搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微纳光子结构中光子和激子相互作用

段雪珂 任娟娟 郝赫 张淇 龚旗煌 古英

引用本文:
Citation:

微纳光子结构中光子和激子相互作用

段雪珂, 任娟娟, 郝赫, 张淇, 龚旗煌, 古英

Interactions between photons and excitons in micro-nano photonic structures

Duan Xue-Ke, Ren Juan-Juan, Hao He, Zhang Qi, Gong Qi-Huang, Gu Ying
PDF
HTML
导出引用
  • 微纳光子结构中超强的光场局域给光和物质相互作用带来了新的研究机遇. 通过设计光学模式, 微纳结构中的光子和激子可以实现可逆或者不可逆的能量交换作用. 本文综述了我们近年来在微纳结构, 尤其是表面等离激元及其复合结构中光子和激子在强弱耦合区域的系列研究工作, 如高效可调谐及方向性的单光子发射, 利用电磁真空构造增强光子和激子的耦合等. 这些工作为微纳尺度上光和物质作用提供了新的物理内容, 在芯片上量子信息过程及可扩展的量子网络构建中有潜在应用.
    The strong localized field in micro-nano photonic structures brings new opportunities for the study of the light-matter interaction. By designing optical modes in these structures, photons and excitons in micro-nanostructures can exchange energy reversibly or irreversibly. In this paper, a series of our recent studies on the strong and weak photon-emitter coupling in micro-nano structures especially in plasmonic and their coupled structures are reviewed, such as the principle of efficient, tunable and directional single photon emission, and engineering the electromagnetic vacuum for enhancing the coupling between photon and exciton. These results provide new physical contents for the light-matter interactions on micro and nanoscale, and have potential applications in the on-chip quantum information process and the construction of scalable quantum networks.
      通信作者: 古英, ygu@pku.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2018YFB1107200)、国家自然科学基金(批准号: 11525414, 11734001)和广东省重点领域研发计划 (批准号: 2018B030329001 )资助的课题.
      Corresponding author: Gu Ying, ygu@pku.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2018YFB1107200), the National Natural Science Foundation of China (Grant Nos. 11525414, 11734001), and the Key Research and Development Program of Guangdong Province, China (Grant No. 2018B030329001) .
    [1]

    Nie S M, Emory S R, Chu S 1997 Science 275 1102Google Scholar

    [2]

    Patra P P, Chikkaraddy R, Tripathi R P, Dasgupta A, Kumar G P 2014 Nat. Commun. 5 4357Google Scholar

    [3]

    Xu H X, Bjerneld J E, Käll M, Börjesson L 1999 Phys. Rev. Lett. 83 4357Google Scholar

    [4]

    Xu H X, Aizpurua J, Käll M, Apell P 2000 Phys. Rev. E 62 4318Google Scholar

    [5]

    Kauranen M, Zayats A V 2012 Nat. Photon. 6 737Google Scholar

    [6]

    Assefa S, Xia F N, Vlasov Y A 2010 Nature 464 80Google Scholar

    [7]

    Vahala K J 2003 Nature 424 839Google Scholar

    [8]

    Jacob Z, Shalaev V M 2011 Science 334 463Google Scholar

    [9]

    Benson O 2011 Nature 480 193Google Scholar

    [10]

    Haroche S, Kleppner D 1989 Phys. Today 42 24

    [11]

    Walther H 1992 Phys. Rep. 219 263Google Scholar

    [12]

    Berman P R 1994 Cavity Quantum Electrodynamics (New York: Academic Press)

    [13]

    Mabuchi H, Doherty A C 2002 Science 298 1372Google Scholar

    [14]

    Haroch S, Raimond J M 2005 Exploring the Quantum (Oxford: Oxford Unversity Press)

    [15]

    Miller R, Northup T E, Birnbaum K M, Boca A, Boozer A D, Kimble H J 2005 J. Phys. B-At. Mol. Opt. Phys. 38 S551Google Scholar

    [16]

    Khitrova G, Gibbs H M, Kira M, Koch S W, Scherer A 2006 Nat. Phys. 2 81Google Scholar

    [17]

    Walther H, Varcoe B T, Englert B G, Becker T 2006 Rep. Prog. Phys. 69 1325Google Scholar

    [18]

    Reiserer A, Rempe G 2015 Rev. Mod. Phys. 87 1379Google Scholar

    [19]

    Jaynes E T, Cummings F 1963 Proc. IEEE 51 89Google Scholar

    [20]

    Purcell E M 1946 Phys. Rev. 69 681

    [21]

    Michler P, Kiraz A, Becher C, Schoenfeld W V, Petroff P M, Zhang L D, Hu E, Imamoglu A 2000 Science 290 2282Google Scholar

    [22]

    Anger P, Bharadwaj P, Novotny L 2006 Phys. Rev. Lett. 96 113002Google Scholar

    [23]

