搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维极化激元学近场研究进展

段嘉华 陈佳宁

引用本文:
Citation:

二维极化激元学近场研究进展

段嘉华, 陈佳宁

Recent progress of near-field studies of two-dimensional polaritonics

Duan Jia-Hua, Chen Jia-Ning
PDF
HTML
导出引用
  • 极化激元学可以实现纳米尺度上的光子操控和光与物质相互作用的调控, 已经成为现代物理学中的一个重要分支. 与传统贵金属相比, 二维范德瓦耳斯原子晶体中极化激元具有更强的局域能力且可实现主观调控. 近期, 利用扫描式近场光学显微镜在二维体系中观察到了多种类型的极化激元, 为今后量子物理和纳米光子学的发展提供了新思路. 本文主要介绍通过近场光学手段揭示二维极化激元学的重要进展和实验结果. 在介绍近场光学及其成像原理的基础上, 总结了二维极化激元学中近场研究进展的几个重要研究方向, 包括等离极化激元、声子极化激元、激子极化激元和杂化型极化激元等. 最后提出了近场光学今后可能的发展方向.
    Due to the capability of nanoscale manipulation of photons and tunability of light-matter interaction, polaritonics has attracted much attention in the modern physics. Compared with traditional noble metals, two-dimensional van der Waals materials provide an ideal platform for polaritons with high confinement and tunability. Recently, the development of scanning near-field optical microscopy has revealed various polaritons, thereby paving the way for further studying the quantum physics and nano-photonics. In this review paper, we summarize the new developments in two-dimensional polaritonics by near-field optical approach. According to the introduction of near-field optics and its basic principle, we show several important directions in near-field developments of two-dimensional polaritonics, including plasmon polaritons, phonon polaritons, exciton polaritons, hybridized polaritons, etc. In the final part, we give the perspectives in development of near-field optics.
      通信作者: 陈佳宁, jnchen@iphy.ac.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2016YFA0203500)、国家自然科学基金(批准号: 11874407)和中国科学院战略性先导专项(批准号: XDB 30000000)资助的课题.
      Corresponding author: Chen Jia-Ning, jnchen@iphy.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0203500), the National Natural Science Foundation of China (Grant No. 11874407), and the Strategic Priority Research Program of Chinese Academy of Science (Grant No. XDB 30000000).
    [1]

    Rayleigh L 1903 J. Soc. Dyers and Colour. 23 447

    [2]

    Synge E H 1928 Philosophical Magazine Series 6 356Google Scholar

    [3]

    Opower H 1999 Opt. Laser Technol. 504 613

    [4]

    Wessel J E 1985 J. Opt. Soc. Am. B: Opt. Phys. 2 1538Google Scholar

    [5]

    Courjon D, Bainier C 2003 Rep. Prog. Phys. 57 989

    [6]

    Losquin A, Lummen T T A 2017 Frontiers of Physics in China 12 127301

    [7]

    Spektor G, Kilbane D, Mahro A, Frank B, Ristok S, Gal L, Kahl P, Podbiel D, Mathias S, Giessen H 2017 Science 355 1187Google Scholar

    [8]

    Man K L, Altman M S 2012 J. Phys. Condens. Matter 24 314209Google Scholar

    [9]

    Vesseur E J R, de Waele R, Kuttge, Martin, Polman A 2007 Nano Lett. 7 2843Google Scholar

    [10]

    Nelayah J, Kociak M, Stephan O, de Abajo F J G , Tence M, Henrard L, Taverna D, Pastorizasantos I, Lizmarzan L M, Colliex C 2007 Nat. Phys. 3 348Google Scholar

    [11]

    Govyadinov A A, Konecna A, Chuvilin A, Velez S, Dolado I, Nikitin A Y, Lopatin S, Casanova F, Hueso L E, Aizpurua J 2017 Nat. Commun. 8 95Google Scholar

    [12]

    Raza S, Esfandyarpour M, Koh A L, Mortensen N A, Brongersma M L, Bozhevolnyi S I 2016 Nat. Commun. 7 13790Google Scholar

    [13]

    Schoen D T, Holsteen A L, Brongersma M L 2016 Nat. Commun. 7 12162Google Scholar

    [14]

    Hillenbrand R, Keilmann F, Hanarp P, Sutherland D S, Aizpurua J 2003 Appl. Phys. Lett. 83 368Google Scholar

    [15]

    Wurtz G, Bachelot R, Royer P 1998 Rev. Sci. Instrum. 69 1735Google Scholar

    [16]

    Dorfmüller J, Vogelgesang R, Weitz R T, Rockstuhl C, Etrich C, Pertsch T, Lederer F, Kern K 2009 Nano Lett. 9 2372Google Scholar

    [17]

    Cvitkovic A, Ocelic N, Hillenbrand R 2007 Nano Lett. 7 3177Google Scholar

    [18]

    Hillenbrand R, Keilmann F 2000 Phys. Rev. Lett. 85 3029Google Scholar

    [19]

    Hillenbrand R, Taubner T, Keilmann F 2002 Nature 418 159Google Scholar

    [20]

    Andryieuski A, Zenin V A, Malureanu R, Volkov V S, Bozhevolnyi S I, Lavrinenko A V 2014 Nano Lett. 14 3925Google Scholar

    [21]

    Gjonaj B, David A, Blau Y, Spektor G, Orenstein M, Dolev S, Bartal G 2014 Nano Lett. 14 5598Google Scholar

    [22]

    Grefe S E, Leiva D, Mastel S, Dhuey S D, Cabrini S, Schuck P J, Abate Y 2013 Phys. Chem. Chem. Phys. 15 18944Google Scholar

    [23]

    Chen J, Albella P, Pirzadeh Z, Alonso-Gonzalez P, Huth F, Bonetti S, Bonanni V, Akerman J, Nogues J, Vavassori P, Dmitriev A, Aizpurua J, Hillenbrand R 2011 Small 7 2341Google Scholar

    [24]

    Schnell M, Garcia-Etxarri A, Alkorta J, Aizpurua J, Hillenbrand R 2010 Nano Lett. 10 3524Google Scholar

    [25]

    Huth F, Chuvilin A, Schnell M, Amenabar I, Krutokhvostov R, Lopatin S, Hillenbrand R 2013 Nano Lett. 13 1065Google Scholar

    [26]

    Mastel S, Lundeberg M B, Alonso-Gonzalez P, Gao Y, Watanabe K, Taniguchi T, Hone J, Koppens F H L, Nikitin A Y, Hillenbrand R 2017 Nano Lett. 17 6526Google Scholar

    [27]

    Low T, Chaves A, Caldwell J D, Kumar A, Fang N X, Avouris P, Heinz T F, Guinea F, Martin-Moreno L, Koppens F 2016 Nat. Mater. 16 182

    [28]

    Basov D N, Averitt R D, Hsieh D 2017 Nat. Mater. 16 1077Google Scholar

    [29]

    Basov D N, Fogler M M, de Abajo F J G 2016 Science 354 6309

    [30]

    Betzig E, Trautman J K, Harris T D, Weiner J S, Kostelak R L 1991 Science 251 1468Google Scholar

    [31]

    Betzig E, Trautman J K 1992 Science 257 189Google Scholar

    [32]

    Gao F, Li X, Wang J, Fu Y 2014 Ultramicroscopy 142 10Google Scholar

    [33]

    Hillenbrand R, Knoll B, Keilmann F 2001 J. Microsc. 202 77Google Scholar

    [34]

    Labardi M, Patane S, Allegrini M 2000 Appl. Phys. Lett. 77 621Google Scholar

    [35]

    Burresi M, Engelen R, Opheij A, van Oosten D, Mori D, Baba T, Kuipers L 2009 Phys. Rev. Lett. 102 033902Google Scholar

    [36]

    Feber B L, Rotenberg N, Beggs D M, Kuipers L 2013 Nat. Photonics 8 43

    [37]

    Kim Z H, Leone S R 2008 Opt. Express 16 1733Google Scholar

    [38]

    Kim D, Heo J, Ahn S, Han S W, Yun W S, Kim Z H 2009 Nano Lett. 9 3619Google Scholar

    [39]

    Habteyes T G, Dhuey S, Kiesow K I, Vold A 2013 Opt. Express 21 21607Google Scholar

    [40]

    Sadiq D, Shirdel J, Lee J S, Selishcheva E, Park N, Lienau C 2011 Nano Lett. 11 1609Google Scholar

    [41]

