搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米流体液膜蒸发自组装双尺度沉积结构三维模拟

高超 袁俊杰 曹进军 杨荟楠 单彦广

引用本文:
Citation:

纳米流体液膜蒸发自组装双尺度沉积结构三维模拟

高超, 袁俊杰, 曹进军, 杨荟楠, 单彦广

Three-dimensional simulation of dual-scale deposition structures from evaporative self-assembly of nanofluid films

Gao Chao, Yuan Jun-Jie, Cao Jin-Jun, Yang Hui-Nan, Shan Yan-Guang
PDF
HTML
导出引用
  • 纳米流体液膜在自然状态下蒸发干燥后除了形成单一尺度的网状连续结构、枝状分形结构以及微尺寸环结构等沉积结构, 还会形成双尺度细胞网络沉积结构和双尺度纳米粒子环状沉积结构. 为了更直观地研究纳米流体液膜双尺度沉积结构的形成机理, 本文在二维动力学蒙特卡罗模型的基础上, 建立了三维动力学蒙特卡罗模型, 并加入了耦合溶剂蒸发率的动态化学势, 成功模拟出了双尺度细胞网络沉积结构和双尺度纳米粒子环状沉积结构, 并讨论了动态化学势中化学势锐度与流体临界蒸发率对纳米流体液膜蒸发自组装双尺度沉积结构的影响. 模拟结果与文献中的实验结果吻合良好.
    Self-assembly of nanomaterials from the drying of nanofluid films has aroused great interest due to its applications in micro/nano fabrication, ink-jet printing, and thin film coatings. Numerical models are developed to investigate the single-scale deposition structures from the drying of nanofluid films, including network structures, continuous labyrinthine, branched structures and micro-sized rings. In the case of the actual drying of nanofluid films, dual-scale cellular networks and nano-rings are also discovered. In order to study the formation mechanism of dual-scale deposition structures, a three-dimensional kinetic Monte Carlo model is developed based on two-dimensional lattice gas model, and the dynamic chemical potential which couples solvent evaporation rate is implemented. Different dynamic chemical potentials are defined for each layer of the thin-film in the model to mimic the real evaporation situation. Considering the Brownian motion and the interaction between particles, the formation of dual-scale cellular networks and nano-rings coexisting with small scale patternis achieved via coupling the chemical potential to the solvent evaporation rate. The simulation results accord well with the results from many experimentally studied de-wetting systems. The effects of the chemical potential sharpness and critical evaporation rate of fluids on the dual-scale deposition structures are discussed. It can be found that the evaporation mode of thin-film is dominated by nucleation and growth at the initial stage. If the spinodal point is passed, the residual solvent will evaporate suddenly, and the nanoparticles do not accumulate further but directly deposit into small-scale structures, thus forming a dual-scale deposition structures at the final stage of the evaporation. The simulation results also show that the chemical potential sharpness will affect the deposition structure after the mutation in a certain range. When the chemical potential sharpness equals zero, the sedimentary structure is the same as the single-scale sedimentary structure when the constant chemical potential is applied. When the chemical potential sharpness is small, the large-scale network structure interacts closely with the small-scale network structure. With the increase of chemical potential sharpness, the large-scale deposition structure remains unchanged, while the dense small-scale network structure becomes small-scale point structure. When the chemical potential sharpness exceeds a certain large value, the effect of chemical potential sharpness on the deposition structure will gradually decrease, and finally the dual-scale deposition structure will remain unchanged. The critical evaporation rate of fluids determines the area ratio of the two kind of structures in the dual-scale deposition. With the increase of the critical evaporation rate of fluids, the area ratio of small-scale structures decreases while that of the large-scale structure increases. When critical evaporation rate increases to a certain value, the final deposition structure will evolve into a single-scale deposition structure.
      通信作者: 单彦广, shan@usst.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51676130)和上海市动力工程多相流动与传热重点实验室资助的课题.
      Corresponding author: Shan Yan-Guang, shan@usst.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51676130) and the Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering.
    [1]