    Kühn S, Håkanson U, Rogobete L, Sandoghdar V 2006 Phys. Rev. Lett. 97 017402Google Scholar

    [24]

    Gerber S, Reil F, Hohenester U, Schlagenhaufen T, Krenn J R, Leitner A 2007 Phys. Rev. B 75 073404Google Scholar

    [25]

    Herrera F, Spano F C 2018 ACS Photonics 5 65Google Scholar

    [26]

    张天才, 李刚 2014 量子光学研究前沿 (上海: 上海交通大学出版社) 第211—308页

    Zhang T C, Li G 2014 Advances in quantum optics (Shanghai: Shanghai Jiao Tong University Press) pp211−308 (in Chinese)

    [27]

    任娟娟 2018 博士学位论文 (北京: 北京大学)

    Ren J J 2018 Ph. D. Dissertation (Beijing: Peking University) (in Chinese)

    [28]

    Leistikow M D, Mosk A P, Yeganegi E, Huisman S R, Lagendijk A, Vos W L 2011 Phys. Rev. Lett. 107 193903Google Scholar

    [29]

    Lodahl P, van Driel A F, Nikolaev I S, Irman A, Overgaag K, Vanmaekelbergh D, Vos W L 2004 Nature 430 654Google Scholar

    [30]

    Chang W H, Chen W Y, Chang H S, Hsieh T P, Chyi J I, Hsu T M 2006 Phys. Rev. Lett. 96 117401Google Scholar

    [31]

    Klimov V V, Ducloy M 2004 Phys. Rev. A 69 013812Google Scholar

    [32]

    Bleuse J, Claudon J, Creasey M, Malik N S, Gérard J M, Maksymov I, Hugonin J P, Lalanne P 2011 Phys. Rev. Lett. 106 103601Google Scholar

    [33]

    Yalla R, Le Kien F, Morinaga M, Hakuta K 2012 Phys. Rev. Lett. 109 063602Google Scholar

    [34]

    Claudon J, Bleuse J, Malik N S, Bazin M, Jaffrennou P, Gregersen M, Sauvan C, Lalanne P, Gérard J M 2010 Nat. Photon. 4 174Google Scholar

    [35]

    Chance R R, Prock A, Silbey R 1975 J. Chem. Phys. 62 2245Google Scholar

    [36]

    Chen Y T, Nielsen T R, Gregersen N, Lodahl P, Mørk J 2010 Phys. Rev. B 81 125431Google Scholar

    [37]

    Jun Y C, Kekatpure R D, White J S, Brongersma M L 2008 Phys. Rev. B 78 153111Google Scholar

    [38]

    Akimov A V, Mukherjee A, Yu C L, Chang D E, Zibrov A S, Hemmer P R, Park H, Lukin M D 2007 Nature 450 402Google Scholar

    [39]

    Chang D E, Sørensen A S, Hemmer P R, Lukin M D 2006 Phys. Rev. Lett. 97 053002Google Scholar

    [40]

    Pelton M 2015 Nat. Photon. 9 427Google Scholar

    [41]

    Ringler M, Schwemer A, Wunderlich M, Nichtl A, Kürzinger K, Klar T A, Feldmann J 2008 Phys. Rev. Lett. 100 203002Google Scholar

    [42]

    Mock J J, Hill R T, Degiron A, Zauscher S, Chilkoti A, Smith D R 2008 Nano Lett. 8 2245Google Scholar

    [43]

    Lian H, Gu Y, Ren J J, Zhang F, Wang L J, Gong Q H 2015 Phys. Rev. Lett. 114 193002Google Scholar

    [44]

    Russell K J, Liu T L, Cui S, Hu E L 2012 Nat. Photon. 6 459Google Scholar

    [45]

    Lévéque G, Martin O J F 2006 Opt. Express 14 9971Google Scholar

    [46]

    Chang D E, Sørensen A S, Demler E A, Lukin M D 2007 Nat. Phys. 3 807Google Scholar

    [47]

    Wang L J, Gu Y, Chen H Y, Zhang J Y, Cui Y P, Gerardot B D, Gong Q H 2013 Sci. Rep. 3 2879Google Scholar

    [48]

    Gu Y, Wang L J, Ren P, Zhang J Y, Zhang T C, Martin O J F, Gong Q H 2012 Nano Lett. 12 2488Google Scholar

    [49]

    Moskovits M 1985 Rev. Mod. Phys. 57 783Google Scholar

    [50]

    Novotny L, van Hulst N 2011 Nat. Photon. 5 83Google Scholar

    [51]

    Li Q, Wei H, Xu H X 2015 Nano Lett. 15 8181Google Scholar

    [52]

    Yoshie T, Scherer A, Hendrickson J, Khitrova G, Gibbs H M, Rupper G, Ell C, Shchekin O B, Deppe D G 2004 Nature 432 200Google Scholar

    [53]

