搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ga, Ge, As掺杂对锂离子电池正极材料Li2CoSiO4的电化学特性和电子结构影响的第一性原理研究

闫小童 侯育花 郑寿红 黄有林 陶小马

引用本文:
Citation:

Ga, Ge, As掺杂对锂离子电池正极材料Li2CoSiO4的电化学特性和电子结构影响的第一性原理研究

闫小童, 侯育花, 郑寿红, 黄有林, 陶小马

First-principles study of effects of Ga, Ge and As doping on electrochemical properties and electronic structure of Li2CoSiO4 serving as cathode material for Li-ion batteries

Yan Xiao-Tong, Hou Yu-Hua, Zheng Shou-Hong, Huang You-Lin, Tao Xiao-Ma
PDF
HTML
导出引用
  • 由于硅酸盐类正极材料Li2CoSiO4具有较高的理论放电容量而受到广泛关注, 但其较高的放电平台使得现有电解液无法满足使用要求而限制了其进一步的应用和发展. 本文运用基于密度泛函理论框架下的第一性原理计算方法, 结合Hubbard修正的广义梯度近似(GGA + U), 系统地研究了Ga, Ge和As掺杂对Li2CoSiO4晶体结构、电化学特性和电子结构的影响. 计算结果表明Ga, Ge和As掺杂改善了体系脱锂前后的体积变化, 有利于提高Li2CoSiO4材料的循环稳定性. 此外, Ga, Ge和As掺杂均有效降低了单位公式内第一个Li+脱嵌时的理论平均脱嵌电压, 同时掺杂Ge和As也可有效降低单位公式内第二个Li+脱嵌时的理论平均脱嵌电压. 态密度图结果表明Co2+对其3d轨道电子具有强烈的束缚作用, 导致体系在脱锂过程中Co2+难以失去电子用以参与电荷补偿. 而Ga, Ge和As掺杂有效地参与了体系在脱锂过程的电荷补偿, 这是导致体系理论平均脱嵌电压降低的主要原因.
    Silicate cathode material Li2CoSiO4 has received wide attention due to high theoretical capacity. However, the high discharge makes the existing electrolyte unable to satisfy the requirements of its use, and the poor cyclic stability limits its further application and development. The high discharge and cycle stability of Li2CoSiO4 cathode material can be improved by doping corresponding elements. The effects of non-transition high-valent elements of Ga, Ge and As doping on structural, electrochemical and electronic properties of Li-ion battery cathode material Li2CoSiO4 are systematically studied by the first-principles calculations based on density functional theory within the generalized gradient approximation with Hubbard corrections (GGA + U). The calculation results show that the maximum expansion range of the unit cell volume of Li2CoSiO4 cathode material during lithium ion removal is 3.5%. However, the Ga, Ge and As doping reduce the variation range of unit cell volume during the delithiation of the system, which is beneficial to the improvement of the cycle stability of Li2CoSiO4 material. Furthermore, the Ga, Ge and As doping can reduce the theoretical average deintercalation voltages of extraction for the first Li+ in per formula unit; the theoretical average deintercalation voltages of the doping systems decrease by 1.65 V, 1.64 V and 1.64 V, respectively, compared with the deintercalation voltage of the undoped Li2CoSiO4 system. Meanwhile, except for the Ga doping, the Ge and As doping can also effectively reduce their theoretical average deintercalation voltagesin the secondary delithiation process. The density of states and magnetic moment show that Co2+ has a strong binding effect on the 3d orbital electrons, which makes it difficult for Co2+ in Li2CoSiO4 material to lose electrons for participating in the charge compensation in the process of Li+ removal. However, the Ga, Ge and As doping can effectively participate in the charge compensation of the system in the process of Li+ removal, which is the main reason for the decrease of the theoretical average deintercalation voltage of the system. In addition, the Ge doping reduces the band gap value of the Li2CoSiO4 from 3.7 eV to 2.49 eV, while the Ga doping and the As doping introduce the donor defects, and thus making the doping system exhibit metallic properties, which can improve the conductivity of the system to some extent.
      通信作者: 侯育花, hyhhyl@163.com
    • 基金项目: 国家自然科学基金(批准号: 11304146)和江西省教育厅基金(批准号: GJJ170587, GJJ160713)资助的课题.
      Corresponding author: Hou Yu-Hua, hyhhyl@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11304146) and the Scientific Research Fundation of the Education Department of Jiangxi Province, China (Grant Nos. GJJ170587, GJJ160713).
    [1]

