搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

醇热反应低温合成锰钴镍热敏薄膜

陈雪颖 徐金宝 边亮 王磊 熊信谦 高博

引用本文:
Citation:

醇热反应低温合成锰钴镍热敏薄膜

陈雪颖, 徐金宝, 边亮, 王磊, 熊信谦, 高博

Low temperature synthesis of manganese cobalt nickel oxide thin film by alcohol-thermal reaction

Chen Xue-Ying, Xu Jin-Bao, Bian Liang, Wang Lei, Xiong Xin-Qian, Gao Bo
PDF
导出引用
  • 锰钴镍复合氧化物是一种具有半导体性质的热敏材料. 本文采用金属有机沉积技术于室温条件下、在Si衬底上沉积一定 厚度的Mn1.74Co0.72Ni0.54O4金属 有机化合物薄膜, 并通过醇热反应进行低温结晶化合成, 可得到Mn1.74Co0.72Ni0.54O4结晶薄膜. 通过X 射线衍射、场发射扫描电子显微镜 (FESEM) 以及阻温特性等测试方法表征, 讨论了醇热反应对锰钴镍热敏薄膜的物相结构、微观形貌以及电学性能的影响. X射线衍射图显示薄膜已出现尖晶石结构的特征峰. 电镜照片说明结晶薄膜的表面较为平整、孔隙率低. 阻温特性关系表明薄膜具有明显的负温度系数效应, 室温(≈27°) 电阻率约为303.13 Ω·cm.
    Manganese cobalt nickel complex oxide is a thermal-sensitive material with the property of semiconductor. In this paper, Mn1.74Co0.72Ni0.54O4 (MCN) thin film was prepared in air using metal-organic-deposition method at room temperature on Si substrate, and the crystallization synthesis of the MCN thin film was prepared using alcohol-thermal reaction. According to X-ray diffraction, field emission scanning electron microscope (FESEM) and the relationship between resistivity and temperature, effects of MCN thin film made by alcohol-thermal reaction on crystalline microstructure, surface morphology and electrical properties were investigated. X-ray diffraction pattern showed that the MCN thin film appears to be spinel structure with predominant spinel peaks. Field emission scanning electron microscope showed that the surface morphology of MCN thin film is crack-free and compact surface. The relationship between resistivity and temperature of the thin film Mn1.74Co0.72Ni0.54O4 was that the resistivity decreases with the increase in temperature. The room temperature(≈ 27℃) resistivity of the MCN thin film was 303.13 Ω·cm.
    • 基金项目: 新疆自然科学基金青年基金(批准号:2011211B49);核废物与环境安全国防重点学科实验室开发基金(批准号:12zxnp05);中国科学院"百人计划"项目(批准号:1029271301);中国科学院"西部之光"一般项目(批准号:Y22S601301,Y12S311301);西部博士项目(批准号:XBBS201025);国家自然科学基金(批准号:21103225)和中国科学院西部之光基金(批准号:XBBS201111)资助的课题.
    • Funds: Project supported by the Youth Science Foundation of Xinjiang Uygur Autonomous Region of China (Grant No. 2011211B49), the Fundamental Science on Nuclear Waste and Environmental Security Laboratory, China (Grant No. 12zxnp05), the One Hundred Talents Project Foundation Program (Grant No. 1029271301), the West Light Foundation of The Chinese Academy of Sciences (Grant Nos. Y12S311301, Y22S601301, XBBS201025), the National Natural Science Foundation of China (Grant No. 21103225), the West Light Foundation of the Chinese Academy of Sciences (Grant No. XBBS201111).
    [1]

    Kukuruznyak D A, Bulkley S A, Omland K A, Ohuchi F S, Gregg M C 2001 Thin Solid Films 385 89

    [2]

    Hu W, Qin N, Wu G H, Lin Y, Li S, Bao D H 2012 J. Am. Chem. Soc. 134 14658

    [3]