    Reithmaier J P, Sek G, Loffler A, Hofmann C, Kuhn S, Reitzenstein S, Keldysh L V, Kulakovskii V D, Reinecke T L, Forchel A 2004 Nature 432 197Google Scholar

    [54]

    Peter E, Senellart P, Martrou D, Lemaître A, Hours J, Gérard J M, Bloch J 2005 Phys. Rev. Lett. 95 067401Google Scholar

    [55]

    Le Thomas N, Woggon U, Schops O, Artemyev M V, Kazes M, Banin U 2006 Nano Lett. 6 557Google Scholar

    [56]

    Park Y S, Cook A K, Wang H L 2006 Nano Lett. 6 2075Google Scholar

    [57]

    Aoki T, Dayan B, Wilcut E, Bowen W P, Parkins A S, Kippenberg T J, Vahala K J, Kimble H J 2006 Nature 443 671Google Scholar

    [58]

    Dayan B, Parkins A S, Aoki T, Ostby E P, Vahala K J, Kimble H J 2008 Science 319 1062Google Scholar

    [59]

    Delga A, Feist J, Bravo-Abad J, García-Vidal F J 2014 Phys. Rev. Lett. 112 253601Google Scholar

    [60]

    Gonzalez-Tudela A, Huidobro P A, Martín-Moreno L, Tejedor C, García-Vidal F J 2013 Phys. Rev. Lett. 110 126801Google Scholar

    [61]

    Schlather A E, Large N, Urban A S, Nordlander P, Halas N J 2013 Nano Lett. 13 3281Google Scholar

    [62]

    Zengin G, Wersall M, Nilsson S, Antosiewicz T J, Käll M, Shegai T 2015 Phys. Rev. Lett. 114 157401Google Scholar

    [63]

    Tame M S, McEnery K R, Özdemir S K, Lee J, Maier S A, Kim M S 2013 Nat. Phys. 9 329Google Scholar

    [64]

    Chikkaraddy R, de Nijs B, Benz F, Barrow S J, Scherman O A, Rosta E, Demetriadou A, Fox P, Hess O, Baumberg J J 2016 Nature 535 127Google Scholar

    [65]

    Liu R M, Zhou Z K, Yu Y C, Zhang T W, Wang H, Liu G H, Wei Y M, Chen H J, Wang X H 2017 Phys. Rev. Lett. 118 237401Google Scholar

    [66]

    Li Q, Wei H, Xu H X 2014 Nano Lett. 14 3358Google Scholar

    [67]

    Wei H, Pan D, Zhang S P, Li Z P, Li Q, Liu N, Wang W H, Xu H X 2018 Chem. Rev. 118 2882Google Scholar

    [68]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059Google Scholar

    [69]

    Hao H, Ren J J, Chen H Y, Khoo I C, Gu Y, Gong Q H 2017 Opt. Express 25 3433Google Scholar

    [70]

    Hao H, Ren J J, Duan X K, Lu G W, Khoo I C, Gong Q H, Gu Y 2018 Sci. Rep. 8 11244Google Scholar

    [71]

    Duan X K, Ren J J, Zhang F, Hao H, Lu G W, Gong Q H, Gu Y 2018 Nanotechnology 29 045203Google Scholar

    [72]

    Ruppin R 1982 J. Chem. Phys. 76 1681Google Scholar

    [73]

    Sauvan C, Hugonin J P, Maksymov I S, Lalanne P 2013 Phys. Rev. Lett. 110 237401Google Scholar

    [74]

    Liaw J W 2008 IEEE J. Sel. Top. Quantum Electron. 14 1441Google Scholar

    [75]

    Maksymov I S, Besbes M, Hugonin J P, Yang J, Beveratos A, Sagnes I, Robert-Philip I, Lalanne P 2010 Phys. Rev. Lett. 105 180502Google Scholar

    [76]

    Esteban R, Teperik T V, Greffet J J 2010 Phys. Rev. Lett. 104 026802Google Scholar

    [77]

    Chen X W, Agio M, Sandoghdar V 2012 Phys. Rev. Lett. 108 233001Google Scholar

    [78]

    Akselrod G M, Argyropoulos C, Hoang T B, Ciracì C, Fang C, Huang J, Smith D R, Mikkelsen M H 2014 Nat. Photon. 8 835Google Scholar

    [79]

    Lee J, Bao W, Ju L, Schuck P J, Wang F, Weber-Bargioni A 2014 Nano Lett. 14 7115Google Scholar

    [80]

    Ding Y H, Zhu X L, Xiao S S, Hu H, Frandsen L H, Mortensen N A, Yvind K 2015 Nano Lett. 15 4393Google Scholar

    [81]

    Curto A G, Volpe G, Taminiau T H, Kreuzer M P, Quidant R, van Hulst N F 2010 Science 329 930Google Scholar

    [82]

    Savasta S, Saija R, Ridolfo A, Stefano O D, Denti P, Borghese F 2010 ACS Nano 4 6369Google Scholar