    Ropers C, Neacsu C C, Elsaesser T, Albrecht M, Raschke M B, Lienau C 2007 Nano Lett. 7 2784Google Scholar

    [42]

    Ocelic N, Huber A J, Hillenbrand R 2006 Appl. Phys. Lett. 89 101124Google Scholar

    [43]

    Stefanon I, Blaize S, Bruyant A, Aubert S, Lerondel G, Bachelot R, Royer P 2005 Opt. Express 13 5553Google Scholar

    [44]

    Novotny L, Bian R X, Xie X S 1997 Phys. Rev. Lett. 79 645Google Scholar

    [45]

    Noguez C 2007 J. Phys. Chem. C 111 3806Google Scholar

    [46]

    Meng L, Yang Z, Chen J, Sun M 2015 Sci. Rep. 5 9240Google Scholar

    [47]

    García-Etxarri A, Romero I, de Abajo F J G, Hillenbrand R, Aizpurua J 2009 Phys. Rev. B 79

    [48]

    Rang M, Jones A C, Zhou F, Li Z, Wiley B J, Xia Y, Raschke M B 2008 Nano Lett. 8 3357Google Scholar

    [49]

    Esteban R, Vogelgesang R, Dorfmuller J, Dmitriev A, Rockstuhl C, Etrich C, Kern K 2008 Nano Lett. 8 3155Google Scholar

    [50]

    Neuman T, Alonso-González P, Garcia-Etxarri A, Schnell M, Hillenbrand R, Aizpurua J 2015 Laser Photonics Rev. 9 637Google Scholar

    [51]

    Burresi M, van Oosten D, Kampfrath T, Schoenmaker H, Heideman R, Leinse A, Kuipers L 2009 Science 326 550Google Scholar

    [52]

    Ahn J, Kihm H W, Kihm J E, Kim D S, Lee K 2009 Opt. Express 17 2280Google Scholar

    [53]

    Wei H, Zhang S, Tian X, Xu H 2013 Proc. Natl. Acad. Sci. U.S.A. 110 4494Google Scholar

    [54]

    Zhang S, Wei H, Bao K, Hakanson U, Halas N J, Nordlander P, Xu H 2011 Phys. Rev. Lett. 107 096801Google Scholar

    [55]

    Koppens F H L, Chang D, de Abajo F J G 2011 Nano Lett. 11 3370Google Scholar

    [56]

    Dai S, Fei Z, Ma Q, Rodin A S, Wagner M, McLeod A S, Liu M K, Gannett W, Regan W, Watanabe K, Taniguchi T, Thiemens M, Dominguez G, Castro Neto A H, Zettl A, Keilmann F, Jarillo-Herrero P, Fogler M M, Basov D N 2014 Science 343 1125Google Scholar

    [57]

    Sanvitto D, Kéna-Cohen S 2016 Nat. Mater. 15 1061Google Scholar

    [58]

    Woessner A, Parret R, Davydovskaya D, Gao Y, Wu J S, Lundeberg M B, Nanot S, Alonso-González P, Watanabe K, Taniguchi T, Hillenbrand R, Fogler M M, Hone J, Koppens F H L 2017 npj 2D Mater. Appl. 1 25Google Scholar

    [59]

    Kumar A, Low T, Fung K H, Avouris P, Fang N X 2015 Nano Lett. 15 3172Google Scholar

    [60]

    Woessner A, Misra A, Cao Y, Torre I, Mishchenko A, Lundeberg M B, Watanabe K, Taniguchi T, Polini M, Novoselov K S, Koppens F H L 2017 ACS Photonics 4 3012Google Scholar

    [61]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197Google Scholar

    [62]

    Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M, Geim A K 2008 Science 320 1308Google Scholar

    [63]

    Guo Q, Li C, Deng B, Yuan S, Guinea F, Xia F 2017 ACS Photonics 4 2989Google Scholar

    [64]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [65]

    Yan H, Low T, Zhu W, Wu Y, Freitag M, Li X, Guinea F, Avouris P, Xia F 2013 Nat. Photonics 7 394Google Scholar

    [66]

    Yan H, Li X, Chandra B, Tulevski G, Wu Y, Freitag M, Zhu W, Avouris P, Xia F 2012 Nat. Nanotechnol. 7 330Google Scholar

    [67]

    Fei Z, Andreev G O, Bao W, Zhang L M, Wang C, Stewart M K, Zhao Z, Dominguez G, Thiemens M, Fogler M M, Tauber M J, Castro-Neto A H, Lau C N, Keilmann F, Basov D N 2011 Nano Lett. 11 4701Google Scholar

    [68]

    Chen J, Badioli M, Alonso-González P, Thongrattanasiri S, Huth F, Osmond J, Spasenović M, Centeno A, Pesquera A, Godignon P, Zurutuza Elorza A, Camara N, de Abajo F J G, Hillenbrand R, Koppens F H L 2012 Nature 487 77Google Scholar

    [69]

    Fei Z, Rodin A S, Andreev G O, Bao W, McLeod A S, Wagner M, Zhang L M, Zhao Z, Thiemens M, Dominguez G, Fogler M M, Neto A H C, Lau C N, Keilmann F, Basov D N 2012 Nature 487 82Google Scholar

    [70]

    Ni G X, McLeod A S, Sun Z, Wang L, Xiong L, Post K W, Sunku S S, Jiang B Y, Hone J, Dean C R, Fogler M M, Basov D N 2018 Nature 557 530Google Scholar

    [71]

    Fei Z, Foley J J, Gannett W, Liu M K, Dai S, Ni G X, Zettl A, Fogler M M, Wiederrecht G P, Gray S K, Basov D N 2016 Nano Lett. 16 7842Google Scholar

    [72]

    Hu F, Luan Y, Fei Z, Palubski I Z, Goldflam M D, Dai S, Wu J S, Post K W, Janssen G, Fogler M M, Basov D N 2017 Nano Lett. 17 5423Google Scholar

    [73]

    Duan J, Chen R, Chen J 2017 Chin. Phys. B 26 117802Google Scholar

    [74]

    Nikitin A, Alonso-González P, Vélez S, Mastel S, Centeno A, Pesquera A, Zurutuza A, Casanova F, Hueso L, Koppens F 2016 Nat. Photonics 10 239Google Scholar

    [75]

    Fei Z, Goldflam M D, Wu J S, Dai S, Wagner M, McLeod A S, Liu M K, Post K W, Zhu S, Janssen G C A M, Fogler M M, Basov D N 2015 Nano Lett. 15 8271Google Scholar

    [76]

    Bezares F J, de Sanctis A, Saavedra J R M, Woessner A, Alonso-Gonzalez P, Amenabar I, Chen J, Bointon T, Dai S, Fogler M M, Basov D N, Hillenbrand R, Craciun M F, de Abajo F J G, Russo S, Koppens F H L 2017 Nano Lett. 17 5908Google Scholar

    [77]

    Fei Z, Iwinski E G, Ni G X, Zhang L M, Bao W, Rodin A S, Lee Y, Wagner M, Liu M K, Dai S, Goldflam M D, Thiemens M, Keilmann F, Lau C N, Castro-Neto A H, Fogler M M, Basov D N 2015 Nano Lett. 15 4973Google Scholar

    [78]

    Woessner A, Gao Y, Torre I, Lundeberg M B, Tan C, Watanabe K, Taniguchi T, Hillenbrand R, Hone J, Polini M, Koppens F H L 2017 Nat. Photonics 11 421Google Scholar

    [79]

    Dai S, Ma Q, Liu M K, Andersen T, Fei Z, Goldflam M D, Wagner M, Watanabe K, Taniguchi T, Thiemens M, Keilmann F, Janssen G C, Zhu S E, Jarillo-Herrero P, Fogler M M, Basov D N 2015 Nat. Nanotechnol. 10 682Google Scholar

    [80]

    Caldwell J D, Kretinin A V, Chen Y, Giannini V, Fogler M M, Francescato Y, Ellis C T, Tischler J G, Woods C R, Giles A J, Hong M, Watanabe K, Taniguchi T, Maier S A, Novoselov K S 2014 Nat. Commun. 5 5221Google Scholar

    [81]

    Liu Z, Lee H, Xiong Y, Sun C, Zhang X 2007 Science 315 1686Google Scholar

    [82]

    Yao J, Liu Z, Liu Y, Wang Y, Sun C, Bartal G, Stacy A M, Zhang X 2008 Science 321 930Google Scholar

