-
超声分子束的膨胀和输运过程是一个较为复杂的分子动力学问题, 相关的参数较难准确计算. 本文基于麦克风测量方法研究了多种气体(H2, D2, N2, Ar, He, CH4)超声分子束在自由膨胀过程中的平均速度及其沿出射方向在远域空间(喷射距离/喷嘴直径>310)的演变情况, 获得了较大范围内分子束平均速度分布随气体种类、温度、气压和膨胀距离的变化规律. 结果表明, H2, D2, He分子束的速度分别只占各自理论极限速度的54%, 60%和68%, 且在远域空间速度下降较快. 而CH4, N2和Ar分子束的速度与其各自的极限速度十分接近, 占比分别为85%, 92%和99%, 且在远域空间速度下降较缓.The expansion and transportation of supersonic molecular beams is a complex process of molecular dynamics, and the related parameters are difficult to calculate accurately. Currently there is no rigorous theory to accurately predict the beam expansion process under specific valve conditions, and current researches are less concerned with the spatial evolution of supersonic molecular beam characteristics over long distance. In addition, time-of-flight mass spectrometry is not well suitable for supersonic molecular beam injection in the field of magnetic confinement fusion. Therefore, based on microphone measurements, the average velocities of several supersonic molecular beams (H2, D2, N2, Ar, He, CH4) in the process of free expansion and their evolutions in the far-field space (flight distance/nozzle diameter > 310) are studied in this work. The variations of velocity distribution with gas type, temperature, pressure and expansion distance are obtained. The results show that the velocities of H2, D2 and He beams account for only 54%, 60% and 68% of their ideal limit velocities, respectively, and their velocities decrease rapidly in the far-field space. The velocities of CH4, N2 and Ar beams are very close to their limit velocities, accounting for 85%, 92% and 99% respectively, and their velocities decrease slowly in the far-field space. And the results show that the velocities of the H2 and D2 beams increase with the source pressure, while the velocities of the other four molecular beams decrease slightly with the source pressure. And it is found that the velocity of supersonic beam without skimmer is negatively correlated with the square root of the molecular mass. For the effect of temperature on velocity, the results show that the velocities of H2 and D2 beams increase with the source temperature but are smaller than their limit velocities at given temperature, and the difference is larger for higher temperature. The results of this experiment provide basic data for controlling the parameters of the supersonic molecular beam by adjusting the temperature and pressure of the gas source, which will contribute to the application of supersonic molecular beams in fusion reactor fueling technology. And this study will contribute to further exploration of the evolution of supersonic molecular beam properties in the far-field space.
-
Keywords:
- microphone /
- supersonic molecular beam /
- free expansion /
- velocity distribution
[1] Dunning F B, Hulet R G 1996 Atomic, Molecular, and Optical Physics: Atoms and Molecules (London: Academic Press) Volume 29B, p435
[2] 赵健华, 刘晓敏, 刘培启, 胡大鹏 2015 化工机械 42 59
Zhao J H, Liu X M, Liu P Q, Hu D P 2015 Chem. Mach. 42 59
[3] Farias D, Rieder K 1998 Rep. Prog. Phys. 61 1575Google Scholar
[4] Smalley R E, Ramakrishna B L, Levy D H, Wharton L 1974 J. Chem. Phys. 61 4363Google Scholar
[5] 姚良骅, 冯北滨, 冯震, 董贾福, 郦文忠, 徐德明, 洪文玉 2002 物理学报 51 596
Yao L H, Feng B B, Feng Z, Dong J F, Li W Z, Xu D M, Hong W Y 2002 Acta Phys. Sin. 51 596
[6] 姚良骅, 冯北滨, 陈程远, 冯震, 李伟, 焦一鸣 2008 物理学报 57 4159
Yao L H, Feng B B, Chen C Y, Feng Z, Li W, Jiao Y M 2008 Acta Phys. Sin. 57 4159