    Larcher D, Tarascon J M 2015 Nat. Chem. 7 19

    [2]

    Meng Y S, Dompablo M E A 2009 Energy Environ. Sci. 2 589Google Scholar

    [3]

    Ding Y F, Zhao Q Q, Yu Z L, Zhao Y Q, Liu B, He P B, Zhou H, Li K L, Yin S F, Cai M Q 2019 J. Mater. Chem. C 7 7433Google Scholar

    [4]

    Deng X Z, Zhao Q Q, Zhao Y Q, Cai M Q 2019 Curr. Appl. Phys. 19 279Google Scholar

    [5]

    Xu B, Qian D, Wang Z, Meng Y S 2012 Mater. Sci. Eng. R-Rep. 73 51Google Scholar

    [6]

    Zhao Y Q, Wang X, Liu B, Yu Z L, He P B, Wan Q, Cai M Q, Yu H L 2018 Org. Electron. 53 50Google Scholar

    [7]

    Zhao Y Q, Ma Q R, Liu B, Yu Z L, Yang J L, Cai M Q 2018 Nanoscale 10 8677Google Scholar

    [8]

    Dominko R, Bele M, Kokalj A, Gaberscek M, Jamnik J 2007 J. Power Sources 174 457Google Scholar

    [9]

    Sasaki H, Nemoto A, Moriya M, Miyahara M, Hokazono M, Katayama S, Akimoto Y, Nakajima A, Hirano S I 2015 Ceram. Int. 41 S680Google Scholar

    [10]

    Lyness C, Delobel B, Robert A A, Bruce P G 2007 Chem. Commun. 46 4890

    [11]

    嘉明珍 2017 博士学位论文(成都: 西南交通大学)

    Jia M Z 2017 Ph. D. Dissertation (Chengdu: Southwest Jiaotong University) (in Chinese)

    [12]

    Zhang Z F, Chen Z L, Zhang X H, Wu D Y, Li J 2018 Electrochim. Acta 264 166Google Scholar

    [13]

    Wu S Q, Zhu Z Z, Yang Y, Hou Z F 2009 Trans. Nonferrous Met. Soc. 19 182Google Scholar

    [14]

    Du H W, Zhang X H, Chen Z L, Wu D Y, Zhang Z F, Li J 2018 RSC Adv. 8 22813

    [15]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [16]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [17]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [18]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [19]

    Anisimov V I, Zaanen J, Andersen O K 1991 Phys. Rev. B 44 943Google Scholar

    [20]

    Zhou F, Cococcioni M, Marianetti C A, Morgan D, Ceder G 2004 Phys. Rev. B 70 235121Google Scholar

    [21]

    Robert A A, Lyness C, Ménétrier M, Bruce P G 2010 Chem. Mater. 22 1892Google Scholar

    [22]

    Zhou F, Cococcioni M, Kang K, Ceder G 2004 Electrochem. Commun. 6 1144Google Scholar

    [23]

    Graetz J, Hightower A, Ahu C C, Yazami R, Rez P, Fultz B 2002 J. Phys. Chem. B 106 1286

    [24]

    Marianetti C A, Kotliar G, Ceder G 2004 Phys. Rev. Lett. 92 196405Google Scholar

    [25]

    Zhong G H, Li Y L, Yan P, Liu Z, Xie M H, Lin H Q 2010 J. Phys. Chem. C 114 3693Google Scholar

    [26]

    Li L, Zhu L, Xu L H, Cheng T M, Wang W, Li X, Sui Q T 2014 J. Mater. Chem. A 2 4251Google Scholar

    [27]

    Zhang P, Hu C H, Wu S Q, Zhu Z Z, Yang Y 2012 Phys. Chem. Chem. Phys. 14 7346Google Scholar

    [28]

    Chakrabarti S, Thakur A K, Biswas K 2017 Electrochim. Acta 236 288Google Scholar

    [29]