    Asha S K, Sunitha G 2019 J. Tai. Univ. Sci. 13 155Google Scholar

    [2]

    Chen P W, Lee N C, Chien Y H, Wu J Y, Wang P C, Hwu W L 2014 Clin. Chim. Acta 431 19Google Scholar

    [3]

    Shan Y G, Coyle T, Mostaghimi J 2007 J. Therm. Spray Technol. 16 736Google Scholar

    [4]

    Sou T, Kaminskas L M, Nguyen T H, Carlberg R, Mcintosh M P, Morton D A V 2013 Eur. J. Pharm. Biopharm. 83 234Google Scholar

    [5]

    Parsaiemehr M, Pourfattah F, Akbari O A, Toghraie D, Sheikhzadeh G 2017 Physica E 96 73

    [6]

    Shan Y G, Wang Y L, Coyle T 2013 Appl. Therm. Eng. 51 690Google Scholar

    [7]

    Robbins M J, Archer A J, Thiele U 2011 J. Phys.: Condens. Matter 23 415102Google Scholar

    [8]

    Chan H C, Paik S, Tipton Jr J B, Kihm K D 2007 Langmuir 23 2953Google Scholar

    [9]

    Cui L, Zhang J, Zhang X 2012 Soft Matter. 8 10448Google Scholar

    [10]

    Bhardwaj R, Fang X, Somasundaran P, Attinger D 2010 Langmuir 26 7833Google Scholar

    [11]

    Chokprasombat K, Sirisathitkul C, Ratphonsan P 2014 Surf. Sci. 621 162Google Scholar

    [12]

    Zhong X, Crivoi A, Duan F 2015 Adv. Colloid Interface Sci. 217 13Google Scholar

    [13]

    Hamaker H C 1937 Phy. Sec. A 4 1058

    [14]

    Hofman J A. M H, Stein H N 1992 J. Colloid Interface Sci. 154 359Google Scholar

    [15]

    Deegan R D, Bakajin O, Dupont T F, Huber G, Nagel S R, Witten T A 1997 Nature 389 827Google Scholar

    [16]

    Rabani E, Reichman D R, Geissler P L 2003 Nature 426 271Google Scholar

    [17]

    Seike W, Fisher M E 1980 Eur. Phys. J. B 40 71

    [18]

    Crivoi A, Duan F 2012 Phys. Chem. Chem. Phys. 14 1449Google Scholar

    [19]

    Zhang H, Shan Y G, Li L, Lu M, Li R 2016 Appl. Therm. Eng. 94 650Google Scholar

    [20]

    Martin C P, Blunt M O, Moriary P 2004 Nano Lett. 4 2389Google Scholar

    [21]

    Stannard A, Martin C P, Pauliac V E, Philip M 2011 J. Phys. Chem. C 112 15195

    [22]

    Vancea I, Thiele U, Pauliac E A, Stannard A, Martin C P, Blunt M O, Moriarty P J 2007 Phys. Rev. Lett. 99 116103Google Scholar

    [23]

    Yosef G, Rabani E 2006 J. Phys. Chem. B 110 20965Google Scholar

    [24]

    Lyushnin A V, Golovin A A, Pismen L M 2002 Phys. Rev. E 65 021602

    [25]

    Vancea I, Thiele U 2008 Phys. Rev. E 78 041601

    [26]

    Frastia L, Archer A J, Thiele U 2011 Phys. Rev. Lett. 106 077801Google Scholar

    [27]

    Zhang X, Crivoi A, Duan F 2015 Sci. Rep. 5 10926Google Scholar

    [28]

    Sztrum C G, Hod O, Rabani E 2005 J. Phys. Chem. B 109 6741Google Scholar

    [29]

    曹进军, 单彦广 2018 化学通报 81 641

    Cao J J, Shan Y G 2018 Chem. Bull. 81 641

    [30]

    Stannard A 2011 J. Phys.: Condens. Matter 23 083001Google Scholar

    [31]

    Jacobs K, Seemann R, Herminghaus S 2008 Eprint Arxiv. 243

  • 图 1  纳米流体液膜的物理模型图

    Fig. 1.  Physical model of 3D nanofluid thin-film.