[7] Soukhanovskii V A, Kugel H W, Kaita R, Majeski R, Roquemore A L 2004 Rev. Sci. Instrum. 75 4320Google Scholar
[8] Ekinci Y, Knuth E L, Toennies J P 2006 J. Chem. Phys. 125 133409Google Scholar
[9] Christen W, Krause T, Rademann K 2007 Rev. Sci. Instrum. 78 73106Google Scholar
[10] 吴雪科, 孙小琴, 刘殷学, 李会东, 周雨林, 王占辉, 冯灏 2017 物理学报 66 195201
Wu X K, Sun X Q, Liu Y X, Li H D, Zhou Y L, Wang Z H, Feng H 2017 Acta Phys. Sin. 66 195201
[11] 董贾福, 唐年益, 李伟, 罗俊林, 郭干诚, 钟云泽, 刘仪, 傅炳忠, 姚良骅, 冯北滨, 秦运文 2002 物理学报 51 2074
Dong J F, Tang N Y, Li W, Luo J L, Guo G C, Zhong Y Z, Liu Y, Fu B Z, Yao L H, Feng B B, Qin Y W 2002 Acta Phys. Sin. 51 2074
[12] Wang Z H, Xu X Q, Xia T Y, Rognlien T D 2014 Nucl. Fusion 54 43019Google Scholar
[13] Zhou Y L, Wang Z H, Xu M, Wang Q, Nie L 2016 Chin. Phys. B 25 106601
[14] Zhou Y L, Wang Z H, Xu X Q, Li H D, Feng H, Sun W G 2015 Phys. Plasmas 22 12503Google Scholar
[15] Hagena O F, Varma A K 1968 Rev. Sci. Instrum. 39 47Google Scholar
[16] Haberland H, Buck U, Tolle M 1985 Rev. Sci. Instrum. 56 1712Google Scholar
[17] Christen W, Krause T, Kobin B, Rademann K 2011 J. Phys. Chem. A 115 6997Google Scholar
[18] Christen W 2013 J. Chem. Phys. 139 24202Google Scholar
[19] Irie T, Asunobu T Y, Kashimura H 2003 J. Therm. Sci. 12 132Google Scholar
[20] Tejeda G, Mate B, Fernandez-Sanchez J M, Montero S 1996 Phys. Rev. Lett. 76 34Google Scholar
[21] Teshima K, Sommerfeld M 1987 Exp. Fluids 5 197Google Scholar
[22] Belan M A D P 2004 Astrophys. Space Sci. 293 225Google Scholar
[23] Even U 2014 Adv. Chem. 2014 636042
[24] Wei G, Zhu R, Cheng T, Zhao F 2016 J. Iron Steel Res. Int. 23 997Google Scholar
[25] Christen W, Rademann K, Even U 2010 J. Phys. Chem. A 114 11189Google Scholar
[26] Kornilov O, Toennies J P 2009 Int. J. Mass Spectrom. 280 209Google Scholar
[27] Reisinger T, Greve M M, Eder S D, Bracco G, Holst B 2012 Phys. Rev. A 86 043804Google Scholar
[28] Christen W, Rademann K 2009 Phys. Scripta 80 48127Google Scholar
[29] He L, Yi S, Zhao Y, Tian L, Chen Z 2011 Sci. China: Phys. Mech. Astron. 54 1702Google Scholar
[30] Kerhervé F, Jordan P, Gervais Y, Valière J C, Braud P 2004 Exp. Fluids 37 419Google Scholar
[31] Liu D, Han J F, Chen Z Y, Bai L X, Zhou J X 2016 Rev. Sci. Instrum. 87 123504Google Scholar
[32] Chen Z, Li M, Zhou M, Liu D, Qu G, Wang Y, Han J 2019 J. Fusion Energ. 38 228
[33] Han J, Yang C, Miao J, Fu P, Luo X, Shi M 2010 J. Appl. Phys. 108 64327Google Scholar
[34] Liepmann H W, Roshko A 2001 Elements of Gasdynamics ( New York: Courier Corporation)
[35] 赵大为 2009 硕士学位论文(成都: 电子科技大学)
Zhao D W 2009 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China) (in Chinese)
[36] Eder S D, Salvador Palau A, Kaltenbacher T, Bracco G, Holst B 2018 Rev. Sci. Instrum. 89 113301Google Scholar
[37] Hagena O F, Obert W 1972 J. Chem. Phys. 56 1793Google Scholar
[38] Smith R A, Ditmire T, Tisch J W G 1998 Rev. Sci. Instrum. 69 3798Google Scholar
[39] Akiyoshi M, Junichi M, Tsuchiya H 2010 J. Plasma Fusion Res. SERIES 9 79
-
图 5 六种超声分子束的速度与分子量之间的关系 实心方形■代表在50 bar源压强下速度的测量结果, 空心圆○代表估算的极限速度结果
Fig. 5. The relationship between the velocities of the six supersonic molecular beams and their molecular weights. The solid square ■ represents the measured velocity at 50 bar source pressure, and the hollow circle ○ represents the estimated limit velocity.
表 1 H2, D2, N2, Ar, He和CH4的实验拟合速度和各自极限速度的对比
Table 1. Comparison of the experimental fitting velocities and the limit velocities of H2, D2, N2, Ar, He and CH4.