    [83]

    Waks E, Sridharan D 2010 Phys. Rev. A 82 043845Google Scholar

    [84]

    Zayats A V, Smolyaninov I I, Maradudin A A 2005 Phys. Rep. 408 131Google Scholar

    [85]

    Tong L M, Gattass R R, Ashcom J B, He S L, Lou J Y, Shen M Y, Maxwell I, Mazur E 2003 Nature 426 816Google Scholar

    [86]

    Sun B Q, Gu Y, Hu X Y, Gong Q H 2011 Chin. Phys. Lett. 28 057303Google Scholar

    [87]

    Kato S, Aoki T 2015 Phys. Rev. Lett. 115 093603Google Scholar

    [88]

    Ren J J, Gu Y, Zhao D X, Zhang F, Zhang T C, Gong Q H 2107 Phys. Rev. Lett. 118 073604

    [89]

    Ren J J, Hao H, Qian Z Y, Duan X K, Zhang F, Zhang T C, Gong Q H, Gu Y 2018 J. Opt. Soc. Am. B: Opt. Phys. 35 1475Google Scholar

    [90]

    Zhang Q, Ren J J, Duan X K, Hao H, Gong Q H, Gu Y 2018 Chin. Opt. Lett. 12 000000

    [91]

    Armani D K, Kippenberg T J, Spillane S M, Vahala K J 2003 Nature 421 925Google Scholar

    [92]

    Spillane S M, Kippenberg T J, Vahala K J 2005 Phys. Rev. A 71 013817Google Scholar

    [93]

    Gorodetsky M L, Savchenkov A A, Ilchenko V S 1996 Opt. Lett. 21 453Google Scholar

    [94]

    Vernooy D W, Furusawa A, Georgiades N P, Ilchenko V S, Kimble H J 1998 Phys. Rev. A 5 7

    [95]

    Yu N F, Capasso F 2014 Nat. Mater. 13 139Google Scholar

    [96]

    Lodahl P, Mahmoodian S, Stobbe S, Rauschenbeutel A, Schneeweiss P, Volz J, Pichler H, Zoller P 2017 Nature 541 473Google Scholar

  • 图 1  (a)腔量子电动力学体系, κ为腔模的损耗, γ为量子体系的自发辐射速率[9], g代表它们的耦合强度; (b)弱耦合(红线)和强耦合(蓝线)情况下的能量交换及透射谱[9]; (c)弱耦合下的自发辐射增强示意图[7]; (d)强耦合下的周期性能量交换示意图[7]

    Fig. 1.  (a) The cavity quantum electrodynamics system, κ is the damping rate of the cavity, γ is the spontaneous emission rate of the quantum system, and g is the coupling constant between the quantum system and the cavity mode[9]; (b) the progress of the energy exchange and the transmission spectrum of the cavity for the weak coupling (red) and strong coupling (blue) regimes[9]; (c) the enhancement of spontaneous emission for the weak coupling regime[7]; (d) the periodic energy exchange for the strong coupling regime[7].

    图 2  (a)复合银纳米棒-金纳米薄膜间隙表面等离激元结构, 模式匹配的低损耗介质纳米光纤放置在薄膜上方; (b)量子发射体在间隙结构中沿不同衰减通道的自发辐射归一化衰减速率[43]

    Fig. 2.  (a) The coupled Ag nanorod-Au nanofilm gap plasmon system, with a phase-matched low loss dielectric nanofiber above the nanofilm; (b) the normalized decay rates of the quantum emitter in the gap structure into different decay channels[43].

    图 3  (a)可调谐间隙表面等离激元结构; (b)高对比度自发辐射开关, 随着折射率的变化, 自发辐射速率可以实行从$103\gamma_{0}$$8750\gamma_{0}$的变化; (c)高收集效率模拟图, 光子能量有42%被有效收集到光纤中[70]

    Fig. 3.  (a) The hybrid tunable gap surface plasmon nanostructure; (b) the high-contrast switching of spontaneous emission, with the change of index, the spontaneous emission rate can be tuned from $103\gamma_{0}$ to $8750\gamma_{0}$; (c) the diagram of high-efficiency extracting, with 42% of the photons can be collected into the nanofibers[70].

    图 4  (a)纳米棒和纳米线的复合结构; (b)银纳米线和银纳米棒复合系统以及(c)介质纳米线和银纳米棒复合系统中的各个衰减通道的归一化衰减系数[71]

    Fig. 4.  (a) The coupled nanorod-nanowire system. The normalized decay rates into different channels in the coupled (b) Ag nanowire-Ag nanorod system and (c) dielectric nanowire- Ag nanorod system[71].

    图 5  (a)倏逝真空中的表面等离激元纳米腔量子电动力学体系; (b)在倏逝真空下的耦合系数g的增强[88]

    Fig. 5.  (a) The plasmonic nano-CQED system in evanescent-vacuum; (b) the enhancement of the coupling coefficient in evanescent-vacuum[88].