    Yuan C L, Liu X Y, Liang M F, Zhou C R, Wang H 2011 Sens. Actuators A 167 291

    [4]

    Cheng F Y, Shen J, Peng B, Pan Y D, Tao Z L, Chen J 2011 J. Nat. Chem. 3 79

    [5]

    Kanade S A, Puri V 2006 Mater. Lett. 60 1428

    [6]

    Ge Y J, Huang Z M, Hou Y, Qin J H, Li T X, Chu J H 2008 Thin Solid Films 516 5931

    [7]

    Kanade S A, Puri V 2009 J. Alloys Compd. 475 352

    [8]

    He L, Ling Z Y, Huang Y T, Liu Y S 2011 Mater. Lett. 65 1632

    [9]

    Song W K, Schulze H M, Saint John D B, Podraza N J, Dickey E C, Trolier McKinstry S S 2012 J. Am. Ceram. Soc. 95 2562

    [10]

    Sun J J, Tuo W L, Chang A M, Zhao Q, Lan Y Q 2006 J. Funct. Mater. Devices 12 361 (in Chinese) [孙俊菊, 妥万禄, 常爱民, 赵青, 兰玉歧 2006 功能材料与器件学报 12 361]

    [11]

    Wang L M, Wei Z R, Wu F 2002 J. Heb. Univer. (Nat Sci. Edition) 22 345 (in Chinese) [王立明, 韦志仁, 吴峰 2002 河北大学学报 (自然科学版) 22 345]

    [12]

    Prado-Gonjal J, Ávila D, Villafuerte-Castrejón M E, González-García F, Fuentes L, Gómez R W, Pérez-Mazariego J L, Marquina V, Morán E 2011 Solid State Sci 13 2030

    [13]

    Tan H, Tao M D, Song S G 1994 Funct. Mater. 25 350 (in Chinese) [谭辉, 陶明德, 宋世庚 1994 功能材料 25 350]

    [14]

    Yuan R L, Shi E W, Xia C T, Wang B G, Zhong W Z 1996 Acta Phys. Sin. 12 131 (in Chinese) [元如林, 施尔畏, 夏长泰, 王步国, 仲维卓 1996 物理学报 12 131]

    [15]

    Shweta J, Sunit R, Suresh G, Amalnerkar D 2011 Microelectron. Eng. 88 82

    [16]

    Sun S Y, Zhang Q H, Yu J G 2010 J. Inorg. Mater. 25 626

    [17]

    Zhang L, Zhang Y, Deng J G, Dai H X 2012 J. Nat. Gas Chem. 21 69

    [18]

    Basu A, Brinkman A W, Schmida R, Klusek Z, Kowalczyk P, Datta P K 2004 J. Eu. Ceram. Soc. 24 1149

    [19]

    Park K 2006 J. Eu. Ceram. Soc. 26 909

    [20]

    Jadhav R, Kulkarni D, Puri V 2010 J. Mater. Sci.: Mater. Electron. 21 503

    [21]

    He L, Ling Z Y 2011 Appl. Phys. Lett. 98 242112

    [22]

    Ma J, Hu J M, Li Z, Nan C W 2011 Adv. Mater. 23 1062

    [23]

    Kulkarni D C, Patil S P, Puri V 2008 Microelectron. J. 39 248

  • [1]

    Kukuruznyak D A, Bulkley S A, Omland K A, Ohuchi F S, Gregg M C 2001 Thin Solid Films 385 89

    [2]

    Hu W, Qin N, Wu G H, Lin Y, Li S, Bao D H 2012 J. Am. Chem. Soc. 134 14658

    [3]

    Yuan C L, Liu X Y, Liang M F, Zhou C R, Wang H 2011 Sens. Actuators A 167 291

    [4]

    Cheng F Y, Shen J, Peng B, Pan Y D, Tao Z L, Chen J 2011 J. Nat. Chem. 3 79

    [5]

    Kanade S A, Puri V 2006 Mater. Lett. 60 1428

    [6]