    Li Y S, Cheng X, Zhang Y 2013 Electrochim. Acta 112 670Google Scholar

    [30]

    Wu S Q, Zhang J H, Zhu Z Z, Yang Y 2007 Curr. Appl. Phys. 7 611Google Scholar

    [31]

    嘉明珍, 王红艳, 陈元正, 马存良, 王辉 2015 物理学报 64 087101Google Scholar

    Jia M Z, Wang H Y, Chen Y Z, Ma C L, Wang H 2015 Acta Phys. Sin. 64 087101Google Scholar

    [32]

    Zhang P, Zheng Y, Wu S Q, Zhu Z Z, Yang Y 2014 Comput. Mater. Sci. 83 45Google Scholar

    [33]

    Huang Y L, Fan W B, Hou Y H, Guo K X, Ouyang Y F, Liu Z W 2017 J. Magn. Magn. Mater. 429 263Google Scholar

    [34]

    Boyd R J, Markus G E 1981 J. Chem. Phys. 75 5385Google Scholar

    [35]

    Pauling L 1960 The Nature of The Chemical Bond (London: Oxford University Press) p100

  • 图 1  (a) Li2Co0.5R0.5SiO4 (R = Co, Ga, Ge, As)晶胞结构; (b)相应的超胞结构(绿色、粉色、橙色和蓝色四面体分别表示LiO4, CoO4, RO4和SiO4)

    Fig. 1.  (a) Crystal cell structure of Li2Co0.5R0.5SiO4 (R = Co, Ga, Ge and As); (b) the corresponding supercell. Green, pink, orange and blue tetrahedron represent LiO4, CoO4, RO4 and SiO4, respectively.

    图 2  LixCo0.5R0.5SiO4 (R = Co, Ga, Ge, As; x = 0, 1, 2)脱锂过程中体积的变化

    Fig. 2.  Corresponding unit cell volume of LixCo0.5R0.5SiO4 (R = Co, Ga, Ge and As) at during delithiation x (x = 0, 1, 2).

    图 3  LixCo0.5R0.5SiO4 (R = Co, Ga, Ge, As; x = 0, 1, 2)脱锂过程中晶格常数a, bc的变化

    Fig. 3.  Variations of lattice parameters a, b and c of LixCo0.5R0.5SiO4 (R = Co, Ga, Ge, As) at during delithiation x (x = 0, 1, 2).

    图 4  Li2Co0.5R0.5SiO4 (R = Co, Ga, Ge, As)体系的理论平均脱嵌电压

    Fig. 4.  Average deintercalation voltages of Li2Co0.5R0.5SiO4 (R = Co, Ga, Ge and As).

    图 5  脱锂结构的态密度图 (a) Li2CoSiO4; (b) LiCoSiO4; (c) CoSiO4

    Fig. 5.  Density of states of (a) Li2CoSiO4; (b) LiCoSiO4; (c) CoSiO4.

    图 6  脱锂结构(a) Li2Co0.5Ga0.5SiO4, (b) LiCo0.5Ga0.5SiO4, (c) Co0.5Ga0.5SiO4的态密度图; (d)在脱锂过程中LixCo0.5Ga0.5SiO4(x = 0, 1, 2)中Ga的PDOS图

    Fig. 6.  Density of states of (a) Li2Co0.5Ga0.5SiO4, (b) LiCo0.5Ga0.5SiO4, (c) Co0.5Ga0.5SiO4; (d) the PDOS of Ga in LixCo0.5Ga0.5SiO4 (x = 0, 1, 2) during delithiation.

    图 7  脱锂结构(a) Li2Co0.5Ge0.5SiO4, (b) LiCo0.5Ge0.5SiO4, (c) Co0.5Ge0.5SiO4的态密度图; (d)表示在脱锂过程中LixCo0.5Ge0.5SiO4 (x = 0, 1, 2)中Ge的PDOS

    Fig. 7.  Density of states of (a) Li2Co0.5Ge0.5SiO4, (b) LiCo0.5Ge0.5SiO4, (c) Co0.5Ge0.5SiO4; (d) the PDOS of Ge in LixCo0.5Ge0.5SiO4 (x = 0, 1, 2) during delithiation.

