搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

[Ca24Al28O64]4+(4e)电子化合物的直接合成及热发射性能

李凡 张忻 张久兴

引用本文:
Citation:

[Ca24Al28O64]4+(4e)电子化合物的直接合成及热发射性能

李凡, 张忻, 张久兴

Direct synthesis of [Ca24Al28O64]4+(4e) electride and its thermionic emission performance

Li Fan, Zhang Xin, Zhang Jiu-Xing
PDF
HTML
导出引用
  • [Ca24Al28O64]4+(4e)电子化合物是一种具有高载流子密度、低逸出功的透明导电氧化物, 但是繁琐的制备步骤、苛刻的工艺条件极大地限制了其实际应用. 本文以特定化学计量比的Ca12Al14O33+CaAl2O4两相为前驱体, 在放电等离子烧结系统里通过原位钙热反应成功制备了多晶C12A7:e. 在烧结温度为1100 ℃, 保温时间为10 min的条件下, 其电子浓度基本达到理论最大值~2.3×1021 cm–3, 在2.5 eV处出现明显的紫外吸收峰, 致密度可达99%以上. 同时用顺磁共振谱仪分析了其电子结构, 结果呈Dyson特性, 这些结果充分证明了电子有效地注入到笼腔结构中. 热电子发射测试结果显示: 在阴极温度为1373 K, 外加电场为35000 V/cm的条件下, C12A7:e的热发射电流密度为1.75 A/cm2, 有效逸出功为2.07 eV. 该工艺提供了一种新型的电子注入方法, 大幅度缩短了制备周期使大规模生产成为可能.
    [Ca24Al28O64]4+(4e) eletride, as the first room-temperature stable inorganic electride, has attracted intensive attention because of its fascinating chemical, electrical, optical, and magnetic properties. However, it usually needs synthesizing through a complicated multistep process involving high temperature (e.g., 1350 °C), severe reduction (e.g., 700–1300 ℃ for up to 240 h in Ca or Ti metal vapor atmosphere) and post-purification. Owing to the H2O sensitivity of mayenite, the post-purification is quite troublesome once impurities are introduced. High-density, loosely bound encaged electrons with a low work function make it promise to possess practical applications. Therefore the facile method of massively producing the high-quality C12A7:e with high Ne is extremely desired. In this work, C12A7:e bulks are for the first time synthesized by simple spark plasma sintering process directly from a mixture of C12A7, CA and Ca powders under milder conditions (e.g., sintered at 1070 ℃ for 10 min in a vacuum). The obtained electride, which exhibits a relative density of 99%, an electron concentration of ~2.3×1021 cm–3 and an obvious absorption peak at 2.5 eV, is obtained via SPS process at 1100 ℃ for 10 min. Electronic structure is also investigated by electron paramagnetic resonance. The occurrence of Dysonian characteristic, a typical feature of good electronic conductors, strongly suggests that the electrons are trapped in mayenite cavities. Furthermore, the obtained C12A7:e exhibits good sinterabilty on a crystal scale of 5–40 μm. Thermionic emission test results show that the thermionic emission begins to occur at 700 K and a large current density of 1.75 A/cm2 is obtained in the electron thermal emission from a flat surface of the polycrystalline C12A7:e with an effective work function of 2.09 eV for a temperature of 1373 K with an applied electric field of ~35000 V/cm in a vacuum. Owing to no external reductant is needed, this developed route exhibits notable superiority over the conventional reduction method for phase-pure C12A7:e. Therefore, these results not only suggest a novel precursor for fabricating mayenite electride but also make it possible to produce efficiently the electride in large volume.
      通信作者: 张忻, zhxin@bjut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51371010, 51572066, 50801002) 资助的课题
      Corresponding author: Zhang Xin, zhxin@bjut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51371010, 51572066, 50801002)
    [1]

    Dye J L 2009 Acc. Chem. Res. 42 1564Google Scholar

    [2]

    Kim S W, Hosono H 2012 Philos. Mag. 92 2596Google Scholar

    [3]

    Jiang D, Zhao Z Y, Mu S L, Qian H J, Tong J H 2018 Inorg. Chem. 58 960

    [4]

    Khan K, Tareen A K, Elshahat S, Yadav A, Khan U 2018 Dalton Trans. 47 3819Google Scholar

    [5]

    Matsuishi S, Toda Y, Miyakawa M 2003 Science 301 626Google Scholar

    [6]

