搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CdSeS合金结构量子点的多激子俄歇复合过程

秦朝朝 崔明焕 宋迪迪 何伟

引用本文:
Citation:

CdSeS合金结构量子点的多激子俄歇复合过程

秦朝朝, 崔明焕, 宋迪迪, 何伟

Ultrafast multiexciton Auger recombination of CdSeS

Qin Chao-Chao, Cui Ming-Huan, Song Di-Di, He Wei
PDF
HTML
导出引用
  • 多激子效应通常是指吸收单个光子产生多个激子的过程, 该效应不仅可以为研究基于量子点的太阳能电池开拓新思路, 还可以为提高太阳能电池的光电转换效率提供新方法. 但是, 超快多激子产生和复合机制尚不明确. 这里以CdSeS合金结构量子点为研究对象, 研究了其多激子生成和复合动力学. 稳态吸收光谱显示, 510, 468和430 nm附近的稳态吸收峰, 分别对应1S3/2(h)-1S(e) (或1S), 2S3/2(h)-1S(e) (或2S)和1P3/2(h)-1P(e) (或1P)激子的吸收带. 通过飞秒时间分辨瞬态吸收光谱和纳秒时间分辨荧光光谱两种时间分辨光谱技术对CdSeS合金结构量子点的超快动力学进行了探究, 结果显示, 1S激子的双激子复合时间大概是80 ps, 这一时间比传统量子点的双激子复合时间(小于50 ps)延长了近一倍, 结合最近发展的超快界面电荷分离技术, 在激子湮灭之前将其利用起来, 这一时间的延长将有很大的应用前景; 其中, 在2S和1P激子中除上述双激子复合外, 还存在一个通过声子耦合路径的空穴弛豫过程, 时间大概是5—6 ps. 最后, 利用纳秒时间分辨荧光光谱得到该样品体系单激子复合的时间约为200 ns.
    Multiexciton generation is a process where multiple excitons are generated by absorbing single photons. Efficient multiexciton generation in quantum dots may be a revolutionary discovery, because it provides a new method to improve the solar-to-electric power conversion efficiency in quantum dots-based solar cells and to design novel quantum dots-based multielectron or hole photocatalysts. However, the mechanism of ultrafast multiexciton generation and recombination remain unclear. In this paper, alloy-structured quantum dots, CdSeS, are prepared by the hot injection method. The generation and recombination mechanism of charge carriers in quantum dots samples are discussed in detail. The bivalent band structure of alloy-structured quantum dots is determined by ultraviolet-visible absorption spectra. It is found that the 1S3/2(h)-1S(e) (or 1S), 2S3/2(h)-1S(e) (or 2S) and 1P3/2(h)-1P(e) (or 1P) exciton absorption bands of these quantum dots are at 510 nm, 468 nm and 430 nm, respectively. Femtosecond transient absorption spectroscopy and nanosecond time-resolved photoluminescence spectroscopy are used to investigate the ultrafast exciton generation and recombination dynamics in the alloy-structured quantum dots. By fitting the transient kinetics of 1S exciton bleach, an average biexciton decay time is obtained to be about 80 ps, which is almost twice the decay time of traditional quantum dots (less than 50 ps). Combined with the recently developed ultrafast interface charge separation technology that can extract multiple excitons before their annihilation, it will have a promising application prospect. Moreover, there is a hole relaxation on a the time scale of 5-6 ps via a phonon coupling pathway to lower-energy hole states in addition to the above-described ultrafast exciton-exciton annihilation process in 2S and 1P excitons. Furthermore, by nanosecond time-resolved photoluminescence spectroscopy, it can be concluded that the charge separated state is long-lived (200 ns). Our findings provide a valuable insight into the understanding of ultrafast multiexciton generation and recombination in quantum dots. These results are helpful to understand the intrinsic photo-physics of multiexciton generation in quantum dots, to implement the photovoltaic and optoelectronic applications, and to ascertain the exciton relaxation dynamics of quantum dots.
      通信作者: 秦朝朝, qinch@hotmail.com
    • 基金项目: 国家自然科学基金(批准号: U1404112, 11804084)、 河南省科技攻关研究项目(批准号: 182102210369)和河南省教育厅重点项目(批准号: 19A140011)资助的课题.
      Corresponding author: Qin Chao-Chao, qinch@hotmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. U1404112, 11804084), the Advanced Technology Research Program of Henan Province, China (Grant Nos. 182102210369), and the Foundation for Key Program of Education Department of Henan Province, China (Grant No. 19A140011).
    [1]