    Ge Y J, Huang Z M, Hou Y, Qin J H, Li T X, Chu J H 2008 Thin Solid Films 516 5931

    [7]

    Kanade S A, Puri V 2009 J. Alloys Compd. 475 352

    [8]

    He L, Ling Z Y, Huang Y T, Liu Y S 2011 Mater. Lett. 65 1632

    [9]

    Song W K, Schulze H M, Saint John D B, Podraza N J, Dickey E C, Trolier McKinstry S S 2012 J. Am. Ceram. Soc. 95 2562

    [10]

    Sun J J, Tuo W L, Chang A M, Zhao Q, Lan Y Q 2006 J. Funct. Mater. Devices 12 361 (in Chinese) [孙俊菊, 妥万禄, 常爱民, 赵青, 兰玉歧 2006 功能材料与器件学报 12 361]

    [11]

    Wang L M, Wei Z R, Wu F 2002 J. Heb. Univer. (Nat Sci. Edition) 22 345 (in Chinese) [王立明, 韦志仁, 吴峰 2002 河北大学学报 (自然科学版) 22 345]

    [12]

    Prado-Gonjal J, Ávila D, Villafuerte-Castrejón M E, González-García F, Fuentes L, Gómez R W, Pérez-Mazariego J L, Marquina V, Morán E 2011 Solid State Sci 13 2030

    [13]

    Tan H, Tao M D, Song S G 1994 Funct. Mater. 25 350 (in Chinese) [谭辉, 陶明德, 宋世庚 1994 功能材料 25 350]

    [14]

    Yuan R L, Shi E W, Xia C T, Wang B G, Zhong W Z 1996 Acta Phys. Sin. 12 131 (in Chinese) [元如林, 施尔畏, 夏长泰, 王步国, 仲维卓 1996 物理学报 12 131]

    [15]

    Shweta J, Sunit R, Suresh G, Amalnerkar D 2011 Microelectron. Eng. 88 82

    [16]

    Sun S Y, Zhang Q H, Yu J G 2010 J. Inorg. Mater. 25 626

    [17]

    Zhang L, Zhang Y, Deng J G, Dai H X 2012 J. Nat. Gas Chem. 21 69

    [18]

    Basu A, Brinkman A W, Schmida R, Klusek Z, Kowalczyk P, Datta P K 2004 J. Eu. Ceram. Soc. 24 1149

    [19]

    Park K 2006 J. Eu. Ceram. Soc. 26 909

    [20]

    Jadhav R, Kulkarni D, Puri V 2010 J. Mater. Sci.: Mater. Electron. 21 503

    [21]

    He L, Ling Z Y 2011 Appl. Phys. Lett. 98 242112

    [22]

    Ma J, Hu J M, Li Z, Nan C W 2011 Adv. Mater. 23 1062

    [23]