    刘洪亮, 张忻, 王杨, 肖怡新, 张久兴 2018 物理学报 67 048101Google Scholar

    Liu H L, Zhang X, Wang Y, Xiao Y X, Zhang J X 2018 Acta Phys. Sin. 67 048101Google Scholar

    [7]

    Kitano M, Inoue Y, Yamazaki Y, Fumitaka H, Shinji K, Satoru M, Toshiharu Y, Sung W K, Michikazu H, Hideo H 2012 Nat. Chem. 4 934Google Scholar

    [8]

    Kim S W, Hayashi K, Hirano M, Hosono H, Tanaka I 2006 J. Am. Ceram. Soc. 89 3294Google Scholar

    [9]

    Kitano M, Kanbara S, Inoue Y, Kuganathan N, Sushko P V, Yokoyama T, Hara M, Hosono H 2015 Nat. Commun. 6 6731Google Scholar

    [10]

    Hara M, Masaaki K, Hosono H 2017 ACS Catal. 7 2313Google Scholar

    [11]

    Ding Y F, Zhao Q Q, Yu Z L, Zhao Y Q, Liu B, He P B, Zhou H, Li K L, Yin S F, Cai M Q 2019 J. Mater. Chem. C 7 7433Google Scholar

    [12]

    Zhao Y Q, Wang X, Liu B, Yu Z L, He P B, Wan Q, Cai M Q, Yu H L 2018 Org. Electron. 53 50Google Scholar

    [13]

    Dye J L 2003 Science 301 607Google Scholar

    [14]

    Toda Y, Kim S W, Hayashi K, Hirano M, Kamiya T, Hosono H, Yasuda H 2005 Appl. Phys. Lett. 87 254103Google Scholar

    [15]

    Yu Z L, Ma Q R, Liu B, Zhao Y Q, Wang L Z, Zhou H, Cai M Q 2017 J. Phys. D: Appl. Phys. 50 465101Google Scholar

    [16]

    Zhao Y Q, Ma Q R, Liu B, Yu Z L, Yang J L, Cai M Q 2018 Nanoscale 10 8677Google Scholar

    [17]

    Deng X Z, Zhao Q Q, Zhao Y Q, Cai M Q 2019 Current Appl. Phys. 19 279Google Scholar

    [18]

    Kim K B, Kikuchi M, Miyakawa M, Yanagi H, Kamiya T, Hirano M, Hosono H 2007 J. Phys. Chem. C 111 8403Google Scholar

    [19]

    Kou X C, Kronmüller H, Givord D, Rossignol M F 1994 Phys. Rev. B 50 3849Google Scholar

    [20]

    Matsuishi S, Nomura T, Hirano M, Kodama K, Shamoto S I, Hosono H 2009 Chem. Mater. 21 2589Google Scholar

    [21]

    Kim S W, Matsuishi S, Nomura T, Kubota Y, Takata M, Hayashi K, Hosono H 2007 Nano Lett. 7 1138Google Scholar

    [22]

    Hosono H, Hayashi K, Hirano M 2007 J. Mater. Sci. 42 1872Google Scholar

    [23]

    Sushko P V, Shluger A, Hayashi K, Hirano M, Hosono H 2003 Phys. Rev. Lett. 9 126401

    [24]

    Miyakawa M, Toda Y, Hayashi K, Hirano M, Kamiya T, Matsunami N, Hosono H 2005 J. Appl. Phys. 97 023510Google Scholar

    [25]

    Woomer A H, Druffel D L, Sundberg J D, Pawlik J T, Warren S C 2019 J. Am. Ceram. Soc. 141 10300

    [26]

    冯琦, 张忻, 刘洪亮, 赵吉平, 李凡, 张久兴 2018 物理学报 67 047102Google Scholar

    Feng Q, Zhang X, Liu H L, Zhao J P, Xiao Y X, Li F, Zhang J X 2018 Acta Phys. Sin. 67 047102Google Scholar

    [27]

    Duan J, Zhou T, Zhang L, Du J G, Jiang G, Wang H B 2015 Chin. Phys. B 24 096201Google Scholar

    [28]

    Yu Z, Okoronkwo M U, Sant G N, Misture S T, Wang B 2019 J. Phys. Chem. C 123 11982Google Scholar

    [29]

    Matsuishi S, Kim S W, Kamiya T, Hirano M, Hosono H 2008 J. Phys. Chem. C 112 4753Google Scholar

    [30]

    Li F, Zhang X, Liu H L, Zhao J P, Xiao Y X, Zhang J X 2019 J. Am. Ceram. Soc. 102 884

    [31]