    [83]

    Yang X, Yao J, Rho J, Yin X, Zhang X 2012 Nat. Photonics 6 450Google Scholar

    [84]

    Hoffman A J, Alekseyev L, Howard S S, Franz K J, Wasserman D, Podolskiy V A, Narimanov E E, Sivco D L, Gmachl C 2007 Nat. Mater. 6 946Google Scholar

    [85]

    Kim J, Drachev V P, Jacob Z, Naik G V, Boltasseva A, Narimanov E E, Shalaev V M 2012 Opt. Express 20 8100Google Scholar

    [86]

    High A A, Devlin R C, Dibos A, Polking M, Wild D S, Perczel J, de Leon N P, Lukin M D, Park H 2015 Nature 522 192Google Scholar

    [87]

    Liu Y, Zhang X 2013 Appl. Phys. Lett. 103 141101Google Scholar

    [88]

    Li P, Dolado I, Alfaro-Mozaz F J, Casanova F, Hueso L E, Liu S, Edgar J H, Nikitin A Y, Velez S, Hillenbrand R 2018 Science 359 892Google Scholar

    [89]

    Ma W, Gonzalez P A, Li S, Nikitin A Y, Yuan J, Sanchez J M, Gutierrez J T, Amenabar I, Li P, Velez S, Tollan C, Dai Z, Zhang Y, Sriram S, Zadeh K K, Lee S T, Hillenbrand R, Bao Q 2018 Nature 562 557Google Scholar

    [90]

    Li P, Dolado I, Alfaro-Mozaz F J, Nikitin A Y, Casanova F, Hueso L E, Velez S, Hillenbrand R 2017 Nano Lett. 17 228Google Scholar

    [91]

    Dai S, Tymchenko M, Yang Y, Ma Q, Pita-Vidal M, Watanabe K, Taniguchi T, Jarillo-Herrero P, Fogler M, Alù A 2017 Adv. Mater. 30 1706358

    [92]

    Li P, Lewin M, Kretinin A V, Caldwell J D, Novoselov K S, Taniguchi T, Watanabe K, Gaussmann F, Taubner T 2015 Nat. Commun. 6 7507Google Scholar

    [93]

    Dai S, Ma Q, Andersen T, McLeod A S, Fei Z, Liu M K, Wagner M, Watanabe K, Taniguchi T, Thiemens M, Keilmann F, Jarillo-Herrero P, Fogler M M, Basov D N 2015 Nat. Commun. 6 6963Google Scholar

    [94]

    Alfaro-Mozaz F J, Alonso-Gonzalez P, Velez S, Dolado I, Autore M, Mastel S, Casanova F, Hueso L E, Li P, Nikitin A Y, Hillenbrand R 2017 Nat. Commun. 8 15624Google Scholar

    [95]

    Hu D, Yang X, Li C, Liu R, Yao Z, Hu H, Corder S N G, Chen J, Sun Z, Liu M, Dai Q 2017 Nat. Commun. 8 1471Google Scholar

    [96]

    Fei Z, Scott M E, Gosztola D J, Foley J J, Yan J, Mandrus D G, Wen H, Zhou P, Zhang D W, Sun Y, Guest J R, Gray S K, Bao W, Wiederrecht G P, Xu X 2016 Phys. Rev. B 94 081402Google Scholar

    [97]

    Hu F, Luan Y, Scott M E, Yan J, Mandrus D G, Xu X, Fei Z 2017 Nat. Photonics 11 356Google Scholar

    [98]

    Woessner A, Lundeberg M B, Gao Y, Principi A, Alonso-Gonzalez P, Carrega M, Watanabe K, Taniguchi T, Vignale G, Polini M, Hone J, Hillenbrand R, Koppens F H 2015 Nat. Mater. 14 421Google Scholar

    [99]

    Yang X, Zhai F, Hu H, Hu D, Liu R, Zhang S, Sun M, Sun Z, Chen J, Dai Q 2016 Adv. Mater. 28 2931Google Scholar

    [100]

    Yoxall E, Schnell M, Nikitin A Y, Txoperena O, Woessner A, Lundeberg M B, Casanova F, Hueso L E, Koppens F H L, Hillenbrand R 2015 Nat. Photonics 9 674Google Scholar

    [101]

    Eisele M, Cocker T L, Huber M A, Plankl M, Viti L, Ercolani D, Sorba L, Vitiello M S, Huber R 2014 Nat. Photonics 8 841Google Scholar

    [102]

    Huber M A, Plankl M, Eisele M, Marvel R E, Sandner F, Korn T, Schuller C, Haglund R F, Huber R, Cocker T L 2016 Nano Lett. 16 1421Google Scholar

    [103]

    Wagner M, Fei Z, McLeod A S, Rodin A S, Bao W, Iwinski E G, Zhao Z, Goldflam M, Liu M, Dominguez G, Thiemens M, Fogler M M, Castro Neto A H, Lau C N, Amarie S, Keilmann F, Basov D N 2014 Nano Lett. 14 894Google Scholar

    [104]

    Ni G X, Wang L, Goldflam M D, Wagner M, Fei Z, McLeod A S, Liu M K, Keilmann F, Özyilmaz B, Castro Neto A H, Hone J, Fogler M M, Basov D N 2016 Nat. Photonics 10 244Google Scholar

    [105]

    Hu H, Yang X, Zhai F, Hu D, Liu R, Liu K, Sun Z, Dai Q 2016 Nat. Commun. 7 12334Google Scholar

    [106]

    Amenabar I, Poly S, Goikoetxea M, Nuansing W, Lasch P, Hillenbrand R 2017 Nat. Commun. 8 14402Google Scholar

    [107]

    Amenabar I, Poly S, Nuansing W, Hubrich E H, Govyadinov A A, Huth F, Krutokhvostov R, Zhang L, Knez M, Heberle J, Bittner A M, Hillenbrand R 2013 Nat. Commun. 4 2890Google Scholar

    [108]

    Dominguez G, McLeod A S, Gainsforth Z, Kelly P, Bechtel H A, Keilmann F, Westphal A, Thiemens M, Basov D N 2014 Nat. Commun. 5 5445Google Scholar

    [109]

    Westermeier C, Cernescu A, Amarie S, Liewald C, Keilmann F, Nickel B 2014 Nat. Commun. 5 4101Google Scholar

    [110]

    Lucas I T, McLeod A S, Syzdek J S, Middlemiss D S, Grey C P, Basov D N, Kostecki R 2015 Nano Lett. 15 1Google Scholar

    [111]

    Huth F, Govyadinov A, Amarie S, Nuansing W, Keilmann F, Hillenbrand R 2012 Nano Lett. 12 3973Google Scholar

    [112]

    Alonso-González P, Nikitin A Y, Golmar F, Centeno A, Pesquera A, Vélez S, Chen J, Navickaite G, Koppens F, Zurutuza A 2014 Science 344 1369Google Scholar

    [113]

    Duan J, Chen R, Li J, Jin K, Sun Z, Chen J 2017 Adv. Mater. 29 1702494Google Scholar

    [114]

    Zhao Y, Tang Y, Chen Y 2012 ACS Nano 6 6912Google Scholar

    [115]

    Nudnova M M, Sigg J, Wallimann P, Zenobi R 2015 Anal. Chem. 87 1323Google Scholar

    [116]

    Lee K G, Kihm H W, Kihm J E, Choi W J, Kim H, Ropers C, Park D J, Yoon Y C, Choi S B, Woo D H, Kim J, Lee B, Park Q H, Lienau C, Kim D S 2007 Nat. Photonics 1 53Google Scholar

    [117]

    Rotenberg N, Kuipers L 2014 Nat. Photonics 8 919Google Scholar

  • 图 1  近场光学成像原理图 (a)近场成像和远场成像的比较: 远场光学中物体的点扩散函数由传统衍射极限决定, 而近场光学中物体的点扩散函数由探针尺寸决定; (b)近场光学突破衍射极限的不确定原理解释

    Fig. 1.  Schematic of near-field optics. (a) Comparison between far-field and near-field optics. The point spread function in far-field optics is determined by the diffraction limit, while the spatial resolution in near-field optics is determined by the size of probe.(b) Explanation of breaking the diffraction limit in near-field optics based on uncertainty principle.