    图 6  (a)介质纳米圆环-纳米线复合结构; (b)纳米线存在时的耦合系数增强[90]

    Fig. 6.  (a) The hybrid nanotoroid-nanowire system; (b) the enhancement of the coupling coefficient in the nanogap with the nanowire[90].

  • [1]

    Nie S M, Emory S R, Chu S 1997 Science 275 1102Google Scholar

    [2]

    Patra P P, Chikkaraddy R, Tripathi R P, Dasgupta A, Kumar G P 2014 Nat. Commun. 5 4357Google Scholar

    [3]

    Xu H X, Bjerneld J E, Käll M, Börjesson L 1999 Phys. Rev. Lett. 83 4357Google Scholar

    [4]

    Xu H X, Aizpurua J, Käll M, Apell P 2000 Phys. Rev. E 62 4318Google Scholar

    [5]

    Kauranen M, Zayats A V 2012 Nat. Photon. 6 737Google Scholar

    [6]

    Assefa S, Xia F N, Vlasov Y A 2010 Nature 464 80Google Scholar

    [7]

    Vahala K J 2003 Nature 424 839Google Scholar

    [8]

    Jacob Z, Shalaev V M 2011 Science 334 463Google Scholar

    [9]

    Benson O 2011 Nature 480 193Google Scholar

    [10]

    Haroche S, Kleppner D 1989 Phys. Today 42 24

    [11]

    Walther H 1992 Phys. Rep. 219 263Google Scholar

    [12]

    Berman P R 1994 Cavity Quantum Electrodynamics (New York: Academic Press)

    [13]

    Mabuchi H, Doherty A C 2002 Science 298 1372Google Scholar

    [14]

    Haroch S, Raimond J M 2005 Exploring the Quantum (Oxford: Oxford Unversity Press)

    [15]

    Miller R, Northup T E, Birnbaum K M, Boca A, Boozer A D, Kimble H J 2005 J. Phys. B-At. Mol. Opt. Phys. 38 S551Google Scholar

    [16]

    Khitrova G, Gibbs H M, Kira M, Koch S W, Scherer A 2006 Nat. Phys. 2 81Google Scholar

    [17]

    Walther H, Varcoe B T, Englert B G, Becker T 2006 Rep. Prog. Phys. 69 1325Google Scholar

    [18]

    Reiserer A, Rempe G 2015 Rev. Mod. Phys. 87 1379Google Scholar

    [19]

    Jaynes E T, Cummings F 1963 Proc. IEEE 51 89Google Scholar

    [20]

    Purcell E M 1946 Phys. Rev. 69 681

    [21]

    Michler P, Kiraz A, Becher C, Schoenfeld W V, Petroff P M, Zhang L D, Hu E, Imamoglu A 2000 Science 290 2282Google Scholar

    [22]

    Anger P, Bharadwaj P, Novotny L 2006 Phys. Rev. Lett. 96 113002Google Scholar

    [23]

    Kühn S, Håkanson U, Rogobete L, Sandoghdar V 2006 Phys. Rev. Lett. 97 017402Google Scholar

    [24]

    Gerber S, Reil F, Hohenester U, Schlagenhaufen T, Krenn J R, Leitner A 2007 Phys. Rev. B 75 073404Google Scholar

    [25]

    Herrera F, Spano F C 2018 ACS Photonics 5 65Google Scholar

    [26]

    张天才, 李刚 2014 量子光学研究前沿 (上海: 上海交通大学出版社) 第211—308页

    Zhang T C, Li G 2014 Advances in quantum optics (Shanghai: Shanghai Jiao Tong University Press) pp211−308 (in Chinese)

    [27]

    任娟娟 2018 博士学位论文 (北京: 北京大学)

    Ren J J 2018 Ph. D. Dissertation (Beijing: Peking University) (in Chinese)

    [28]

    Leistikow M D, Mosk A P, Yeganegi E, Huisman S R, Lagendijk A, Vos W L 2011 Phys. Rev. Lett. 107 193903Google Scholar

    [29]

    Lodahl P, van Driel A F, Nikolaev I S, Irman A, Overgaag K, Vanmaekelbergh D, Vos W L 2004 Nature 430 654Google Scholar

    [30]

    Chang W H, Chen W Y, Chang H S, Hsieh T P, Chyi J I, Hsu T M 2006 Phys. Rev. Lett. 96 117401Google Scholar

    [31]

    Klimov V V, Ducloy M 2004 Phys. Rev. A 69 013812Google Scholar

    [32]

    Bleuse J, Claudon J, Creasey M, Malik N S, Gérard J M, Maksymov I, Hugonin J P, Lalanne P 2011 Phys. Rev. Lett. 106 103601Google Scholar

    [33]

    Yalla R, Le Kien F, Morinaga M, Hakuta K 2012 Phys. Rev. Lett. 109 063602Google Scholar

    [34]