    Li F, Zhang X, Liu H L, Zhao J P, Xiao Y X, Zhang J X 2018 Vacuum 158 152Google Scholar

    [32]

    包黎红, 那仁格日乐, 特古斯, 张忻, 张久兴 2013 物理学报 62 196105Google Scholar

    Bao L H, Narengerile, Tegus O, Zhang X, Zhang J X 2013 Acta Phys. Sin. 62 196105Google Scholar

    [33]

    Konovalov S, Zagulyaev D, Chen X Z, Gromov V, Ivanov Y 2017 Chin. Phys. B 26 126203Google Scholar

    [34]

    Xue J J, Cai Q, Zhang B H, Gei M, Chen D J, Zhi T, Chen J W, Wang L H, Zhang R, Zhen Y D 2017 Chin. Phys. B 26 116801Google Scholar

    [35]

    Zhou S, Zhang J, Liu D, Lin Z, Huang Q, Bao L, Ma R, Wei Y 2010 Acta Mater. 58 4978Google Scholar

    [36]

    Zhao G P, Zhao M G, Lim H S, Feng Y P, Ong C K 2005 Appl. Phys. Lett. 87 162513Google Scholar

  • 图 1  C12A7+CA混合前驱体烧结前后XRD与实物照片

    Fig. 1.  Powder X-ray diffraction patterns of precursor before and after SPS process, insets are digital pictures of the precursor and the obtained electride.

    图 2  C12A7:e扫描照片

    Fig. 2.  SEM images of the sintered C12A7:e ceramic.

    图 3  (a) 样品的顺磁共振图谱; (b) 样品的紫外吸收光谱

    Fig. 3.  (a) EPR spectra of the sintered C12A7 bulk; (b) optical absorption spectra of the sintered C12A7:e powders.

    图 4  (a) 不同温度下发射电流密度随电场强度的变化; (b) 零场电流密度的拟合直线; (c) Richardson直线; (d) 发射稳定性曲线

    Fig. 4.  (a) Emission current density as a function of electric field at various in the range of 973 to 1373 K; (b) Schottky plots at various temperatures, fitting of the curves result in zero field emission current density at each temperature; (c) Richardson plot of the sample; (d) scatter plot of the emission current density versus time.

  • [1]

    Dye J L 2009 Acc. Chem. Res. 42 1564Google Scholar

    [2]

    Kim S W, Hosono H 2012 Philos. Mag. 92 2596Google Scholar

    [3]

    Jiang D, Zhao Z Y, Mu S L, Qian H J, Tong J H 2018 Inorg. Chem. 58 960

    [4]

    Khan K, Tareen A K, Elshahat S, Yadav A, Khan U 2018 Dalton Trans. 47 3819Google Scholar

    [5]

    Matsuishi S, Toda Y, Miyakawa M 2003 Science 301 626Google Scholar

    [6]

    刘洪亮, 张忻, 王杨, 肖怡新, 张久兴 2018 物理学报 67 048101Google Scholar

    Liu H L, Zhang X, Wang Y, Xiao Y X, Zhang J X 2018 Acta Phys. Sin. 67 048101Google Scholar

    [7]

    Kitano M, Inoue Y, Yamazaki Y, Fumitaka H, Shinji K, Satoru M, Toshiharu Y, Sung W K, Michikazu H, Hideo H 2012 Nat. Chem. 4 934Google Scholar

    [8]

    Kim S W, Hayashi K, Hirano M, Hosono H, Tanaka I 2006 J. Am. Ceram. Soc. 89 3294Google Scholar

    [9]

    Kitano M, Kanbara S, Inoue Y, Kuganathan N, Sushko P V, Yokoyama T, Hara M, Hosono H 2015 Nat. Commun. 6 6731Google Scholar

    [10]

    Hara M, Masaaki K, Hosono H 2017 ACS Catal. 7 2313Google Scholar

    [11]

    Ding Y F, Zhao Q Q, Yu Z L, Zhao Y Q, Liu B, He P B, Zhou H, Li K L, Yin S F, Cai M Q 2019 J. Mater. Chem. C 7 7433Google Scholar

    [12]

    Zhao Y Q, Wang X, Liu B, Yu Z L, He P B, Wan Q, Cai M Q, Yu H L 2018 Org. Electron. 53 50Google Scholar

    [13]

    Dye J L 2003 Science 301 607Google Scholar

    [14]

    Toda Y, Kim S W, Hayashi K, Hirano M, Kamiya T, Hosono H, Yasuda H 2005 Appl. Phys. Lett. 87 254103Google Scholar