    图 2  光发射电子显微镜(PEEM)、阴极荧光光谱(CL)、电子能量损失谱(EELS)、扫描式近场光学显微镜(SNOM)等不同纳米级成像技术之间的对比

    Fig. 2.  Comparison of four classical sub-wavelength approaches, including photon emission electron microscopy (PEEM), cathode-luminescence spectroscopy (CL), electron energy loss spectroscopy (EELS), and scanning near-field optical microscopy (SNOM).

    图 3  SNOM实验原理 (a) 孔径型SNOM照射原理; (b) 散射型SNOM照射原理

    Fig. 3.  Experimental scheme of SNOM: (a) The illumination scheme of a-SNOM; (b) the illumination scheme of s-SNOM.

    图 4  近场光学成像中金属探针和介质探针的比较 (a) 金纳米圆盘的形貌像和光学像, 分别由碳纳米管探针(CNT)和金属探针扫描所得[47], 标尺为100 nm; (b) 不同探针尖端局域电磁场的数值模拟结果

    Fig. 4.  The influence of AFM tip in near-field measurement: (a) Topography and near-field amplitude of a gold nanodisk obtained by carbon nanotube (CNT) tip and Pt-coated Si tip[47], the scale bar is 100 nm; (b) the numerical simulation of local electric field between AFM tip and substrate.

    图 5  低维体系中的极化激元. 极化激元是光子和其他粒子或准粒子耦合后产生的一种玻色子, 包括富电子体系中的等离极化激元、极化晶体中的声子极化激元、半导体中的激子极化激元、超导体中的库珀对极化激元、铁磁体中的磁振子极化激元以及异质结中的杂化极化激元

    Fig. 5.  Polaritons in low-dimensional materials. Polaritons are collective excitation from coupling photons with other quasiparticles, such as plasmons in electron-rich systems, infrared-active phonons in polar insulators, excitons in semiconductors, cooper-pairs in superconductors, spin resonances in (anti)-ferromagnets and hybrids in heterostructures.

    图 6  石墨烯中的表面等离极化激元 (a) 单层石墨烯中狄拉克等离激元的近场光谱测量及其色散的理论计算结果[67]; (b) 石墨烯等离激元的红外近场光学图像[68], 入射光波长为9.7 μm; (c) 液氮温区下石墨烯等离激元的近场光学图像[70], 入射光波长为11.28 μm; (d) 石墨烯纳米泡中等离激元局域“热点”[71], 入射频率为910 cm–1; (e) 石墨烯纳米带中等离激元传播态和局域态之间耦合产生的近场光学强度非对称现象[72], 入射频率为1184 cm–1; (f) 石墨烯方形谐振腔中等离激元一维边界模式和二维模式的近场光学测量及其数值模拟结果[74], 入射光波长为11.31 μm; (g) 石墨烯纳米条带中等离激元一维边界模式的近场光学成像[75], 入射光频率为1160 cm–1 (图(c) 中标尺为1 μm, 其他图中标尺均为200 nm)

    Fig. 6.  Surface plasmon polaritons in monolayer graphene: (a) Near-field spectroscopic measurement and theoretically calculated dispersion of Dirac plasmons in monolayer graphene[67]; (b) s-SNOM scheme (upper), experimental amplitude of graphene plasmons (middle) and calculated local density of optical states (bottom)[68], the incident wavelength is 9.7 μm; (c) nano-image of graphene plasmons launched by gold antenna under liquid-nitrogen temperature, the incident wavelength is 11.28 μm[70]; (d) plasmonic hot-spots inside graphene nanobubbles on boron nitride substrate[71], the incident frequency is 910 cm–1; (e) asymmetric plasmonic fringes induced by superposition of propagating and localized modes in graphene nanoribbons[72], the incident frequency is 1184 cm–1; (f) experimental (left) and calculated (right) near-field amplitude of graphene rectangle resonators, representing 1D edge mode and 2D sheet mode[74], the incident wavelength is 11.31 μm; (g) edge plasmons at the top boundary of graphene nanoribbons[75], the incident frequency is 1160 cm–1. Scale bars in all panels represent 200 nm, except for 1 μm in (c).

    图 7  双层石墨烯中的等离激元 (a) 左: 单层石墨烯和双层石墨烯中等离激元随施加电压的变化趋势; 右: 双层石墨烯中光电导随电压变化趋势的理论计算结果, 图中箭头表示等离激元关闭区域[77]; (b) 随机堆叠型(左) 和Bernal堆叠型(右) 双层石墨烯中等离激元与声子之间相互耦合作用的近场光学测量[76]. 散点代表实验数据, 背景色为菲涅耳反射系数虚部的理论计算结果. 内插图为石墨烯等离激元的近场光学图像

    Fig. 7.  Plasmon polaritons in bilayer graphene: (a) Left panel: experimental measurement of voltage-dependent plasmonic wavelength in monolayer (SLG) and bilayer (BLG) graphene. Right panel: Theoretical calculation of voltage- and frequency-dependent imaginary part of the optical conductivity. The double-headed arrows indicate plasmon-off region of bilayer graphene[77]; (b) near-field study of interaction between plasmons and intrinsic phonons in highly doped double-layer (left) and bilayer graphene (right)[76]. The dispersed symbols represent experimental data and background color indicates the imaginary part of the calculated Fresnel reflection coefficient. Inset: representative near-field images of graphene plasmons and corresponding symmetry of phonon-induced charge densities.

    图 8  石墨烯等离激元的应用 (a) 基于石墨烯等离激元的红外光相位调制器[78], 上图为实验原理图, 下图为$0—2{\text{π}}$的相位调制, 实线为理论计算结果, 散点为实验数据; (b) 石墨烯/氮化硼中的杂化极化激元[79]上图为杂化极化激元和氮化硼声子极化激元的光学图像, 下图为杂化极化激元的电压调控 (入射光频率为1495 cm–1, 标尺为300 nm)

    Fig. 8.  The applications of graphene plasmons: (a) Phase control of infrared light by gate-tunable graphene plasmons[78]. Upper panel: schematic of experimental configuration. Bottom panel: Theoretical (solid lines) and experimental (dispersed circles) phase shift, which can be changed from 0 to $2{\text{π}}$; (b) hybridized polaritons in graphene/hBN heterostructures[79]. Upper panel: With monolayer graphene, both amplitude and wavelength of phonon polaritons in pristine hBN increase. Bottom panel: The gate-tunable hyperbolic phonon-plasmon polaritons (HP3) in graphene/hBN and un-tunable hyperbolic phonon polaritons (HP2) in hBN. The incident frequency is 1495 cm–1. Scale bar, 300 nm.

    图 9  氮化硼中双曲线型声子极化激元 (a) 天然氮化硼晶体中的双曲线行为, 其等频面为两类双曲面[80]; (b) 氮化硼晶体中双曲线型声子极化激元的近场光学图像[56], 入射光频率为1550 cm–1, 标尺为800 nm; (c) 氮化硼超表面面内双曲线型声子极化激元的近场光学图像[88]; (d) 氮化硼中表面局域声子极化激元(HSPs) 的近场光学图像[90], 入射光频率为1420 cm–1, 标尺为2 μm; (e) 不同角度氮化硼中HSPs的散射行为[91]

    Fig. 9.  Hyperbolic phonon polaritons (HPPs) in boron nitride: (a) Hyperbolic behavior of natural hBN crystal, which gives two separate spectral bands called lower and upper Reststrahlen bands with opposite-signed in-plane ($ {{\rm{\varepsilon }}_{//} } $) and out-of-plane (${\varepsilon _ \bot }$) dielectric permittivity[80], the corresponding hyperboloid-type dispersion of polaritons is shown in left (type 1) and right (type 2) panels; (b) nano-infrared images of HPPs in a tapered hBN crystal[56]. The incident frequency is 1550 cm–1, scale bar, 800 nm; (c) in-plane hyperbolic phonon polaritons in nano-patterning boron nitride crystal[88], left panel: near-field image of concave wavefront of phonon polaritons in boron nitride metasurfaces, right panel: schematic of the experiment; (d) volume-confined polaritons (M0) and surface polaritons (SM0) near the edge of hBN crystal[90], the incident frequency is 1420 cm–1. Scale bar, 2 μm; (e) manipulation of hyperbolic surface polaritons with corner angle of hBN crystals[91]. Left panel: representative near-field image with crystal angle of 120°. Right panel: simulated reflected (R), transmitted (T) and scattered (S) fractions of polaritons as a function of crystal angles. Red squares are experimental data.