    图 8  脱锂结构(a) Li2Co0.5As0.5SiO4, (b) LiCo0.5As0.5SiO4, (c) Co0.5As0.5SiO4的态密度图; (d)在脱锂过程中LixCo0.5As0.5SiO4 (x = 0, 1, 2)中As的PDOS

    Fig. 8.  Density of states of (a) Li2Co0.5As0.5SiO4, (b) LiCo0.5As0.5SiO4, (c) Co0.5As0.5SiO4; (d) the PDOS of As in LixCo0.5As0.5SiO4 (x = 0, 1, 2) during delithiation.

    表 1  Co离子的磁矩和氧化态

    Table 1.  Magnetic moment and oxidation state of Co ion.

    结构磁矩/μB氧化态
    Li2CoSiO42.79+2 (4s03d7)
    LiCoSiO43.18+3 (4s03d6)
    CoSiO43.34+3 (4s03d6)
    下载: 导出CSV

    表 2  Co离子的磁矩和氧化态

    Table 2.  Magnetic moment and oxidation state of Co ion.

    结构磁矩/μB氧化态
    Li2Co0.5Ga0.5SiO42.79+2 (4s03d7)
    LiCo0.5Ga0.5SiO43.18+3 (4s03d6)
    Co0.5Ga0.5SiO43.26+3 (4s03d6)
    下载: 导出CSV

    表 3  Co离子的磁矩和氧化态

    Table 3.  Magnetic moment and oxidation state of Co ion.

    结构磁矩/μB氧化态
    Li2Co0.5Ge0.5SiO42.79+2 (4s03d7)
    LiCo0.5Ge0.5SiO42.79+2 (4s03d7)
    Co0.5Ge0.5SiO43.35+3 (4s03d6)
    下载: 导出CSV

    表 4  Co离子的磁矩和氧化态

    Table 4.  Magnetic moment and oxidation state of Co ion.

    结构磁矩/μB氧化态
    Li2Co0.5As0.5SiO42.79+2 (4s03d7)
    LiCo0.5As0.5SiO42.79+2 (4s03d7)
    Co0.5As0.5SiO43.26+3 (4s03d6)
    下载: 导出CSV
  • [1]

    Larcher D, Tarascon J M 2015 Nat. Chem. 7 19

    [2]

    Meng Y S, Dompablo M E A 2009 Energy Environ. Sci. 2 589Google Scholar

    [3]

    Ding Y F, Zhao Q Q, Yu Z L, Zhao Y Q, Liu B, He P B, Zhou H, Li K L, Yin S F, Cai M Q 2019 J. Mater. Chem. C 7 7433Google Scholar

    [4]

    Deng X Z, Zhao Q Q, Zhao Y Q, Cai M Q 2019 Curr. Appl. Phys. 19 279Google Scholar

    [5]

    Xu B, Qian D, Wang Z, Meng Y S 2012 Mater. Sci. Eng. R-Rep. 73 51Google Scholar

    [6]

    Zhao Y Q, Wang X, Liu B, Yu Z L, He P B, Wan Q, Cai M Q, Yu H L 2018 Org. Electron. 53 50Google Scholar

    [7]

    Zhao Y Q, Ma Q R, Liu B, Yu Z L, Yang J L, Cai M Q 2018 Nanoscale 10 8677Google Scholar

    [8]

    Dominko R, Bele M, Kokalj A, Gaberscek M, Jamnik J 2007 J. Power Sources 174 457Google Scholar

    [9]

    Sasaki H, Nemoto A, Moriya M, Miyahara M, Hokazono M, Katayama S, Akimoto Y, Nakajima A, Hirano S I 2015 Ceram. Int. 41 S680Google Scholar

    [10]

    Lyness C, Delobel B, Robert A A, Bruce P G 2007 Chem. Commun. 46 4890

    [11]

    嘉明珍 2017 博士学位论文(成都: 西南交通大学)

    Jia M Z 2017 Ph. D. Dissertation (Chengdu: Southwest Jiaotong University) (in Chinese)

    [12]

    Zhang Z F, Chen Z L, Zhang X H, Wu D Y, Li J 2018 Electrochim. Acta 264 166Google Scholar

    [13]