    [15]

    Yu Z L, Ma Q R, Liu B, Zhao Y Q, Wang L Z, Zhou H, Cai M Q 2017 J. Phys. D: Appl. Phys. 50 465101Google Scholar

    [16]

    Zhao Y Q, Ma Q R, Liu B, Yu Z L, Yang J L, Cai M Q 2018 Nanoscale 10 8677Google Scholar

    [17]

    Deng X Z, Zhao Q Q, Zhao Y Q, Cai M Q 2019 Current Appl. Phys. 19 279Google Scholar

    [18]

    Kim K B, Kikuchi M, Miyakawa M, Yanagi H, Kamiya T, Hirano M, Hosono H 2007 J. Phys. Chem. C 111 8403Google Scholar

    [19]

    Kou X C, Kronmüller H, Givord D, Rossignol M F 1994 Phys. Rev. B 50 3849Google Scholar

    [20]

    Matsuishi S, Nomura T, Hirano M, Kodama K, Shamoto S I, Hosono H 2009 Chem. Mater. 21 2589Google Scholar

    [21]

    Kim S W, Matsuishi S, Nomura T, Kubota Y, Takata M, Hayashi K, Hosono H 2007 Nano Lett. 7 1138Google Scholar

    [22]

    Hosono H, Hayashi K, Hirano M 2007 J. Mater. Sci. 42 1872Google Scholar

    [23]

    Sushko P V, Shluger A, Hayashi K, Hirano M, Hosono H 2003 Phys. Rev. Lett. 9 126401

    [24]

    Miyakawa M, Toda Y, Hayashi K, Hirano M, Kamiya T, Matsunami N, Hosono H 2005 J. Appl. Phys. 97 023510Google Scholar

    [25]

    Woomer A H, Druffel D L, Sundberg J D, Pawlik J T, Warren S C 2019 J. Am. Ceram. Soc. 141 10300

    [26]

    冯琦, 张忻, 刘洪亮, 赵吉平, 李凡, 张久兴 2018 物理学报 67 047102Google Scholar

    Feng Q, Zhang X, Liu H L, Zhao J P, Xiao Y X, Li F, Zhang J X 2018 Acta Phys. Sin. 67 047102Google Scholar

    [27]

    Duan J, Zhou T, Zhang L, Du J G, Jiang G, Wang H B 2015 Chin. Phys. B 24 096201Google Scholar

    [28]

    Yu Z, Okoronkwo M U, Sant G N, Misture S T, Wang B 2019 J. Phys. Chem. C 123 11982Google Scholar

    [29]

    Matsuishi S, Kim S W, Kamiya T, Hirano M, Hosono H 2008 J. Phys. Chem. C 112 4753Google Scholar

    [30]

    Li F, Zhang X, Liu H L, Zhao J P, Xiao Y X, Zhang J X 2019 J. Am. Ceram. Soc. 102 884

    [31]

    Li F, Zhang X, Liu H L, Zhao J P, Xiao Y X, Zhang J X 2018 Vacuum 158 152Google Scholar

    [32]

    包黎红, 那仁格日乐, 特古斯, 张忻, 张久兴 2013 物理学报 62 196105Google Scholar

    Bao L H, Narengerile, Tegus O, Zhang X, Zhang J X 2013 Acta Phys. Sin. 62 196105Google Scholar

    [33]

    Konovalov S, Zagulyaev D, Chen X Z, Gromov V, Ivanov Y 2017 Chin. Phys. B 26 126203Google Scholar

    [34]

    Xue J J, Cai Q, Zhang B H, Gei M, Chen D J, Zhi T, Chen J W, Wang L H, Zhang R, Zhen Y D 2017 Chin. Phys. B 26 116801Google Scholar

    [35]

    Zhou S, Zhang J, Liu D, Lin Z, Huang Q, Bao L, Ma R, Wei Y 2010 Acta Mater. 58 4978Google Scholar

    [36]

    Zhao G P, Zhao M G, Lim H S, Feng Y P, Ong C K 2005 Appl. Phys. Lett. 87 162513Google Scholar