    Claudon J, Bleuse J, Malik N S, Bazin M, Jaffrennou P, Gregersen M, Sauvan C, Lalanne P, Gérard J M 2010 Nat. Photon. 4 174Google Scholar

    [35]

    Chance R R, Prock A, Silbey R 1975 J. Chem. Phys. 62 2245Google Scholar

    [36]

    Chen Y T, Nielsen T R, Gregersen N, Lodahl P, Mørk J 2010 Phys. Rev. B 81 125431Google Scholar

    [37]

    Jun Y C, Kekatpure R D, White J S, Brongersma M L 2008 Phys. Rev. B 78 153111Google Scholar

    [38]

    Akimov A V, Mukherjee A, Yu C L, Chang D E, Zibrov A S, Hemmer P R, Park H, Lukin M D 2007 Nature 450 402Google Scholar

    [39]

    Chang D E, Sørensen A S, Hemmer P R, Lukin M D 2006 Phys. Rev. Lett. 97 053002Google Scholar

    [40]

    Pelton M 2015 Nat. Photon. 9 427Google Scholar

    [41]

    Ringler M, Schwemer A, Wunderlich M, Nichtl A, Kürzinger K, Klar T A, Feldmann J 2008 Phys. Rev. Lett. 100 203002Google Scholar

    [42]

    Mock J J, Hill R T, Degiron A, Zauscher S, Chilkoti A, Smith D R 2008 Nano Lett. 8 2245Google Scholar

    [43]

    Lian H, Gu Y, Ren J J, Zhang F, Wang L J, Gong Q H 2015 Phys. Rev. Lett. 114 193002Google Scholar

    [44]

    Russell K J, Liu T L, Cui S, Hu E L 2012 Nat. Photon. 6 459Google Scholar

    [45]

    Lévéque G, Martin O J F 2006 Opt. Express 14 9971Google Scholar

    [46]

    Chang D E, Sørensen A S, Demler E A, Lukin M D 2007 Nat. Phys. 3 807Google Scholar

    [47]

    Wang L J, Gu Y, Chen H Y, Zhang J Y, Cui Y P, Gerardot B D, Gong Q H 2013 Sci. Rep. 3 2879Google Scholar

    [48]

    Gu Y, Wang L J, Ren P, Zhang J Y, Zhang T C, Martin O J F, Gong Q H 2012 Nano Lett. 12 2488Google Scholar

    [49]

    Moskovits M 1985 Rev. Mod. Phys. 57 783Google Scholar

    [50]

    Novotny L, van Hulst N 2011 Nat. Photon. 5 83Google Scholar

    [51]

    Li Q, Wei H, Xu H X 2015 Nano Lett. 15 8181Google Scholar

    [52]

    Yoshie T, Scherer A, Hendrickson J, Khitrova G, Gibbs H M, Rupper G, Ell C, Shchekin O B, Deppe D G 2004 Nature 432 200Google Scholar

    [53]

    Reithmaier J P, Sek G, Loffler A, Hofmann C, Kuhn S, Reitzenstein S, Keldysh L V, Kulakovskii V D, Reinecke T L, Forchel A 2004 Nature 432 197Google Scholar

    [54]

    Peter E, Senellart P, Martrou D, Lemaître A, Hours J, Gérard J M, Bloch J 2005 Phys. Rev. Lett. 95 067401Google Scholar

    [55]

    Le Thomas N, Woggon U, Schops O, Artemyev M V, Kazes M, Banin U 2006 Nano Lett. 6 557Google Scholar

    [56]

    Park Y S, Cook A K, Wang H L 2006 Nano Lett. 6 2075Google Scholar

    [57]

    Aoki T, Dayan B, Wilcut E, Bowen W P, Parkins A S, Kippenberg T J, Vahala K J, Kimble H J 2006 Nature 443 671Google Scholar

    [58]

    Dayan B, Parkins A S, Aoki T, Ostby E P, Vahala K J, Kimble H J 2008 Science 319 1062Google Scholar

    [59]

    Delga A, Feist J, Bravo-Abad J, García-Vidal F J 2014 Phys. Rev. Lett. 112 253601Google Scholar

    [60]

    Gonzalez-Tudela A, Huidobro P A, Martín-Moreno L, Tejedor C, García-Vidal F J 2013 Phys. Rev. Lett. 110 126801Google Scholar

    [61]

    Schlather A E, Large N, Urban A S, Nordlander P, Halas N J 2013 Nano Lett. 13 3281Google Scholar

    [62]

    Zengin G, Wersall M, Nilsson S, Antosiewicz T J, Käll M, Shegai T 2015 Phys. Rev. Lett. 114 157401Google Scholar

    [63]

    Tame M S, McEnery K R, Özdemir S K, Lee J, Maier S A, Kim M S 2013 Nat. Phys. 9 329Google Scholar

    [64]