    Shockley W, Queisser H J 1961 J. Appl. Phys. 32 510Google Scholar

    [2]

    Werner J H, Kolodinski S, Queisser H J 1994 Phys. Rev. Lett. 72 3851Google Scholar

    [3]

    Beard M C, Luther J M, Nozik A J 2014 Nat. Nanotechnol. 9 951Google Scholar

    [4]

    ten Cate S, Sandeep C S S, Liu Y, Law M, Kinge S, Houtepen A J, Schins J M, Siebbeles L D A 2015 Acc. Chem. Res. 48 174Google Scholar

    [5]

    Tahara H, Sakamoto M, Teranishi T, Kanemitsu Y 2017 Phys. Rev. Lett. 119 247401Google Scholar

    [6]

    Tahara H, Sakamoto M, Teranishi T, Kanemitsu Y 2018 Nat. Commun. 9 3179Google Scholar

    [7]

    Damtie F A, Karki K J, Pullerits T, Wacker A 2016 J. Chem. Phys. 145 064703Google Scholar

    [8]

    Park Y S, Guo S J, Makarov N S, Klimov V I 2015 ACS Nano 9 10386Google Scholar

    [9]

    Hu F R, Yin C Y, Zhang H C, Sun C, Yu W W, Zhang C F, Wang X Y, Zhang Y, Xiao M 2016 Nano Lett. 16 6425Google Scholar

    [10]

    Hu F R, Zhang H C, Sun C, Yin C Y, Lü B H, Zhang C F, Yu W W, Wang X Y, Zhang Y, Xiao M 2015 ACS Nano 9 12410Google Scholar

    [11]

    Zhao G, Cai Q B, Liu X T, Li P W, Zhang Y Q, Shao G S, Liang C 2019 IEEE J. Photovolt. 9 194Google Scholar

    [12]

    Chen Z H, Zhang Z L, Yang J F, Chen W J, Teh Z L, Wang D, Yuan L, Zhang J B, Stride J A, Conibeer G J, Patterson R J, Huang S J 2018 J. Mater. Chem. C 6 9861Google Scholar

    [13]

    Lin Q L, Yun H J, Liu W Y, Song H J, Makarov N S, Isaienko O, Nakotte T, Chen G, Luo H M, Klimov V I, Pietryga J M 2017 J. Am. Chem. Soc. 139 6644Google Scholar

    [14]

    Zhang Z L, Chen Z H, Yuan L, Chen W J, Yang J F, Wang B, Wen X M, Zhang J B, Hu L, Stride J A, Conibeer G J, Patterson R J, Huang S J 2017 Adv. Mater. 29 1703214Google Scholar

    [15]

    Li Q Y, Xu Z H, McBride J R, Lian T Q 2017 ACS Nano 11 2545Google Scholar

    [16]

    Debnath T, Maity P, Maiti S, Ghosh H N 2014 J. Phys. Chem. Lett. 5 2836Google Scholar

    [17]

    Spencer A P, Peters W K, Neale N R, Jonas D M 2019 J. Phys. Chem. C 123 848Google Scholar

    [18]

    Al-Ghamdi M S, Sayari A, Sfaxi L 2016 J. Alloys Compd. 685 202Google Scholar

    [19]

    Kwak G Y, Kim T G, Hong S, Kim A, Ha M H, Kim K J 2018 Sol. Energy 164 89Google Scholar

    [20]

    Zhang P F, Feng Y, Wen X M, Cao W K, Anthony R, Kortshagen U, Conibeer G, Huang S J 2016 Sol. Energ. Mat. Sol. C 145 391Google Scholar

    [21]

    Kryjevski A, Mihaylov D, Kilina S, Kilin D 2017 J. Chem. Phys. 147 154106Google Scholar

    [22]

    Amori A R, Hou Z T, Krauss T D 2018 Annu. Rev. Phys. Chem. 69 81Google Scholar

    [23]

    Schaller R D, Sykora M, Pietryga J M, Klimov V I 2006 Nano Lett. 6 424Google Scholar

    [24]

    Ghimire S, Biju V 2018 J. Photoch. Photobio. C 34 137Google Scholar

    [25]

    Zhu H, Lian T 2012 J. Am. Chem. Soc. 134 11289Google Scholar

    [26]

    Shi X F, Xia X Y, Cui G W, Deng N, Zhao Y Q, Zhuo L H, Tang B 2015 Appl. Catal. B. Environ. 163 123Google Scholar