    图 2  接触点示意图

    Fig. 2.  Schematic diagram of contact points.

    图 3  三维纳米流体液膜各层蒸发图

    Fig. 3.  Evaporation diagram of each layer of 3D nanofluid thin-film.

    图 4  实验结果与模拟结果对比 (a) 实验结果[31]; (b) 模拟结果

    Fig. 4.  Comparison between experimental and simulation results: (a) Experimental results[31]; (b) simulation results.

    图 5  双尺度细胞网络结构模拟结果与实验结果对比 (a) 模拟结果; (b) 实验结果[21]

    Fig. 5.  Comparison of simulation and experimental of dual-scale cellular network structure: (a) Simulation result; (b) experimental result[21].

    图 6  双尺度纳米粒子环状结构模拟结果与实验结果对比 (a) 模拟结果; (b) 实验结果[21]

    Fig. 6.  Comparison of simulation and experimental of dual-scale nano-rings structure: (a) Simulation result; (b) experimental result[21].

    图 7  不同化学势锐度下封闭纳米流体液膜的沉积结构图 (a) Δμf = 0; (b) Δμf = 0.050; (c) Δμf = 0.100; (d) Δμf = 0.125; (e) Δμf = 0.150; (f) Δμf = 0.200

    Fig. 7.  Sedimentary pattern of nanofluid thin-film at different chemical potential sharpness: (a) Δμf = 0; (b) Δμf = 0.050; (c) Δμf = 0.100; (d) Δμf = 0.125; (e) Δμf = 0.150; (f) Δμf = 0.200

    图 8  不同临界蒸发率下封闭纳米流体液膜的沉积结构图 (a) νs = 1%; (b) νs = 10%; (c) νs = 30%; (d) νs = 55%; (e) νs = 80%; (f) νs = 100%

    Fig. 8.  Sedimentary pattern of nanofluid thin-film at different critical evaporation rates: (a) νs = 1%; (b) νs = 10%; (c) νs = 30%; (d) νs = 55%; (e) νs = 80%; (f) νs = 100%.

  • [1]

    Asha S K, Sunitha G 2019 J. Tai. Univ. Sci. 13 155Google Scholar

    [2]

    Chen P W, Lee N C, Chien Y H, Wu J Y, Wang P C, Hwu W L 2014 Clin. Chim. Acta 431 19Google Scholar

    [3]

    Shan Y G, Coyle T, Mostaghimi J 2007 J. Therm. Spray Technol. 16 736Google Scholar

    [4]

    Sou T, Kaminskas L M, Nguyen T H, Carlberg R, Mcintosh M P, Morton D A V 2013 Eur. J. Pharm. Biopharm. 83 234Google Scholar

    [5]

    Parsaiemehr M, Pourfattah F, Akbari O A, Toghraie D, Sheikhzadeh G 2017 Physica E 96 73

    [6]

    Shan Y G, Wang Y L, Coyle T 2013 Appl. Therm. Eng. 51 690Google Scholar

    [7]

    Robbins M J, Archer A J, Thiele U 2011 J. Phys.: Condens. Matter 23 415102Google Scholar

    [8]

    Chan H C, Paik S, Tipton Jr J B, Kihm K D 2007 Langmuir 23 2953Google Scholar

    [9]

    Cui L, Zhang J, Zhang X 2012 Soft Matter. 8 10448Google Scholar

    [10]

    Bhardwaj R, Fang X, Somasundaran P, Attinger D 2010 Langmuir 26 7833Google Scholar

    [11]