    Chikkaraddy R, de Nijs B, Benz F, Barrow S J, Scherman O A, Rosta E, Demetriadou A, Fox P, Hess O, Baumberg J J 2016 Nature 535 127Google Scholar

    [65]

    Liu R M, Zhou Z K, Yu Y C, Zhang T W, Wang H, Liu G H, Wei Y M, Chen H J, Wang X H 2017 Phys. Rev. Lett. 118 237401Google Scholar

    [66]

    Li Q, Wei H, Xu H X 2014 Nano Lett. 14 3358Google Scholar

    [67]

    Wei H, Pan D, Zhang S P, Li Z P, Li Q, Liu N, Wang W H, Xu H X 2018 Chem. Rev. 118 2882Google Scholar

    [68]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059Google Scholar

    [69]

    Hao H, Ren J J, Chen H Y, Khoo I C, Gu Y, Gong Q H 2017 Opt. Express 25 3433Google Scholar

    [70]

    Hao H, Ren J J, Duan X K, Lu G W, Khoo I C, Gong Q H, Gu Y 2018 Sci. Rep. 8 11244Google Scholar

    [71]

    Duan X K, Ren J J, Zhang F, Hao H, Lu G W, Gong Q H, Gu Y 2018 Nanotechnology 29 045203Google Scholar

    [72]

    Ruppin R 1982 J. Chem. Phys. 76 1681Google Scholar

    [73]

    Sauvan C, Hugonin J P, Maksymov I S, Lalanne P 2013 Phys. Rev. Lett. 110 237401Google Scholar

    [74]

    Liaw J W 2008 IEEE J. Sel. Top. Quantum Electron. 14 1441Google Scholar

    [75]

    Maksymov I S, Besbes M, Hugonin J P, Yang J, Beveratos A, Sagnes I, Robert-Philip I, Lalanne P 2010 Phys. Rev. Lett. 105 180502Google Scholar

    [76]

    Esteban R, Teperik T V, Greffet J J 2010 Phys. Rev. Lett. 104 026802Google Scholar

    [77]

    Chen X W, Agio M, Sandoghdar V 2012 Phys. Rev. Lett. 108 233001Google Scholar

    [78]

    Akselrod G M, Argyropoulos C, Hoang T B, Ciracì C, Fang C, Huang J, Smith D R, Mikkelsen M H 2014 Nat. Photon. 8 835Google Scholar

    [79]

    Lee J, Bao W, Ju L, Schuck P J, Wang F, Weber-Bargioni A 2014 Nano Lett. 14 7115Google Scholar

    [80]

    Ding Y H, Zhu X L, Xiao S S, Hu H, Frandsen L H, Mortensen N A, Yvind K 2015 Nano Lett. 15 4393Google Scholar

    [81]

    Curto A G, Volpe G, Taminiau T H, Kreuzer M P, Quidant R, van Hulst N F 2010 Science 329 930Google Scholar

    [82]

    Savasta S, Saija R, Ridolfo A, Stefano O D, Denti P, Borghese F 2010 ACS Nano 4 6369Google Scholar

    [83]

    Waks E, Sridharan D 2010 Phys. Rev. A 82 043845Google Scholar

    [84]

    Zayats A V, Smolyaninov I I, Maradudin A A 2005 Phys. Rep. 408 131Google Scholar

    [85]

    Tong L M, Gattass R R, Ashcom J B, He S L, Lou J Y, Shen M Y, Maxwell I, Mazur E 2003 Nature 426 816Google Scholar

    [86]

    Sun B Q, Gu Y, Hu X Y, Gong Q H 2011 Chin. Phys. Lett. 28 057303Google Scholar

    [87]

    Kato S, Aoki T 2015 Phys. Rev. Lett. 115 093603Google Scholar

    [88]

    Ren J J, Gu Y, Zhao D X, Zhang F, Zhang T C, Gong Q H 2107 Phys. Rev. Lett. 118 073604

    [89]

    Ren J J, Hao H, Qian Z Y, Duan X K, Zhang F, Zhang T C, Gong Q H, Gu Y 2018 J. Opt. Soc. Am. B: Opt. Phys. 35 1475Google Scholar

    [90]

    Zhang Q, Ren J J, Duan X K, Hao H, Gong Q H, Gu Y 2018 Chin. Opt. Lett. 12 000000

    [91]

    Armani D K, Kippenberg T J, Spillane S M, Vahala K J 2003 Nature 421 925Google Scholar

    [92]

    Spillane S M, Kippenberg T J, Vahala K J 2005 Phys. Rev. A 71 013817Google Scholar

    [93]

    Gorodetsky M L, Savchenkov A A, Ilchenko V S 1996 Opt. Lett. 21 453Google Scholar

    [94]

    Vernooy D W, Furusawa A, Georgiades N P, Ilchenko V S, Kimble H J 1998 Phys. Rev. A 5 7

    [95]

    Yu N F, Capasso F 2014 Nat. Mater. 13 139Google Scholar

    [96]