    [27]

    Schaller R D, Agranovich V M, Klimov V I 2005 Nat. Phys. 1 189

    [28]

    Gordi M, Moravvej-Farshi M K, Ramezani H 2018 Chemphyschem 19 2782Google Scholar

    [29]

    Jier H, Zhuangqun H, Ye Y, Haiming Z, Tianquan L 2010 J. Am. Chem. Soc. 132 4858Google Scholar

    [30]

    Pijpers J J H, Milder M T W, Delerue C, Bonn M 2010 J. Phys. Chem. C 114 6318Google Scholar

    [31]

    Yang Y, Lian T Q 2014 Coordin. Chem. Rev. 263 229

    [32]

    Ghosh H N, Singhal P, Maity P, Jha S K 2017 Chemistry 23 10590Google Scholar

    [33]

    Kroupa D M, Pach G F, Voros M, Giberti F, Chernomordik B D, Crisp R W, Nozik A J, Johnson J C, Singh R, Klimov V I, Galli G, Beard M C 2018 ACS Nano 12 10084Google Scholar

    [34]

    Harris R D, Homan S B, Kodaimati M, He C, Nepomnyashchii A B, Swenson N K, Lian S C, Calzada R, Weiss E A 2016 Chem. Rev. 116 12865Google Scholar

    [35]

    Klimov V I 2007 Annu. Rev. Phys. Chem. 58 635Google Scholar

    [36]

    韩元春, 包特木耳巴根 2015 物理学报 64 113021

    Han Y C, Bao T 2015 Acta Phys. Sin. 64 113021

    [37]

    Liu C, Peterson J J, Krauss T D 2014 J. Phys. Chem. Lett. 5 3032Google Scholar

  • 图 1  样品的稳态吸收光谱(实线)和稳态荧光光谱(虚线), 其中插图部分为样品的能带跃迁示意图

    Fig. 1.  Steady-state absorption (solid-line) and fluorescence (dash-line) spectrum of QDs sample. Inset: energy level diagram illustrating the relevant energy of electron/hole states and allowed optical transitions (diagram not drawn to scale).

    图 2  365 nm不同光强激发下的飞秒时间分辨瞬态吸收光谱 (a) 激发脉冲能量为8 nJ的瞬态吸收光谱彩图; (b) 激发脉冲能量为50 nJ的瞬态吸收光谱彩图; (c) 激发脉冲能量为8 nJ的演变相关差分光谱; (d) 激发脉冲能量为50 nJ的演变相关差分光谱

    Fig. 2.  Femtosecond time-resolved transient absorption (TA) spectra at 365 nm excitation with different intensities: (a) TA color map with excitation pulse energy of 8 nJ; (b) TA color map with excitation pulse energy of 50 nJ; (c) evolution-associated difference spectrum (EADS) with excitation pulse energy of 8 nJ; (d) EADS with excitation pulse energy of 50 nJ.

    图 3  365 nm不同光强激发下的飞秒时间分辨瞬态吸收光谱 (a) 激发脉冲能量为100 nJ的瞬态吸收光谱彩图; (b)激发脉冲能量为500 nJ的瞬态吸收光谱彩图; (c) 激发脉冲能量为100 nJ的演变相关差分光谱; (d)激发脉冲能量为500 nJ的演变相关差分光谱

    Fig. 3.  Femtosecond time-resolved transient absorption (TA) spectra at 365 nm excitation with different intensities: (a) TA color map with excitation pulse energy of 100 nJ; (b) TA color map with excitation pulse energy of 500 nJ; (c) EADS with excitation pulse energy of 100 nJ; (d) EADS with excitation pulse energy of 500 nJ.

    图 4  不同激发能量的瞬态吸收光谱数据在各个激子峰处的漂白动力学曲线 (a) 1P激子漂白峰(430 nm); (b) 2S激子漂白峰(468 nm); (c) 1S激子漂白峰(510 nm). 所有动力学曲线已经归一化至最大振幅

    Fig. 4.  The kinetics of TA with different excitation intensities at exciton peaks: (a) 1P exciton bleach recovery (at 430 nm); (b) 2S exciton bleach recovery (at 468 nm); (c) 1S exciton bleach recovery (at 430 nm). All kinetic traces have been normalized to the same maximum amplitude.

    图 5  时间分辨荧光光谱图

    Fig. 5.  Time-resolved photoluminescence color map.

