys. 14 033022Google Scholar
[82] Wasilewski W, Jensen K, Krauter H, Renema J J, Balabas M V, Polzik E S 2010 Phys. Rev. Lett. 104 133601Google Scholar
[83] Biedermann G W, McGuinness H J, Rakholia A V, Jau Y Y, Wheeler D R, Sterk J D, Burns G R 2017 Phys. Rev. Lett. 118 163601Google Scholar
[84] Pezzè L, Smerzi A, Oberthaler M K, Schmied R, Treutlein P 2018 Rev. Mod. Phys. 90 035005Google Scholar
计量
- 文章访问数: 26883
- PDF下载量: 1123
- 被引次数: 0