    Chokprasombat K, Sirisathitkul C, Ratphonsan P 2014 Surf. Sci. 621 162Google Scholar

    [12]

    Zhong X, Crivoi A, Duan F 2015 Adv. Colloid Interface Sci. 217 13Google Scholar

    [13]

    Hamaker H C 1937 Phy. Sec. A 4 1058

    [14]

    Hofman J A. M H, Stein H N 1992 J. Colloid Interface Sci. 154 359Google Scholar

    [15]

    Deegan R D, Bakajin O, Dupont T F, Huber G, Nagel S R, Witten T A 1997 Nature 389 827Google Scholar

    [16]

    Rabani E, Reichman D R, Geissler P L 2003 Nature 426 271Google Scholar

    [17]

    Seike W, Fisher M E 1980 Eur. Phys. J. B 40 71

    [18]

    Crivoi A, Duan F 2012 Phys. Chem. Chem. Phys. 14 1449Google Scholar

    [19]

    Zhang H, Shan Y G, Li L, Lu M, Li R 2016 Appl. Therm. Eng. 94 650Google Scholar

    [20]

    Martin C P, Blunt M O, Moriary P 2004 Nano Lett. 4 2389Google Scholar

    [21]

    Stannard A, Martin C P, Pauliac V E, Philip M 2011 J. Phys. Chem. C 112 15195

    [22]

    Vancea I, Thiele U, Pauliac E A, Stannard A, Martin C P, Blunt M O, Moriarty P J 2007 Phys. Rev. Lett. 99 116103Google Scholar

    [23]

    Yosef G, Rabani E 2006 J. Phys. Chem. B 110 20965Google Scholar

    [24]

    Lyushnin A V, Golovin A A, Pismen L M 2002 Phys. Rev. E 65 021602

    [25]

    Vancea I, Thiele U 2008 Phys. Rev. E 78 041601

    [26]

    Frastia L, Archer A J, Thiele U 2011 Phys. Rev. Lett. 106 077801Google Scholar

    [27]

    Zhang X, Crivoi A, Duan F 2015 Sci. Rep. 5 10926Google Scholar

    [28]

    Sztrum C G, Hod O, Rabani E 2005 J. Phys. Chem. B 109 6741Google Scholar

    [29]

    曹进军, 单彦广 2018 化学通报 81 641

    Cao J J, Shan Y G 2018 Chem. Bull. 81 641

    [30]

    Stannard A 2011 J. Phys.: Condens. Matter 23 083001Google Scholar

    [31]