    Kulkarni D C, Patil S P, Puri V 2008 Microelectron. J. 39 248

  • [1] 刘伟, 平云霞, 杨俊, 薛忠营, 魏星, 武爱民, 俞文杰, 张波. 微波退火和快速热退火下钛调制镍与锗锡反应. 物理学报, 2021, 70(11): 116801. doi: 10.7498/aps.70.20202118
    [2] 卢启海, 唐晓莉, 宋玉哲, 左显维, 韩根亮, 闫鹏勋, 刘维民. 氮化铁薄膜晶相合成热分析及其磁性. 物理学报, 2019, 68(11): 118101. doi: 10.7498/aps.68.20182195
    [3] 赖云锋. 合成参数对气-液-固法低温生长MgO纳米线的影响. 物理学报, 2010, 59(12): 8814-8819. doi: 10.7498/aps.59.8814
    [4] 黄明辉, 甘再国, 范红梅, 苏朋源, 马 龙, 周小红, 李君清. 超重核合成时的驱动势与热熔合反应截面. 物理学报, 2008, 57(3): 1569-1575. doi: 10.7498/aps.57.1569
    [5] 罗宇峰, 钟 澄, 张 莉, 严学俭, 李 劲, 蒋益明. 方块电阻法原位表征Cu薄膜氧化反应动力学规律. 物理学报, 2007, 56(11): 6722-6726. doi: 10.7498/aps.56.6722
    [6] 竺 云, 蔡建旺. [(Fe/Pt/Fe)/Ag]n多层膜低温合成分离的L10相FePt纳米颗粒. 物理学报, 2005, 54(1): 393-396. doi: 10.7498/aps.54.393
    [7] 汪六九, 朱美芳, 刘丰珍, 刘金龙, 韩一琴. 热丝化学气相沉积技术低温制备多晶硅薄膜的结构与光电特性. 物理学报, 2003, 52(11): 2934-2938. doi: 10.7498/aps.52.2934
    [8] 张杰, 雒建林, 白海洋, 陈兆甲, 林德华, 车广灿, 任治安, 赵忠贤, 金铎. 常压和高压合成MgB2的低温比热及两个超导能隙研究. 物理学报, 2002, 51(2): 342-346. doi: 10.7498/aps.51.342
    [9] 谢二庆, 王文武, 姜宁, 贺德衍. 锰硅化物的固相反应生长研究. 物理学报, 2002, 51(4): 873-876. doi: 10.7498/aps.51.873
    [10] 贺德衍. 多晶硅薄膜低温生长中的表面反应控制. 物理学报, 2001, 50(4): 779-783. doi: 10.7498/aps.50.779
    [11] 徐刚毅, 王天民, 何宇亮, 马智训, 郑国珍. 纳米硅薄膜的低温电输运机制. 物理学报, 2000, 49(9): 1798-1803. doi: 10.7498/aps.49.1798
    [12] 梁冰青, 王荫君, 陈 熹. Ag2+δTe薄膜的低温纵向磁电阻效应. 物理学报, 1999, 48(13): 35-39. doi: 10.7498/aps.48.35
    [13] 王德宁, 陈红, 王渭源. 多层衬底、高Tc超导薄膜热敏红外探测器的热导研究. 物理学报, 1992, 41(10): 1679-1985. doi: 10.7498/aps.41.1679
    [14] 李华, 龚伟. 铁、钴、镍金属超微粒的制备与磁性. 物理学报, 1991, 40(8): 1356-1363. doi: 10.7498/aps.40.1356
    [15] 王印月, 张仿清, 陈光华. 反应溅射制备a-SiGe:H薄膜中亚稳态热缺陷的研究. 物理学报, 1990, 39(10): 1661-1664. doi: 10.7498/aps.39.1661
    [16] 陈金昌, 詹文山, 沈保根, 赵见高, 乐观. 非晶态(Fe1-xWx)84.5B15.5合金的低温电阻率反常. 物理学报, 1986, 35(1): 25-32. doi: 10.7498/aps.35.25
    [17] 詹文山, 沈保根, 赵见高, 陈金昌. Fe基非晶态合金的低温电阻研究. 物理学报, 1986, 35(5): 583-589. doi: 10.7498/aps.35.583
    [18] 曹忠胜, 刘福绥, 赵忠贤. 金属玻璃低温电阻的准粒子无序构形激发模型. 物理学报, 1985, 34(5): 694-699. doi: 10.7498/aps.34.694
    [19] 雷啸霖. A-15化合物低温电阻率反常行为的探讨. 物理学报, 1981, 30(5): 686-689. doi: 10.7498/aps.30.686
    [20] 理论物理专业1972级教育革命小分队, (试验厂)三车间科研组. 铁镍钴矩磁合金的铁心损耗. 物理学报, 1976, 25(2): 115-121. doi: 10.7498/aps.25.115
计量
  • 文章访问数:  5785
  • PDF下载量:  631
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-08
  • 修回日期:  2013-06-20
  • 刊出日期:  2013-10-05

/

返回文章
返回