    图 10  双曲线型声子极化激元的应用 (a) 基于氮化硼声子极化激元的超分辨成像[92], 上: 数值模拟; 下: 近场光学测量; (b) 基于氮化硼实现中红外光的纳米聚焦[93], 标尺为1 μm; (c) 不同长度氮化硼线性天线的近场光学图像[94], 上: 长度为1327 nm; 下: 长度为1713 nm

    Fig. 10.  The applications of hyperbolic phonon polaritons: (a) Near-field imaging and nano-focusing realized by hBN-HPPs[92]. Upper panel: simulated perfect imaging (ω0 = 761 cm–1) and enlarged imaging (ω0 = 778.2 cm–1) of gold nanodisk beneath the hBN crystal. Bottom panel: experimental nano-infrared images of gold nanodisk beneath hBN with the broadband incident laser; (b) sub-wavelength focusing of mid-infrared light through an hBN crystal[93]. Left panel: AFM image of gold disks on SiO2/Si substrate before hBN transfer. Right panel: near-field amplitude on the top of hBN crystal with incident frequency at 1515 cm–1. Scale bar, 1 μm; (c) linear hBN dielectric antenna with different lengths[94], 1327 nm in upper panel and 1713 nm in bottom panel. The incident frequency is 1432 cm–1.

    图 11  半导体中激子极化激元的近场光学成像 (a) 二硒化钨中激子极化激元的近场光学图像[96], 白色虚线为二硒化钨的边界; (b) 二硒化钼中激子极化激元的近场光学图像[97], 图中标尺为1 μm

    Fig. 11.  Near-field studies of exciton polaritons in semiconductors: (a) Representative near-field image of a WSe2 flake, whose edges are marked by white dashed lines[96]; (b) near-field image of exciton polaritons in planar MoSe2 waveguide at laser energy of 1.41 eV[97]. Scale bar is 1 μm.

    图 12  范德瓦耳斯异质结中的极化激元 (a) 氮化硼/石墨烯/氮化硼异质结中超低损耗等离激元的近场光学成像[98], 黑色虚线为石墨烯边界, 入射光波长为10.6 μm; (b) 石墨烯/氮化硼中杂化等离–声子极化激元的近场光学成像[99], 红色虚线为石墨烯边界 (图中标尺为500 nm)

    Fig. 12.  Polaritons in van der Waals heterostructures: (a) Near-field image of low-loss graphene plasmons in hBN/Graphene/hBN heterostructures[98]. Upper panel: Side-view sketch of near-field measurement of back-gate graphene encapsulated by hBN layers. Bottom panel: representative near-field image with incident wavelength at 10.6 μm. The graphene edge is marked as black dashed line. (b) Hybridized plasmon-phonon polaritons in graphene/hBN heterostructures[99]. Upper panel: experimentally extracted wavelength of plasmon-phonon polaritons. Bottom panel: representative near-field images of polaritons. The graphene edge is marked by red dashed lines. The incident frequency is 950 cm-1 and 970 cm-1, respectively. Scale bar is 500 nm.

    图 13  超快近场光学 (a) 实验测量氮化硼声子极化激元的动力学参数[100], 黄色区域代表金天线, 内插图显示了极化激元波的传播, 右图为不同延迟时间下的极化激元波包, 黑色和绿色实线分别代表群速度和相速度; (b) 石墨烯抽运-探测近场光谱图[103], 从左到右探测光与抽运光之间的延迟分别为0, 200和400 fs, 标尺为1 μm; (c) 石墨烯中光诱导等离激元的超快光学成像[104]

    Fig. 13.  Ultrafast near-field optics. (a) The experimentally extracted propagation of type-1 HPPs in the space-time domain[100]. The yellow region represents the gold antenna launching polaritons. The inset shows zoom into the fringe patterns. Right panel: the line profiles for different time delays. The black and green solid lines show the envelope of the fringe patterns (group velocity) and intrinsic fringe patterns (phase velocity), respectively. (b) Near-infrared (NIR) pump-induced changes in the near-field amplitude of graphene for different pump-probe time delays[103]. The pump and probe lasers are 1.56 μm and broadband mid-infrared pulses, respectively. The dark region in near-field images represents SiO2 substrate. Different optical contrast is caused by different layered graphene. Scale bar, 1 μm. (c) Ultrafast controlling of photo-induced plasmon polaritons in graphene encapsulated by two hBN layers[104]. Left panel: the schematic of pump-probe s-SNOM set-up. Right panel: the two-dimensional hyperspectral map of photo-induced plasmons in hBN/graphene/hBN device. The black solid line gives the edge of device. The pump laser is at 1.56 μm. The probe beam spans frequencies from 830–1000 cm–1.

    图 14  近场光学成像的发展 (a) 通过散射型SNOM和红外光谱结合测量纳米区域化学分子的红外光谱[111]; (b) 共振金天线激发石墨烯等离激元的近场光学图像[112]; (c) 非共振金天线激发氮化硼声子极化激元的近场光学图像[113], 图中标尺为1 μm

    Fig. 14.  Development in near-field optics. (a) Chemical identification of nanoscale sample contaminations with nano-FTIR, which is combination of s-SNOM and Fourier transform infrared spectrum (FTIR)[111]. Left panel: Topography image of poly-(methyl methacrylate) thin film (PMMA, marked as A on silicon substrate, with a contaminated particle of polydimethylsiloxane (PDMS, marked as B. Right panel: corresponding absorption spectra of PMMA (taken from spot A) and PDMS (taken from spot B). (b) Near-field imaging of plasmonic wavefront launched by gold antenna, instead of AFM tip[112]. Upper panel: AFM topography images of fabricated gold antenna. Bottom panel: representative near-field image of plasmonic wavefront with incident wavelength at 11.06 μm. (c) Near-field imaging of wavefront of hBN-HPPs launched by gold antenna[113]. The brighter region represents gold antenna, encapsulated between hBN and SiO2 substrate. Scale bar is 1 μm.

    图 15  近场光学前景展望 (a) 化学合成的碳纳米管结构[114], 其光学性质可以通过化学组分有效调控; (b) 开口环形探针可用于近场磁场面内和面外分量的测量[51], 图中标尺为500 nm; (c) 散射型SNOM与质谱耦合, 可同时得到纳米级空间分辨率和超高化学分辨率; (d) 极端环境下SNOM的发展, 包括超低温、强磁场和超高真空等

    Fig. 15.  The perspective of near-field optics: (a) Chemically fabricated carbon nanotube cup, whose properties can be effectively controlled by chemical component[114]; (b) split-ring probe is sensitive to both in-plane (Hx or Hy) and out-of-plane (Hz) component of near-field magnetic field[51], scale bar, 500 nm; (c) the combination of near-field optics and mass spectroscopy for highly chemical resolution and spatial resolution, simultaneously; (d) the developed s-SNOM in extreme environment, including ultralow temperature, strong magnetic field and ultrahigh vacuum.

  • [1]

    Rayleigh L 1903 J. Soc. Dyers and Colour. 23 447

    [2]

    Synge E H 1928 Philosophical Magazine Series 6 356Google Scholar

    [3]

    Opower H 1999 Opt. Laser Technol. 504 613

    [4]

    Wessel J E 1985 J. Opt. Soc. Am. B: Opt. Phys. 2 1538Google Scholar

    [5]

    Courjon D, Bainier C 2003 Rep. Prog. Phys. 57 989

    [6]

    Losquin A, Lummen T T A 2017 Frontiers of Physics in China 12 127301

    [7]

    Spektor G, Kilbane D, Mahro A, Frank B, Ristok S, Gal L, Kahl P, Podbiel D, Mathias S, Giessen H 2017 Science 355 1187Google Scholar

    [8]

    Man K L, Altman M S 2012 J. Phys. Condens. Matter 24 314209Google Scholar

    [9]

    Vesseur E J R, de Waele R, Kuttge, Martin, Polman A 2007 Nano Lett. 7 2843Google Scholar

    [10]

    Nelayah J, Kociak M, Stephan O, de Abajo F J G , Tence M, Henrard L, Taverna D, Pastorizasantos I, Lizmarzan L M, Colliex C 2007 Nat. Phys. 3 348Google Scholar

    [11]

    Govyadinov A A, Konecna A, Chuvilin A, Velez S, Dolado I, Nikitin A Y, Lopatin S, Casanova F, Hueso L E, Aizpurua J 2017 Nat. Commun. 8 95Google Scholar

    [12]

    Raza S, Esfandyarpour M, Koh A L, Mortensen N A, Brongersma M L, Bozhevolnyi S I 2016 Nat. Commun. 7 13790Google Scholar