    Jacobs K, Seemann R, Herminghaus S 2008 Eprint Arxiv. 243

  • [1] 钟虓䶮, 李卓. 原子尺度材料三维结构、磁性及动态演变的透射电子显微学表征. 物理学报, 2021, 70(6): 066801. doi: 10.7498/aps.70.20202072
    [2] 武璟楠, 徐志浩, 陆展鹏, 张云波. 一维化学势调制的p波超导体中的拓扑量子相变. 物理学报, 2020, 69(7): 070302. doi: 10.7498/aps.69.20191868
    [3] 胡梦丹, 张庆宇, 孙东科, 朱鸣芳. 纳米结构超疏水表面冷凝现象的三维格子玻尔兹曼方法模拟. 物理学报, 2019, 68(3): 030501. doi: 10.7498/aps.68.20181665
    [4] 王亚明, 刘永利, 张林. Ti纳米粒子熔化与凝结的原子尺度模拟. 物理学报, 2019, 68(16): 166402. doi: 10.7498/aps.68.20190228
    [5] 陆展鹏, 魏兴波, 刘天帅, 陈阿海, 高先龙. 有限温度下一维Hubbard模型的化学势泛函理论研究. 物理学报, 2017, 66(12): 126701. doi: 10.7498/aps.66.126701
    [6] 张海超, 郑丹晨, 边茂松, 韩敏. 一种基于二维光滑粒子法的流体仿真方法. 物理学报, 2016, 65(24): 244701. doi: 10.7498/aps.65.244701
    [7] 李铁军, 孙跃, 郑骥文, 邵桂芳, 刘暾东. 基于遗传算法的Au-Cu-Pt三元合金纳米粒子的稳定结构研究. 物理学报, 2015, 64(15): 153601. doi: 10.7498/aps.64.153601
    [8] 钱泽宇, 张林. 熔融TiAl合金纳米粒子在TiAl(001)基底表面凝结过程中微观结构演变的原子尺度模拟. 物理学报, 2015, 64(24): 243103. doi: 10.7498/aps.64.243103
    [9] 陈茂林, 夏广庆, 毛根旺. 多模式离子推力器栅极系统三维粒子模拟仿真. 物理学报, 2014, 63(18): 182901. doi: 10.7498/aps.63.182901
    [10] 罗海滨, 李俊杰, 马渊, 郭春文, 王锦程. 粗化过程中颗粒界面形状演化的三维多相场法研究. 物理学报, 2014, 63(2): 026401. doi: 10.7498/aps.63.026401
    [11] 王辉辉, 刘大刚, 蒙林, 刘腊群, 杨超, 彭凯, 夏蒙重. 气体电离的全三维电磁粒子模拟/蒙特卡罗数值研究. 物理学报, 2013, 62(1): 015207. doi: 10.7498/aps.62.015207
    [12] 杨超, 刘大刚, 刘腊群, 夏蒙重, 王辉辉, 王小敏. 负氢离子源中电子能量沉积三维数值模拟研究. 物理学报, 2012, 61(15): 155205. doi: 10.7498/aps.61.155205
    [13] 汤清彬, 张东玲, 余本海, 陈东. 周期量级激光脉冲驱动下非次序双电离的三维经典系综模拟. 物理学报, 2010, 59(11): 7775-7781. doi: 10.7498/aps.59.7775
    [14] 任淮辉, 李旭东. 三维材料微结构设计与数值模拟. 物理学报, 2009, 58(6): 4041-4052. doi: 10.7498/aps.58.4041
    [15] 廖臣, 刘大刚, 刘盛纲. 三维电磁粒子模拟并行计算的研究. 物理学报, 2009, 58(10): 6709-6718. doi: 10.7498/aps.58.6709
    [16] 张科营, 郭红霞, 罗尹虹, 何宝平, 姚志斌, 张凤祁, 王园明. 静态随机存储器单粒子翻转效应三维数值模拟. 物理学报, 2009, 58(12): 8651-8656. doi: 10.7498/aps.58.8651
    [17] 陈桂波, 汪宏年, 姚敬金, 韩子夜. 各向异性海底地层海洋可控源电磁响应三维积分方程法数值模拟. 物理学报, 2009, 58(6): 3848-3857. doi: 10.7498/aps.58.3848
    [18] 申承民, 苏轶坤, 杨海涛, 杨天中, 汪裕萍, 高鸿钧. 磁性钴纳米晶的二维自组装. 物理学报, 2003, 52(2): 483-486. doi: 10.7498/aps.52.483
    [19] 杨海涛, 申承民, 杜世萱, 苏轶坤, 王岩国, 汪裕萍, 高鸿钧. 钴纳米粒子自组装有序阵列与磁性. 物理学报, 2003, 52(12): 3114-3119. doi: 10.7498/aps.52.3114
    [20] 何声太, 姚建年, 汪裕萍, 江鹏, 时东霞, 解思深, 庞世瑾, 高鸿钧. 银纳米粒子自组织二维有序阵列. 物理学报, 2001, 50(4): 765-768. doi: 10.7498/aps.50.765
计量
  • 文章访问数:  7615
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-27
  • 修回日期:  2019-05-06
  • 上网日期:  2019-07-01
  • 刊出日期:  2019-07-20

/

返回文章
返回