    表 1  样品的瞬态吸收数据在510 nm(1S激子)处动力学曲线的拟合参数

    Table 1.  Best-fit parameters of the kinetic curve of the transient absorption data of the QDs at 510 nm (1S exciton).

    激发脉冲能量寿命值
    τet/ps (权重/%)τ1/ps (权重/%)τ2/ns (权重/%)
    8 nJ0.391 (100)$\gg$10 (100)
    50 nJ0.431 (100)82.6 (52.5)$ \gg$10 (47.5)
    100 nJ0.374 (100)82.5 (55.6)$ \gg$10 (44.4)
    500 nJ0.381 (100)80.9 (54)$ \gg$10 (46)
    下载: 导出CSV

    表 2  样品的瞬态吸收数据在468 nm(2S激子)处动力学曲线的拟合参数

    Table 2.  Best-fit parameters of the kinetic curve of the transient absorption data of the QDs at 468 nm (2S exciton).

    激发脉冲能量寿命值
    τet/ps (权重/%)τ1/ps (权重/%)τ2/ps (权重/%)τ3/ns (权重/%)
    8 nJ0.353 (100)$ \gg$10 (100)
    50 nJ0.429 (100)6.0 (67.7)59.1 (8.5)$ \gg$10 (23.8)
    100 nJ0.362 (100)5.5 (32.7)59.8 (43.5)$ \gg$10 (25)
    500 nJ0.340 (100)5.1 (50.1)53.7 (41.3)$ \gg$10 (8.3)
    下载: 导出CSV

    表 3  样品的瞬态吸收数据在430 nm(1P激子)处动力学曲线的拟合参数

    Table 3.  Best-fit parameters of the kinetic curve of the transient absorption data of the QDs at 430 nm (1P exciton).

    激发脉冲能量寿命值
    τet/ps (权重/%)τ1/ps (权重/%)τ2/ps (权重/%)τ3/ns (权重/%)
    8 nJ0.188 (100)$ \gg$10 (100)
    50 nJ0.269 (100)8.2 (27.1)57.0 (22.9)$ \gg$10 (50)
    100 nJ0.213 (100)6.8 (27.2)52.8 (47.7)$ \gg$10 (21.9)
    500 nJ0.207 (100)6.3 (49.5)51.4 (33.3)$ \gg$10 (17.1)
    下载: 导出CSV
  • [1]

    Shockley W, Queisser H J 1961 J. Appl. Phys. 32 510Google Scholar

    [2]

    Werner J H, Kolodinski S, Queisser H J 1994 Phys. Rev. Lett. 72 3851Google Scholar

    [3]

    Beard M C, Luther J M, Nozik A J 2014 Nat. Nanotechnol. 9 951Google Scholar

    [4]

    ten Cate S, Sandeep C S S, Liu Y, Law M, Kinge S, Houtepen A J, Schins J M, Siebbeles L D A 2015 Acc. Chem. Res. 48 174Google Scholar

    [5]

    Tahara H, Sakamoto M, Teranishi T, Kanemitsu Y 2017 Phys. Rev. Lett. 119 247401Google Scholar

    [6]

    Tahara H, Sakamoto M, Teranishi T, Kanemitsu Y 2018 Nat. Commun. 9 3179Google Scholar

    [7]

    Damtie F A, Karki K J, Pullerits T, Wacker A 2016 J. Chem. Phys. 145 064703Google Scholar

    [8]

    Park Y S, Guo S J, Makarov N S, Klimov V I 2015 ACS Nano 9 10386Google Scholar

    [9]

    Hu F R, Yin C Y, Zhang H C, Sun C, Yu W W, Zhang C F, Wang X Y, Zhang Y, Xiao M 2016 Nano Lett. 16 6425Google Scholar

    [10]

    Hu F R, Zhang H C, Sun C, Yin C Y, Lü B H, Zhang C F, Yu W W, Wang X Y, Zhang Y, Xiao M 2015 ACS Nano 9 12410Google Scholar

    [11]

    Zhao G, Cai Q B, Liu X T, Li P W, Zhang Y Q, Shao G S, Liang C 2019 IEEE J. Photovolt. 9 194Google Scholar

    [12]

    Chen Z H, Zhang Z L, Yang J F, Chen W J, Teh Z L, Wang D, Yuan L, Zhang J B, Stride J A, Conibeer G J, Patterson R J, Huang S J 2018 J. Mater. Chem. C 6 9861Google Scholar

    [13]

    Lin Q L, Yun H J, Liu W Y, Song H J, Makarov N S, Isaienko O, Nakotte T, Chen G, Luo H M, Klimov V I, Pietryga J M 2017 J. Am. Chem. Soc. 139 6644Google Scholar