    [13]

    Schoen D T, Holsteen A L, Brongersma M L 2016 Nat. Commun. 7 12162Google Scholar

    [14]

    Hillenbrand R, Keilmann F, Hanarp P, Sutherland D S, Aizpurua J 2003 Appl. Phys. Lett. 83 368Google Scholar

    [15]

    Wurtz G, Bachelot R, Royer P 1998 Rev. Sci. Instrum. 69 1735Google Scholar

    [16]

    Dorfmüller J, Vogelgesang R, Weitz R T, Rockstuhl C, Etrich C, Pertsch T, Lederer F, Kern K 2009 Nano Lett. 9 2372Google Scholar

    [17]

    Cvitkovic A, Ocelic N, Hillenbrand R 2007 Nano Lett. 7 3177Google Scholar

    [18]

    Hillenbrand R, Keilmann F 2000 Phys. Rev. Lett. 85 3029Google Scholar

    [19]

    Hillenbrand R, Taubner T, Keilmann F 2002 Nature 418 159Google Scholar

    [20]

    Andryieuski A, Zenin V A, Malureanu R, Volkov V S, Bozhevolnyi S I, Lavrinenko A V 2014 Nano Lett. 14 3925Google Scholar

    [21]

    Gjonaj B, David A, Blau Y, Spektor G, Orenstein M, Dolev S, Bartal G 2014 Nano Lett. 14 5598Google Scholar

    [22]

    Grefe S E, Leiva D, Mastel S, Dhuey S D, Cabrini S, Schuck P J, Abate Y 2013 Phys. Chem. Chem. Phys. 15 18944Google Scholar

    [23]

    Chen J, Albella P, Pirzadeh Z, Alonso-Gonzalez P, Huth F, Bonetti S, Bonanni V, Akerman J, Nogues J, Vavassori P, Dmitriev A, Aizpurua J, Hillenbrand R 2011 Small 7 2341Google Scholar

    [24]

    Schnell M, Garcia-Etxarri A, Alkorta J, Aizpurua J, Hillenbrand R 2010 Nano Lett. 10 3524Google Scholar

    [25]

    Huth F, Chuvilin A, Schnell M, Amenabar I, Krutokhvostov R, Lopatin S, Hillenbrand R 2013 Nano Lett. 13 1065Google Scholar

    [26]

    Mastel S, Lundeberg M B, Alonso-Gonzalez P, Gao Y, Watanabe K, Taniguchi T, Hone J, Koppens F H L, Nikitin A Y, Hillenbrand R 2017 Nano Lett. 17 6526Google Scholar

    [27]

    Low T, Chaves A, Caldwell J D, Kumar A, Fang N X, Avouris P, Heinz T F, Guinea F, Martin-Moreno L, Koppens F 2016 Nat. Mater. 16 182

    [28]

    Basov D N, Averitt R D, Hsieh D 2017 Nat. Mater. 16 1077Google Scholar

    [29]

    Basov D N, Fogler M M, de Abajo F J G 2016 Science 354 6309

    [30]

    Betzig E, Trautman J K, Harris T D, Weiner J S, Kostelak R L 1991 Science 251 1468Google Scholar

    [31]

    Betzig E, Trautman J K 1992 Science 257 189Google Scholar

    [32]

    Gao F, Li X, Wang J, Fu Y 2014 Ultramicroscopy 142 10Google Scholar

    [33]

    Hillenbrand R, Knoll B, Keilmann F 2001 J. Microsc. 202 77Google Scholar

    [34]

    Labardi M, Patane S, Allegrini M 2000 Appl. Phys. Lett. 77 621Google Scholar

    [35]

    Burresi M, Engelen R, Opheij A, van Oosten D, Mori D, Baba T, Kuipers L 2009 Phys. Rev. Lett. 102 033902Google Scholar

    [36]

    Feber B L, Rotenberg N, Beggs D M, Kuipers L 2013 Nat. Photonics 8 43

    [37]

    Kim Z H, Leone S R 2008 Opt. Express 16 1733Google Scholar

    [38]

    Kim D, Heo J, Ahn S, Han S W, Yun W S, Kim Z H 2009 Nano Lett. 9 3619Google Scholar

    [39]

    Habteyes T G, Dhuey S, Kiesow K I, Vold A 2013 Opt. Express 21 21607Google Scholar

    [40]

    Sadiq D, Shirdel J, Lee J S, Selishcheva E, Park N, Lienau C 2011 Nano Lett. 11 1609Google Scholar

    [41]

    Ropers C, Neacsu C C, Elsaesser T, Albrecht M, Raschke M B, Lienau C 2007 Nano Lett. 7 2784Google Scholar

    [42]

    Ocelic N, Huber A J, Hillenbrand R 2006 Appl. Phys. Lett. 89 101124Google Scholar

    [43]

    Stefanon I, Blaize S, Bruyant A, Aubert S, Lerondel G, Bachelot R, Royer P 2005 Opt. Express 13 5553Google Scholar

    [44]

    Novotny L, Bian R X, Xie X S 1997 Phys. Rev. Lett. 79 645Google Scholar

    [45]

    Noguez C 2007 J. Phys. Chem. C 111 3806Google Scholar

    [46]

    Meng L, Yang Z, Chen J, Sun M 2015 Sci. Rep. 5 9240Google Scholar

    [47]

    García-Etxarri A, Romero I, de Abajo F J G, Hillenbrand R, Aizpurua J 2009 Phys. Rev. B 79

    [48]

    Rang M, Jones A C, Zhou F, Li Z, Wiley B J, Xia Y, Raschke M B 2008 Nano Lett. 8 3357Google Scholar

    [49]

    Esteban R, Vogelgesang R, Dorfmuller J, Dmitriev A, Rockstuhl C, Etrich C, Kern K 2008 Nano Lett. 8 3155Google Scholar

    [50]

    Neuman T, Alonso-González P, Garcia-Etxarri A, Schnell M, Hillenbrand R, Aizpurua J 2015 Laser Photonics Rev. 9 637Google Scholar

    [51]

    Burresi M, van Oosten D, Kampfrath T, Schoenmaker H, Heideman R, Leinse A, Kuipers L 2009 Science 326 550Google Scholar

    [52]

    Ahn J, Kihm H W, Kihm J E, Kim D S, Lee K 2009 Opt. Express 17 2280Google Scholar

    [53]

    Wei H, Zhang S, Tian X, Xu H 2013 Proc. Natl. Acad. Sci. U.S.A. 110 4494Google Scholar

    [54]

    Zhang S, Wei H, Bao K, Hakanson U, Halas N J, Nordlander P, Xu H 2011 Phys. Rev. Lett. 107 096801Google Scholar

    [55]

    Koppens F H L, Chang D, de Abajo F J G 2011 Nano Lett. 11 3370Google Scholar

    [56]

    Dai S, Fei Z, Ma Q, Rodin A S, Wagner M, McLeod A S, Liu M K, Gannett W, Regan W, Watanabe K, Taniguchi T, Thiemens M, Dominguez G, Castro Neto A H, Zettl A, Keilmann F, Jarillo-Herrero P, Fogler M M, Basov D N 2014 Science 343 1125Google Scholar

    [57]

    Sanvitto D, Kéna-Cohen S 2016 Nat. Mater. 15 1061Google Scholar

    [58]

    Woessner A, Parret R, Davydovskaya D, Gao Y, Wu J S, Lundeberg M B, Nanot S, Alonso-González P, Watanabe K, Taniguchi T, Hillenbrand R, Fogler M M, Hone J, Koppens F H L 2017 npj 2D Mater. Appl. 1 25Google Scholar

    [59]

    Kumar A, Low T, Fung K H, Avouris P, Fang N X 2015 Nano Lett. 15 3172Google Scholar

    [60]

    Woessner A, Misra A, Cao Y, Torre I, Mishchenko A, Lundeberg M B, Watanabe K, Taniguchi T, Polini M, Novoselov K S, Koppens F H L 2017 ACS Photonics 4 3012Google Scholar

    [61]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197Google Scholar

    [62]

    Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M, Geim A K 2008 Science 320 1308Google Scholar

    [63]

    Guo Q, Li C, Deng B, Yuan S, Guinea F, Xia F 2017 ACS Photonics 4 2989Google Scholar

    [64]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [65]

    Yan H, Low T, Zhu W, Wu Y, Freitag M, Li X, Guinea F, Avouris P, Xia F 2013 Nat. Photonics 7 394Google Scholar