    Wu S Q, Zhu Z Z, Yang Y, Hou Z F 2009 Trans. Nonferrous Met. Soc. 19 182Google Scholar

    [14]

    Du H W, Zhang X H, Chen Z L, Wu D Y, Zhang Z F, Li J 2018 RSC Adv. 8 22813

    [15]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [16]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [17]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [18]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [19]

    Anisimov V I, Zaanen J, Andersen O K 1991 Phys. Rev. B 44 943Google Scholar

    [20]

    Zhou F, Cococcioni M, Marianetti C A, Morgan D, Ceder G 2004 Phys. Rev. B 70 235121Google Scholar

    [21]

    Robert A A, Lyness C, Ménétrier M, Bruce P G 2010 Chem. Mater. 22 1892Google Scholar

    [22]

    Zhou F, Cococcioni M, Kang K, Ceder G 2004 Electrochem. Commun. 6 1144Google Scholar

    [23]

    Graetz J, Hightower A, Ahu C C, Yazami R, Rez P, Fultz B 2002 J. Phys. Chem. B 106 1286

    [24]

    Marianetti C A, Kotliar G, Ceder G 2004 Phys. Rev. Lett. 92 196405Google Scholar

    [25]

    Zhong G H, Li Y L, Yan P, Liu Z, Xie M H, Lin H Q 2010 J. Phys. Chem. C 114 3693Google Scholar

    [26]

    Li L, Zhu L, Xu L H, Cheng T M, Wang W, Li X, Sui Q T 2014 J. Mater. Chem. A 2 4251Google Scholar

    [27]

    Zhang P, Hu C H, Wu S Q, Zhu Z Z, Yang Y 2012 Phys. Chem. Chem. Phys. 14 7346Google Scholar

    [28]

    Chakrabarti S, Thakur A K, Biswas K 2017 Electrochim. Acta 236 288Google Scholar

    [29]

    Li Y S, Cheng X, Zhang Y 2013 Electrochim. Acta 112 670Google Scholar

    [30]

    Wu S Q, Zhang J H, Zhu Z Z, Yang Y 2007 Curr. Appl. Phys. 7 611Google Scholar

    [31]

    嘉明珍, 王红艳, 陈元正, 马存良, 王辉 2015 物理学报 64 087101Google Scholar

    Jia M Z, Wang H Y, Chen Y Z, Ma C L, Wang H 2015 Acta Phys. Sin. 64 087101Google Scholar

    [32]

    Zhang P, Zheng Y, Wu S Q, Zhu Z Z, Yang Y 2014 Comput. Mater. Sci. 83 45Google Scholar

    [33]

    Huang Y L, Fan W B, Hou Y H, Guo K X, Ouyang Y F, Liu Z W 2017 J. Magn. Magn. Mater. 429 263Google Scholar

    [34]

    Boyd R J, Markus G E 1981 J. Chem. Phys. 75 5385Google Scholar

    [35]

    Pauling L 1960 The Nature of The Chemical Bond (London: Oxford University Press) p100