    [14]

    Zhang Z L, Chen Z H, Yuan L, Chen W J, Yang J F, Wang B, Wen X M, Zhang J B, Hu L, Stride J A, Conibeer G J, Patterson R J, Huang S J 2017 Adv. Mater. 29 1703214Google Scholar

    [15]

    Li Q Y, Xu Z H, McBride J R, Lian T Q 2017 ACS Nano 11 2545Google Scholar

    [16]

    Debnath T, Maity P, Maiti S, Ghosh H N 2014 J. Phys. Chem. Lett. 5 2836Google Scholar

    [17]

    Spencer A P, Peters W K, Neale N R, Jonas D M 2019 J. Phys. Chem. C 123 848Google Scholar

    [18]

    Al-Ghamdi M S, Sayari A, Sfaxi L 2016 J. Alloys Compd. 685 202Google Scholar

    [19]

    Kwak G Y, Kim T G, Hong S, Kim A, Ha M H, Kim K J 2018 Sol. Energy 164 89Google Scholar

    [20]

    Zhang P F, Feng Y, Wen X M, Cao W K, Anthony R, Kortshagen U, Conibeer G, Huang S J 2016 Sol. Energ. Mat. Sol. C 145 391Google Scholar

    [21]

    Kryjevski A, Mihaylov D, Kilina S, Kilin D 2017 J. Chem. Phys. 147 154106Google Scholar

    [22]

    Amori A R, Hou Z T, Krauss T D 2018 Annu. Rev. Phys. Chem. 69 81Google Scholar

    [23]

    Schaller R D, Sykora M, Pietryga J M, Klimov V I 2006 Nano Lett. 6 424Google Scholar

    [24]

    Ghimire S, Biju V 2018 J. Photoch. Photobio. C 34 137Google Scholar

    [25]

    Zhu H, Lian T 2012 J. Am. Chem. Soc. 134 11289Google Scholar

    [26]

    Shi X F, Xia X Y, Cui G W, Deng N, Zhao Y Q, Zhuo L H, Tang B 2015 Appl. Catal. B. Environ. 163 123Google Scholar

    [27]

    Schaller R D, Agranovich V M, Klimov V I 2005 Nat. Phys. 1 189

    [28]

    Gordi M, Moravvej-Farshi M K, Ramezani H 2018 Chemphyschem 19 2782Google Scholar

    [29]

    Jier H, Zhuangqun H, Ye Y, Haiming Z, Tianquan L 2010 J. Am. Chem. Soc. 132 4858Google Scholar

    [30]

    Pijpers J J H, Milder M T W, Delerue C, Bonn M 2010 J. Phys. Chem. C 114 6318Google Scholar

    [31]

    Yang Y, Lian T Q 2014 Coordin. Chem. Rev. 263 229

    [32]

    Ghosh H N, Singhal P, Maity P, Jha S K 2017 Chemistry 23 10590Google Scholar

    [33]

    Kroupa D M, Pach G F, Voros M, Giberti F, Chernomordik B D, Crisp R W, Nozik A J, Johnson J C, Singh R, Klimov V I, Galli G, Beard M C 2018 ACS Nano 12 10084Google Scholar

    [34]

    Harris R D, Homan S B, Kodaimati M, He C, Nepomnyashchii A B, Swenson N K, Lian S C, Calzada R, Weiss E A 2016 Chem. Rev. 116 12865Google Scholar

    [35]

    Klimov V I 2007 Annu. Rev. Phys. Chem. 58 635Google Scholar

    [36]

    韩元春, 包特木耳巴根 2015 物理学报 64 113021

    Han Y C, Bao T 2015 Acta Phys. Sin. 64 113021

    [37]