    [66]

    Yan H, Li X, Chandra B, Tulevski G, Wu Y, Freitag M, Zhu W, Avouris P, Xia F 2012 Nat. Nanotechnol. 7 330Google Scholar

    [67]

    Fei Z, Andreev G O, Bao W, Zhang L M, Wang C, Stewart M K, Zhao Z, Dominguez G, Thiemens M, Fogler M M, Tauber M J, Castro-Neto A H, Lau C N, Keilmann F, Basov D N 2011 Nano Lett. 11 4701Google Scholar

    [68]

    Chen J, Badioli M, Alonso-González P, Thongrattanasiri S, Huth F, Osmond J, Spasenović M, Centeno A, Pesquera A, Godignon P, Zurutuza Elorza A, Camara N, de Abajo F J G, Hillenbrand R, Koppens F H L 2012 Nature 487 77Google Scholar

    [69]

    Fei Z, Rodin A S, Andreev G O, Bao W, McLeod A S, Wagner M, Zhang L M, Zhao Z, Thiemens M, Dominguez G, Fogler M M, Neto A H C, Lau C N, Keilmann F, Basov D N 2012 Nature 487 82Google Scholar

    [70]

    Ni G X, McLeod A S, Sun Z, Wang L, Xiong L, Post K W, Sunku S S, Jiang B Y, Hone J, Dean C R, Fogler M M, Basov D N 2018 Nature 557 530Google Scholar

    [71]

    Fei Z, Foley J J, Gannett W, Liu M K, Dai S, Ni G X, Zettl A, Fogler M M, Wiederrecht G P, Gray S K, Basov D N 2016 Nano Lett. 16 7842Google Scholar

    [72]

    Hu F, Luan Y, Fei Z, Palubski I Z, Goldflam M D, Dai S, Wu J S, Post K W, Janssen G, Fogler M M, Basov D N 2017 Nano Lett. 17 5423Google Scholar

    [73]

    Duan J, Chen R, Chen J 2017 Chin. Phys. B 26 117802Google Scholar

    [74]

    Nikitin A, Alonso-González P, Vélez S, Mastel S, Centeno A, Pesquera A, Zurutuza A, Casanova F, Hueso L, Koppens F 2016 Nat. Photonics 10 239Google Scholar

    [75]

    Fei Z, Goldflam M D, Wu J S, Dai S, Wagner M, McLeod A S, Liu M K, Post K W, Zhu S, Janssen G C A M, Fogler M M, Basov D N 2015 Nano Lett. 15 8271Google Scholar

    [76]

    Bezares F J, de Sanctis A, Saavedra J R M, Woessner A, Alonso-Gonzalez P, Amenabar I, Chen J, Bointon T, Dai S, Fogler M M, Basov D N, Hillenbrand R, Craciun M F, de Abajo F J G, Russo S, Koppens F H L 2017 Nano Lett. 17 5908Google Scholar

    [77]

    Fei Z, Iwinski E G, Ni G X, Zhang L M, Bao W, Rodin A S, Lee Y, Wagner M, Liu M K, Dai S, Goldflam M D, Thiemens M, Keilmann F, Lau C N, Castro-Neto A H, Fogler M M, Basov D N 2015 Nano Lett. 15 4973Google Scholar

    [78]

    Woessner A, Gao Y, Torre I, Lundeberg M B, Tan C, Watanabe K, Taniguchi T, Hillenbrand R, Hone J, Polini M, Koppens F H L 2017 Nat. Photonics 11 421Google Scholar

    [79]

    Dai S, Ma Q, Liu M K, Andersen T, Fei Z, Goldflam M D, Wagner M, Watanabe K, Taniguchi T, Thiemens M, Keilmann F, Janssen G C, Zhu S E, Jarillo-Herrero P, Fogler M M, Basov D N 2015 Nat. Nanotechnol. 10 682Google Scholar

    [80]

    Caldwell J D, Kretinin A V, Chen Y, Giannini V, Fogler M M, Francescato Y, Ellis C T, Tischler J G, Woods C R, Giles A J, Hong M, Watanabe K, Taniguchi T, Maier S A, Novoselov K S 2014 Nat. Commun. 5 5221Google Scholar

    [81]

    Liu Z, Lee H, Xiong Y, Sun C, Zhang X 2007 Science 315 1686Google Scholar

    [82]

    Yao J, Liu Z, Liu Y, Wang Y, Sun C, Bartal G, Stacy A M, Zhang X 2008 Science 321 930Google Scholar

    [83]

    Yang X, Yao J, Rho J, Yin X, Zhang X 2012 Nat. Photonics 6 450Google Scholar

    [84]

    Hoffman A J, Alekseyev L, Howard S S, Franz K J, Wasserman D, Podolskiy V A, Narimanov E E, Sivco D L, Gmachl C 2007 Nat. Mater. 6 946Google Scholar

    [85]

    Kim J, Drachev V P, Jacob Z, Naik G V, Boltasseva A, Narimanov E E, Shalaev V M 2012 Opt. Express 20 8100Google Scholar

    [86]

    High A A, Devlin R C, Dibos A, Polking M, Wild D S, Perczel J, de Leon N P, Lukin M D, Park H 2015 Nature 522 192Google Scholar

    [87]

    Liu Y, Zhang X 2013 Appl. Phys. Lett. 103 141101Google Scholar

    [88]

    Li P, Dolado I, Alfaro-Mozaz F J, Casanova F, Hueso L E, Liu S, Edgar J H, Nikitin A Y, Velez S, Hillenbrand R 2018 Science 359 892Google Scholar

    [89]

    Ma W, Gonzalez P A, Li S, Nikitin A Y, Yuan J, Sanchez J M, Gutierrez J T, Amenabar I, Li P, Velez S, Tollan C, Dai Z, Zhang Y, Sriram S, Zadeh K K, Lee S T, Hillenbrand R, Bao Q 2018 Nature 562 557Google Scholar

    [90]

    Li P, Dolado I, Alfaro-Mozaz F J, Nikitin A Y, Casanova F, Hueso L E, Velez S, Hillenbrand R 2017 Nano Lett. 17 228Google Scholar

    [91]

    Dai S, Tymchenko M, Yang Y, Ma Q, Pita-Vidal M, Watanabe K, Taniguchi T, Jarillo-Herrero P, Fogler M, Alù A 2017 Adv. Mater. 30 1706358

    [92]

    Li P, Lewin M, Kretinin A V, Caldwell J D, Novoselov K S, Taniguchi T, Watanabe K, Gaussmann F, Taubner T 2015 Nat. Commun. 6 7507Google Scholar

    [93]

    Dai S, Ma Q, Andersen T, McLeod A S, Fei Z, Liu M K, Wagner M, Watanabe K, Taniguchi T, Thiemens M, Keilmann F, Jarillo-Herrero P, Fogler M M, Basov D N 2015 Nat. Commun. 6 6963Google Scholar

    [94]

    Alfaro-Mozaz F J, Alonso-Gonzalez P, Velez S, Dolado I, Autore M, Mastel S, Casanova F, Hueso L E, Li P, Nikitin A Y, Hillenbrand R 2017 Nat. Commun. 8 15624Google Scholar

    [95]

    Hu D, Yang X, Li C, Liu R, Yao Z, Hu H, Corder S N G, Chen J, Sun Z, Liu M, Dai Q 2017 Nat. Commun. 8 1471Google Scholar

    [96]

    Fei Z, Scott M E, Gosztola D J, Foley J J, Yan J, Mandrus D G, Wen H, Zhou P, Zhang D W, Sun Y, Guest J R, Gray S K, Bao W, Wiederrecht G P, Xu X 2016 Phys. Rev. B 94 081402Google Scholar

    [97]

    Hu F, Luan Y, Scott M E, Yan J, Mandrus D G, Xu X, Fei Z 2017 Nat. Photonics 11 356Google Scholar

    [98]

    Woessner A, Lundeberg M B, Gao Y, Principi A, Alonso-Gonzalez P, Carrega M, Watanabe K, Taniguchi T, Vignale G, Polini M, Hone J, Hillenbrand R, Koppens F H 2015 Nat. Mater. 14 421Google Scholar

    [99]

    Yang X, Zhai F, Hu H, Hu D, Liu R, Zhang S, Sun M, Sun Z, Chen J, Dai Q 2016 Adv. Mater. 28 2931Google Scholar