    Lodahl P, Mahmoodian S, Stobbe S, Rauschenbeutel A, Schneeweiss P, Volz J, Pichler H, Zoller P 2017 Nature 541 473Google Scholar

  • [1] 陈召, 马昕新, 李童, 王艺霖. 耦合谐振系统中基于Fano共振的光学压力传感器. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20232025
    [2] 李远芳, 姜园, 赵磊. 基于改进强耦合振子的微弱脉冲信号检测方法. 物理学报, 2024, 73(4): 040503. doi: 10.7498/aps.73.20231343
    [3] 李锦芳, 何东山, 王一平. 一维耦合腔晶格中磁子-光子拓扑相变和拓扑量子态的调制. 物理学报, 2024, 73(4): 044203. doi: 10.7498/aps.73.20231519
    [4] 闫玮植, 范青, 杨鹏飞, 李刚, 张鹏飞, 张天才. 微光学腔内单原子的俘获及其耦合强度的精确调控. 物理学报, 2023, 72(11): 114202. doi: 10.7498/aps.72.20222220
    [5] 郑赟杰, 王晨阳, 谢双媛, 许静平, 羊亚平. 含多个相干耦合人工原子的单模腔的输入输出特性. 物理学报, 2022, 71(24): 244204. doi: 10.7498/aps.71.20221456
    [6] 赵世杭, 张元, 吕思远, 程少博, 郑长林, 王鹿霞. 电子能量损失谱探测银纳米棒与介质层强耦合的数值模拟. 物理学报, 2022, 71(14): 147302. doi: 10.7498/aps.71.20220194
    [7] 闫晓宏, 牛亦杰, 徐红星, 魏红. 单个等离激元纳米颗粒和纳米间隙结构与量子发光体的强耦合. 物理学报, 2022, 71(6): 067301. doi: 10.7498/aps.71.20211900
    [8] 张萌徕, 覃赵福, 陈卓. 基于开口环阵列结构的表面晶格共振产生及二次谐波增强. 物理学报, 2021, 70(5): 054206. doi: 10.7498/aps.70.20201424
    [9] 郭绮琪, 陈溢杭. 基于介电常数近零模式与间隙表面等离激元强耦合的增强非线性光学效应. 物理学报, 2021, 70(18): 187303. doi: 10.7498/aps.70.20210290
    [10] 褚培新, 张玉斌, 陈俊学. 开口狭缝调制的耦合微腔中表面等离激元诱导透明特性. 物理学报, 2020, 69(13): 134205. doi: 10.7498/aps.69.20200369
    [11] 吴晗, 吴竞宇, 陈卓. 基于超表面的Tamm等离激元与激子的强耦合作用. 物理学报, 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [12] 王栋, 许军, 陈溢杭. 介电常数近零模式与表面等离激元模式耦合实现宽带光吸收. 物理学报, 2018, 67(20): 207301. doi: 10.7498/aps.67.20181106
    [13] 李明, 陈阳, 郭光灿, 任希锋. 表面等离激元量子信息应用研究进展. 物理学报, 2017, 66(14): 144202. doi: 10.7498/aps.66.144202
    [14] 邓红梅, 黄磊, 李静, 陆叶, 李传起. 基于石墨烯加载的不对称纳米天线对的表面等离激元单向耦合器. 物理学报, 2017, 66(14): 145201. doi: 10.7498/aps.66.145201
    [15] 赵泽宇, 刘晋侨, 李爱武, 徐颖. 金纳米柱阵列表面等离子体激元与J-聚集分子强耦合作用. 物理学报, 2016, 65(23): 231101. doi: 10.7498/aps.65.231101
    [16] 文瑞娟, 杜金锦, 李文芳, 李刚, 张天才. 内腔多原子直接俘获的强耦合腔量子力学系统的构建. 物理学报, 2014, 63(24): 244203. doi: 10.7498/aps.63.244203
    [17] 卢道明. 腔量子电动力学系统中耦合三原子的纠缠特性. 物理学报, 2014, 63(6): 060301. doi: 10.7498/aps.63.060301
    [18] 赵娜, 刘建设, 李铁夫, 陈炜. 超导量子比特的耦合研究进展. 物理学报, 2013, 62(1): 010301. doi: 10.7498/aps.62.010301
    [19] 陈翔, 米贤武. 二能级原子与高品质因子腔的自发辐射特性. 物理学报, 2011, 60(10): 104204. doi: 10.7498/aps.60.104204
    [20] 张丽萍, 温荣吉. 含有广义守恒律的生长方程标度奇异性的直接标度分析. 物理学报, 2009, 58(8): 5186-5190. doi: 10.7498/aps.58.5186
计量
  • 文章访问数:  12092
  • PDF下载量:  677
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-27
  • 修回日期:  2019-04-11
  • 上网日期:  2019-07-01
  • 刊出日期:  2019-07-20

/

返回文章
返回