Gas H2 D2 N2 Ar He CH4 T/℃ 22 26 24 26 24 24 vfit/m·s–1 1392—1572 1083—1234 609—727 497—556 1048—1174 847—984 vlim/m·s–1 2931 2086 786 557 1757 1157 -
[1] Dunning F B, Hulet R G 1996 Atomic, Molecular, and Optical Physics: Atoms and Molecules (London: Academic Press) Volume 29B, p435
[2] 赵健华, 刘晓敏, 刘培启, 胡大鹏 2015 化工机械 42 59
Zhao J H, Liu X M, Liu P Q, Hu D P 2015 Chem. Mach. 42 59
[3] Farias D, Rieder K 1998 Rep. Prog. Phys. 61 1575Google Scholar
[4] Smalley R E, Ramakrishna B L, Levy D H, Wharton L 1974 J. Chem. Phys. 61 4363Google Scholar
[5] 姚良骅, 冯北滨, 冯震, 董贾福, 郦文忠, 徐德明, 洪文玉 2002 物理学报 51 596
Yao L H, Feng B B, Feng Z, Dong J F, Li W Z, Xu D M, Hong W Y 2002 Acta Phys. Sin. 51 596
[6] 姚良骅, 冯北滨, 陈程远, 冯震, 李伟, 焦一鸣 2008 物理学报 57 4159
Yao L H, Feng B B, Chen C Y, Feng Z, Li W, Jiao Y M 2008 Acta Phys. Sin. 57 4159
[7] Soukhanovskii V A, Kugel H W, Kaita R, Majeski R, Roquemore A L 2004 Rev. Sci. Instrum. 75 4320Google Scholar
[8] Ekinci Y, Knuth E L, Toennies J P 2006 J. Chem. Phys. 125 133409Google Scholar
[9] Christen W, Krause T, Rademann K 2007 Rev. Sci. Instrum. 78 73106Google Scholar
[10] 吴雪科, 孙小琴, 刘殷学, 李会东, 周雨林, 王占辉, 冯灏 2017 物理学报 66 195201
Wu X K, Sun X Q, Liu Y X, Li H D, Zhou Y L, Wang Z H, Feng H 2017 Acta Phys. Sin. 66 195201
[11] 董贾福, 唐年益, 李伟, 罗俊林, 郭干诚, 钟云泽, 刘仪, 傅炳忠, 姚良骅, 冯北滨, 秦运文 2002 物理学报 51 2074
Dong J F, Tang N Y, Li W, Luo J L, Guo G C, Zhong Y Z, Liu Y, Fu B Z, Yao L H, Feng B B, Qin Y W 2002 Acta Phys. Sin. 51 2074
[12] Wang Z H, Xu X Q, Xia T Y, Rognlien T D 2014 Nucl. Fusion 54 43019Google Scholar
[13] Zhou Y L, Wang Z H, Xu M, Wang Q, Nie L 2016 Chin. Phys. B 25 106601
[14] Zhou Y L, Wang Z H, Xu X Q, Li H D, Feng H, Sun W G 2015 Phys. Plasmas 22 12503Google Scholar
[15] Hagena O F, Varma A K 1968 Rev. Sci. Instrum. 39 47Google Scholar
[16] Haberland H, Buck U, Tolle M 1985 Rev. Sci. Instrum. 56 1712Google Scholar
[17] Christen W, Krause T, Kobin B, Rademann K 2011 J. Phys. Chem. A 115 6997Google Scholar
[18] Christen W 2013 J. Chem. Phys. 139 24202Google Scholar
[19] Irie T, Asunobu T Y, Kashimura H 2003 J. Therm. Sci. 12 132Google Scholar
[20] Tejeda G, Mate B, Fernandez-Sanchez J M, Montero S 1996 Phys. Rev. Lett. 76 34Google Scholar
[21] Teshima K, Sommerfeld M 1987 Exp. Fluids 5 197Google Scholar
[22] Belan M A D P 2004 Astrophys. Space Sci. 293 225Google Scholar
[23] Even U 2014 Adv. Chem. 2014 636042
[24] Wei G, Zhu R, Cheng T, Zhao F 2016 J. Iron Steel Res. Int. 23 997Google Scholar
[25] Christen W, Rademann K, Even U 2010 J. Phys. Chem. A 114 11189Google Scholar
[26] Kornilov O, Toennies J P 2009 Int. J. Mass Spectrom. 280 209Google Scholar
[27] Reisinger T, Greve M M, Eder S D, Bracco G, Holst B 2012 Phys. Rev. A 86 043804Google Scholar
[28] Christen W, Rademann K 2009 Phys. Scripta 80 48127Google Scholar
[29] He L, Yi S, Zhao Y, Tian L, Chen Z 2011 Sci. China: Phys. Mech. Astron. 54 1702Google Scholar
[30] Kerhervé F, Jordan P, Gervais Y, Valière J C, Braud P 2004 Exp. Fluids 37 419Google Scholar
[31] Liu D, Han J F, Chen Z Y, Bai L X, Zhou J X 2016 Rev. Sci. Instrum. 87 123504Google Scholar
[32] Chen Z, Li M, Zhou M, Liu D, Qu G, Wang Y, Han J 2019 J. Fusion Energ. 38 228
[33] Han J, Yang C, Miao J, Fu P, Luo X, Shi M 2010 J. Appl. Phys. 108 64327Google Scholar
[34] Liepmann H W, Roshko A 2001 Elements of Gasdynamics ( New York: Courier Corporation)
[35] 赵大为 2009 硕士学位论文(成都: 电子科技大学)
Zhao D W 2009 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China) (in Chinese)
[36] Eder S D, Salvador Palau A, Kaltenbacher T, Bracco G, Holst B 2018 Rev. Sci. Instrum. 89 113301Google Scholar
[37] Hagena O F, Obert W 1972 J. Chem. Phys. 56 1793Google Scholar
[38] Smith R A, Ditmire T, Tisch J W G 1998 Rev. Sci. Instrum. 69 3798Google Scholar
[39] Akiyoshi M, Junichi M, Tsuchiya H 2010 J. Plasma Fusion Res. SERIES 9 79
计量
- 文章访问数: 8223
- PDF下载量: 81
- 被引次数: 0