    [100]

    Yoxall E, Schnell M, Nikitin A Y, Txoperena O, Woessner A, Lundeberg M B, Casanova F, Hueso L E, Koppens F H L, Hillenbrand R 2015 Nat. Photonics 9 674Google Scholar

    [101]

    Eisele M, Cocker T L, Huber M A, Plankl M, Viti L, Ercolani D, Sorba L, Vitiello M S, Huber R 2014 Nat. Photonics 8 841Google Scholar

    [102]

    Huber M A, Plankl M, Eisele M, Marvel R E, Sandner F, Korn T, Schuller C, Haglund R F, Huber R, Cocker T L 2016 Nano Lett. 16 1421Google Scholar

    [103]

    Wagner M, Fei Z, McLeod A S, Rodin A S, Bao W, Iwinski E G, Zhao Z, Goldflam M, Liu M, Dominguez G, Thiemens M, Fogler M M, Castro Neto A H, Lau C N, Amarie S, Keilmann F, Basov D N 2014 Nano Lett. 14 894Google Scholar

    [104]

    Ni G X, Wang L, Goldflam M D, Wagner M, Fei Z, McLeod A S, Liu M K, Keilmann F, Özyilmaz B, Castro Neto A H, Hone J, Fogler M M, Basov D N 2016 Nat. Photonics 10 244Google Scholar

    [105]

    Hu H, Yang X, Zhai F, Hu D, Liu R, Liu K, Sun Z, Dai Q 2016 Nat. Commun. 7 12334Google Scholar

    [106]

    Amenabar I, Poly S, Goikoetxea M, Nuansing W, Lasch P, Hillenbrand R 2017 Nat. Commun. 8 14402Google Scholar

    [107]

    Amenabar I, Poly S, Nuansing W, Hubrich E H, Govyadinov A A, Huth F, Krutokhvostov R, Zhang L, Knez M, Heberle J, Bittner A M, Hillenbrand R 2013 Nat. Commun. 4 2890Google Scholar

    [108]

    Dominguez G, McLeod A S, Gainsforth Z, Kelly P, Bechtel H A, Keilmann F, Westphal A, Thiemens M, Basov D N 2014 Nat. Commun. 5 5445Google Scholar

    [109]

    Westermeier C, Cernescu A, Amarie S, Liewald C, Keilmann F, Nickel B 2014 Nat. Commun. 5 4101Google Scholar

    [110]

    Lucas I T, McLeod A S, Syzdek J S, Middlemiss D S, Grey C P, Basov D N, Kostecki R 2015 Nano Lett. 15 1Google Scholar

    [111]

    Huth F, Govyadinov A, Amarie S, Nuansing W, Keilmann F, Hillenbrand R 2012 Nano Lett. 12 3973Google Scholar

    [112]

    Alonso-González P, Nikitin A Y, Golmar F, Centeno A, Pesquera A, Vélez S, Chen J, Navickaite G, Koppens F, Zurutuza A 2014 Science 344 1369Google Scholar

    [113]

    Duan J, Chen R, Li J, Jin K, Sun Z, Chen J 2017 Adv. Mater. 29 1702494Google Scholar

    [114]

    Zhao Y, Tang Y, Chen Y 2012 ACS Nano 6 6912Google Scholar

    [115]

    Nudnova M M, Sigg J, Wallimann P, Zenobi R 2015 Anal. Chem. 87 1323Google Scholar

    [116]

    Lee K G, Kihm H W, Kihm J E, Choi W J, Kim H, Ropers C, Park D J, Yoon Y C, Choi S B, Woo D H, Kim J, Lee B, Park Q H, Lienau C, Kim D S 2007 Nat. Photonics 1 53Google Scholar

    [117]

    Rotenberg N, Kuipers L 2014 Nat. Photonics 8 919Google Scholar

  • [1] 张洋, 张志豪, 王宇剑, 薛晓兰, 陈令修, 石礼伟. 偏振调制扫描光学显微镜方法. 物理学报, 2024, 73(15): 157801. doi: 10.7498/aps.73.20240688
    [2] 周怡汐, 李志鹏, 陈佳宁. 基于近场光学成像技术的极化激元学研究进展. 物理学报, 2024, 73(8): 080701. doi: 10.7498/aps.73.20232001
    [3] 余泽浩, 张力发, 吴靖, 赵云山. 二维层状热电材料研究进展. 物理学报, 2023, 72(5): 057301. doi: 10.7498/aps.72.20222095
    [4] 刘宁, 刘肯, 朱志宏. 集成二维材料非线性光学特性研究进展. 物理学报, 2023, 72(17): 174202. doi: 10.7498/aps.72.20230729
    [5] 徐琨淇, 胡成, 沈沛约, 马赛群, 周先亮, 梁齐, 史志文. 叠层/转角二维原子晶体结构与极化激元的近场光学表征. 物理学报, 2023, 72(2): 027102. doi: 10.7498/aps.72.20222145
    [6] 马赛群, 邓奥林, 吕博赛, 胡成, 史志文. 低维材料极化激元及其耦合特性. 物理学报, 2022, 71(12): 127104. doi: 10.7498/aps.71.20220272
    [7] 廖俊懿, 吴娟霞, 党春鹤, 谢黎明. 二维材料的转移方法. 物理学报, 2021, 70(2): 028201. doi: 10.7498/aps.70.20201425
    [8] 黄申洋, 张国伟, 汪凡洁, 雷雨晨, 晏湖根. 二维黑磷的光学性质. 物理学报, 2021, 70(2): 027802. doi: 10.7498/aps.70.20201497
    [9] 徐依全, 王聪. 基于二维材料的全光器件. 物理学报, 2020, 69(18): 184216. doi: 10.7498/aps.69.20200654
    [10] 吴祥水, 汤雯婷, 徐象繁. 二维材料热传导研究进展. 物理学报, 2020, 69(19): 196602. doi: 10.7498/aps.69.20200709
    [11] 吴晗, 吴竞宇, 陈卓. 基于超表面的Tamm等离激元与激子的强耦合作用. 物理学报, 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [12] 岑贵, 张志斌, 吕新宇, 刘开辉, 李志强. 金属衬底上石墨烯的红外近场光学. 物理学报, 2020, 69(2): 027803. doi: 10.7498/aps.69.20191598
    [13] 吕新宇, 李志强. 石墨烯莫尔超晶格体系的拓扑性质及光学研究进展. 物理学报, 2019, 68(22): 220303. doi: 10.7498/aps.68.20191317
    [14] 焦悦, 陶海岩, 季博宇, 宋晓伟, 林景全. 用于飞秒激光纳米加工的TiO2粒子阵列诱导多种基底表面近场增强. 物理学报, 2017, 66(14): 144203. doi: 10.7498/aps.66.144203
    [15] 张学进, 陆延青, 陈延峰, 朱永元, 祝世宁. 太赫兹表面极化激元. 物理学报, 2017, 66(14): 148705. doi: 10.7498/aps.66.148705
    [16] 张利伟, 许静平, 赫丽, 乔文涛. 含单负材料三明治结构的电磁隧穿特性. 物理学报, 2010, 59(11): 7863-7868. doi: 10.7498/aps.59.7863
    [17] 侯碧辉, 菅彦珍, 王雅丽, 张尔攀, 傅佩珍, 汪力, 钟任斌. PbB4O7 晶体的太赫兹光谱和软光学声子. 物理学报, 2010, 59(7): 4640-4645. doi: 10.7498/aps.59.4640
    [18] 徐耿钊, 梁 琥, 白永强, 刘纪美, 朱 星. 低温近场光学显微术对InGaN/GaN多量子阱电致发光温度特性的研究. 物理学报, 2005, 54(11): 5344-5349. doi: 10.7498/aps.54.5344
    [19] 王 潜, 徐金强, 武 锦, 李永贵. 利用扫描近场红外显微镜对化学样品组分进行成像研究. 物理学报, 2003, 52(2): 298-301. doi: 10.7498/aps.52.298
    [20] 王子洋, 李 勤, 赵 钧, 郭继华. 透射式扫描近场光学显微镜探针光场分布及其受激荧光分子光场分布研究. 物理学报, 2000, 49(10): 1959-1964. doi: 10.7498/aps.49.1959
计量
  • 文章访问数:  15634
  • PDF下载量:  680
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-11
  • 修回日期:  2019-04-10
  • 上网日期:  2019-06-01
  • 刊出日期:  2019-06-05

/

返回文章
返回