  • [1] 梁婷, 王阳阳, 刘国宏, 符汪洋, 王怀璋, 陈静飞. V掺杂二维MoS2体系气体吸附性能的第一性原理研究. 物理学报, 2021, 70(8): 080701. doi: 10.7498/aps.70.20202043
    [2] 戚玉敏, 陈恒利, 金朋, 路洪艳, 崔春翔. 第一性原理研究Mn和Cu掺杂六钛酸钾(K2Ti6O13)的电子结构和光学性质. 物理学报, 2018, 67(6): 067101. doi: 10.7498/aps.67.20172356
    [3] 阮璐风, 王磊, 孙得彦. Sr掺杂对La1-xSrxMnO3/LaAlO3/SrTiO3界面电子结构的影响. 物理学报, 2017, 66(18): 187301. doi: 10.7498/aps.66.187301
    [4] 朱学文, 徐利春, 刘瑞萍, 杨致, 李秀燕. N-F共掺杂锐钛矿二氧化钛(101)面纳米管的第一性原理研究. 物理学报, 2015, 64(14): 147103. doi: 10.7498/aps.64.147103
    [5] 徐晶, 梁家青, 李红萍, 李长生, 刘孝娟, 孟健. Ti掺杂NbSe2电子结构的第一性原理研究. 物理学报, 2015, 64(20): 207101. doi: 10.7498/aps.64.207101
    [6] 嘉明珍, 王红艳, 陈元正, 马存良, 王辉. Al, Fe, Mg掺杂Li2MnSiO4的电子结构和电化学性能的第一性原理研究. 物理学报, 2015, 64(8): 087101. doi: 10.7498/aps.64.087101
    [7] 吴木生, 徐波, 刘刚, 欧阳楚英. Cr和W掺杂的单层MoS2电子结构的第一性原理研究. 物理学报, 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [8] 王平, 郭立新, 杨银堂, 张志勇. 铝氮共掺杂氧化锌纳米管电子结构的第一性原理研究. 物理学报, 2013, 62(5): 056105. doi: 10.7498/aps.62.056105
    [9] 邓娇娇, 刘波, 顾牡, 刘小林, 黄世明, 倪晨. 伽马CuX(X=Cl,Br,I)的电子结构和光学性质的第一性原理计算. 物理学报, 2012, 61(3): 036105. doi: 10.7498/aps.61.036105
    [10] 徐金荣, 王影, 朱兴凤, 李平, 张莉. N掺杂和N-V共掺杂锐钛矿相TiO2的第一性原理研究. 物理学报, 2012, 61(20): 207103. doi: 10.7498/aps.61.207103
    [11] 李荣, 罗小玲, 梁国明, 付文升. 掺杂Fe对VH2解氢性能影响的第一性原理研究. 物理学报, 2011, 60(11): 117105. doi: 10.7498/aps.60.117105
    [12] 王英龙, 王秀丽, 梁伟华, 郭建新, 丁学成, 褚立志, 邓泽超, 傅广生. 不同浓度Er掺杂Si纳米晶粒电子结构和光学性质的第一性原理研究. 物理学报, 2011, 60(12): 127302. doi: 10.7498/aps.60.127302
    [13] 张云, 邵晓红, 王治强. 3C-SiC材料p型掺杂的第一性原理研究. 物理学报, 2010, 59(8): 5652-5660. doi: 10.7498/aps.59.5652
    [14] 梁伟华, 丁学成, 褚立志, 邓泽超, 郭建新, 吴转花, 王英龙. 镍掺杂硅纳米线电子结构和光学性质的第一性原理研究. 物理学报, 2010, 59(11): 8071-8077. doi: 10.7498/aps.59.8071
    [15] 吴红丽, 赵新青, 宫声凯. Nb掺杂影响NiTi金属间化合物电子结构的第一性原理计算. 物理学报, 2010, 59(1): 515-520. doi: 10.7498/aps.59.515
    [16] 徐新发, 邵晓红. Y掺杂SrTiO3晶体材料的电子结构计算. 物理学报, 2009, 58(3): 1908-1916. doi: 10.7498/aps.58.1908
    [17] 郭建云, 郑 广, 何开华, 陈敬中. Al,Mg掺杂GaN电子结构及光学性质的第一性原理研究. 物理学报, 2008, 57(6): 3740-3746. doi: 10.7498/aps.57.3740
    [18] 吴红丽, 赵新青, 宫声凯. Nb掺杂对TiO2/NiTi界面电子结构影响的第一性原理计算. 物理学报, 2008, 57(12): 7794-7799. doi: 10.7498/aps.57.7794
    [19] 金胜哲, 黄祖飞, 明 星, 王春忠, 孟 醒, 陈 岗. 二价金属元素掺杂对LiCoO2体系电子输运性质的影响. 物理学报, 2007, 56(10): 6008-6012. doi: 10.7498/aps.56.6008
    [20] 张加宏, 马 荣, 刘 甦, 刘 楣. 掺杂MgCNi3超导电性和磁性的第一性原理研究. 物理学报, 2006, 55(9): 4816-4821. doi: 10.7498/aps.55.4816
计量
  • 文章访问数:  8736
  • PDF下载量:  110
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-04
  • 修回日期:  2019-06-29
  • 上网日期:  2019-09-01
  • 刊出日期:  2019-09-20

/

返回文章
返回