  • [1] 闫观鑫, 郝永芹, 张秋波. 高功率垂直腔面发射激光器阵列热特性. 物理学报, 2024, 73(5): 054204. doi: 10.7498/aps.73.20231614
    [2] 刘伟, 平云霞, 杨俊, 薛忠营, 魏星, 武爱民, 俞文杰, 张波. 微波退火和快速热退火下钛调制镍与锗锡反应. 物理学报, 2021, 70(11): 116801. doi: 10.7498/aps.70.20202118
    [3] 王志鹏, 张峰, 杨嘉炜, 李鹏涛, 关宝璐. 表面液晶-垂直腔面发射激光器阵列的热特性. 物理学报, 2020, 69(6): 064203. doi: 10.7498/aps.69.20191793
    [4] 漆世锴, 王小霞, 王兴起, 胡明玮, 刘理, 曾伟. 大功率磁控管用新型Y2Hf2O7陶瓷阴极研究. 物理学报, 2020, 69(3): 037901. doi: 10.7498/aps.69.20191496
    [5] 任峰, 阴生毅, 卢志鹏, 李阳, 王宇, 张申金, 杨峰, 卫东. 深紫外激光光发射与热发射电子显微镜在热扩散阴极研究中的应用. 物理学报, 2017, 66(18): 187901. doi: 10.7498/aps.66.187901
    [6] 张金平, 张洋洋, 李慧, 高景霞, 程新路. 纳米铝热剂Al/SiO2层状结构铝热反应的分子动力学模拟. 物理学报, 2014, 63(8): 086401. doi: 10.7498/aps.63.086401
    [7] 唐翠明, 赵锋, 陈晓旭, 陈华君, 程新路. Al与α-Fe2O3纳米界面铝热反应的从头计算分子动力学研究. 物理学报, 2013, 62(24): 247101. doi: 10.7498/aps.62.247101
    [8] 周守利, 李伽, 任宏亮, 温浩, 彭银生. 异质结界面电荷对突变InP/InGaAs异质结双极晶体管热场发射影响研究. 物理学报, 2013, 62(17): 178501. doi: 10.7498/aps.62.178501
    [9] 左应红, 王建国, 范如玉. 空间电荷效应对热场致发射中诺廷汉效应的影响. 物理学报, 2013, 62(24): 247901. doi: 10.7498/aps.62.247901
    [10] 陈雪颖, 徐金宝, 边亮, 王磊, 熊信谦, 高博. 醇热反应低温合成锰钴镍热敏薄膜. 物理学报, 2013, 62(19): 198104. doi: 10.7498/aps.62.198104
    [11] 彭凯, 刘大刚. 三维热场致发射模型的数值模拟与研究. 物理学报, 2012, 61(12): 121301. doi: 10.7498/aps.61.121301
    [12] 王马华, 朱汉青, 朱光平. 水热法制备注射器样纳米氧化锌场发射特性的研究. 物理学报, 2011, 60(7): 077305. doi: 10.7498/aps.60.077305
    [13] 黄明辉, 甘再国, 范红梅, 苏朋源, 马 龙, 周小红, 李君清. 超重核合成时的驱动势与热熔合反应截面. 物理学报, 2008, 57(3): 1569-1575. doi: 10.7498/aps.57.1569
    [14] 吴 坚. AlInGaAs垂直谐振腔顶面发射半导体激光器横向温度效应的解析热模型及其表征. 物理学报, 2006, 55(11): 5848-5854. doi: 10.7498/aps.55.5848
    [15] 张树东, 李海洋. 激光烧蚀Al热原子与CF4反应中C2的形成及其发光光谱研究. 物理学报, 2003, 52(5): 1297-1301. doi: 10.7498/aps.52.1297
    [16] 何煜, 郭文康, 邵其鋆, 须平. 自由电弧热发射阴极的物理模型. 物理学报, 2000, 49(3): 487-491. doi: 10.7498/aps.49.487
    [17] 王印月, 张仿清, 陈光华. 反应溅射制备a-SiGe:H薄膜中亚稳态热缺陷的研究. 物理学报, 1990, 39(10): 1661-1664. doi: 10.7498/aps.39.1661
    [18] 陈存礼, 李建年, 华文玉. 钛-硅系快速热退火固相反应机制的研究. 物理学报, 1990, 39(7): 127-133. doi: 10.7498/aps.39.127
    [19] 施兵. 12C(7Li,t)16O和20Ne(d,6Li)16O反应的研究. 物理学报, 1977, 26(4): 333-340. doi: 10.7498/aps.26.333
    [20] 王凡, 钱汉文, 曹惠玉. C12(d,α0)B10反应的分析. 物理学报, 1966, 22(5): 611-614. doi: 10.7498/aps.22.611
计量
  • 文章访问数:  7715
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-08
  • 修回日期:  2019-08-06
  • 上网日期:  2019-10-01
  • 刊出日期:  2019-10-20

/

返回文章
返回