    Liu C, Peterson J J, Krauss T D 2014 J. Phys. Chem. Lett. 5 3032Google Scholar

  • [1] 赵零一, 刘金磊, 江涛, 郎跃, 赵增秀. 强场激发里德堡态的激光包络调控. 物理学报, 2024, 73(23): 1-6. doi: 10.7498/aps.73.20241222
    [2] 贺佟佟, 刘子超, 李盈傧, 黄诚. 平行偏振三色场对原子非次序双电离的调控. 物理学报, 2024, 73(16): 163201. doi: 10.7498/aps.73.20240737
    [3] 贾韫哲, 孟胜. 光激发下水体系的超快动力学. 物理学报, 2024, 73(8): 084204. doi: 10.7498/aps.73.20240047
    [4] 方德音, 范旭阳, 卫岸, 王鹿霞. 二维对六苯分子团簇中相干激发能量转移过程研究. 物理学报, 2023, 72(19): 197301. doi: 10.7498/aps.72.20230476
    [5] 陶琛玉, 雷建廷, 余璇, 骆炎, 马新文, 张少锋. 阿秒脉冲的发展及其在原子分子超快动力学中的应用. 物理学报, 2023, 72(5): 053202. doi: 10.7498/aps.72.20222436
    [6] 李斌, 张国峰, 陈瑞云, 秦成兵, 胡建勇, 肖连团, 贾锁堂. 单量子点光谱与激子动力学研究进展. 物理学报, 2022, 71(6): 067802. doi: 10.7498/aps.71.20212050
    [7] 符晓倩, 吕思远, 王鹿霞. 双分子链中非线性多激子态的动力学研究. 物理学报, 2020, 69(19): 197301. doi: 10.7498/aps.69.20200104
    [8] 周边, 杨亮. 分子动力学模拟冷却速率对非晶合金结构与变形行为的影响. 物理学报, 2020, 69(11): 116101. doi: 10.7498/aps.69.20191781
    [9] 王文静, 李冲, 张毛毛, 高琨. 共轭聚合物内非均匀场驱动的超快激子输运的动力学研究. 物理学报, 2019, 68(17): 177201. doi: 10.7498/aps.68.20190432
    [10] 叶树集, 李传召, 张佳慧, 谈军军, 罗毅. 生物分子结合水的结构与动力学研究进展. 物理学报, 2019, 68(1): 013101. doi: 10.7498/aps.68.20181273
    [11] 陈聪, 梁盼, 胡蓉蓉, 贾天卿, 孙真荣, 冯东海. 抽运-自旋定向-探测技术及其应用. 物理学报, 2018, 67(9): 097201. doi: 10.7498/aps.67.20180244
    [12] 罗金龙, 凌丰姿, 李帅, 王艳梅, 张冰. 丁酮3s里德堡态的超快光解动力学研究. 物理学报, 2017, 66(2): 023301. doi: 10.7498/aps.66.023301
    [13] 韩元春, 包特木尔巴根. 水溶性TGA-CdTe量子点的超快弛豫动力学过程探究. 物理学报, 2015, 64(11): 113201. doi: 10.7498/aps.64.113201
    [14] 朱孟龙, 董玉兰, 钟海政, 何军. CdTe量子点的室温激子自旋弛豫动力学. 物理学报, 2014, 63(12): 127202. doi: 10.7498/aps.63.127202
    [15] 李霞, 冯东海, 潘贤群, 贾天卿, 单璐繁, 邓莉, 孙真荣. 室温下CdSe胶体量子点超快自旋动力学. 物理学报, 2012, 61(20): 207202. doi: 10.7498/aps.61.207202
    [16] 李霞, 冯东海, 何红燕, 贾天卿, 单璐繁, 孙真荣, 徐至展. CdTe/CdS核壳结构量子点超快载流子动力学. 物理学报, 2012, 61(19): 197801. doi: 10.7498/aps.61.197801
    [17] 李春, 杨帆, Georgios Lefkidis, Wolfgang Hübner. 磁性纳米结构中由激光引起的超快自旋动力学研究. 物理学报, 2011, 60(1): 017802. doi: 10.7498/aps.60.017802
    [18] 罗质华, 余超凡. 一维分子晶体激子-孤子运动的激子运动学和动力学非线性效应. 物理学报, 2008, 57(6): 3720-3729. doi: 10.7498/aps.57.3720
    [19] 刘承师, 马本堃, 王立民. 交变电场驱动下耦合双量子点中激子的动力学行为. 物理学报, 2003, 52(8): 2020-2026. doi: 10.7498/aps.52.2020
    [20] 张希清, 王永生, 徐 征, 侯延冰, 王振家, 徐叙瑢, Z.K.TANG, 汪河州, 李伟良, 赵福利, 蔡志刚, 周建英. CdTe/CdZnTe多量子阱激子复合动力学性质的研究. 物理学报, 1999, 48(1): 180-185. doi: 10.7498/aps.48.180
计量
  • 文章访问数:  11282
  • PDF下载量:  186
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-04
  • 修回日期:  2019-03-26
  • 上网日期:  2019-05-01
  • 刊出日期:  2019-05-20

/

返回文章
返回